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Highlights: 

 CPO-27(Ni) and aluminium fumarate were investigated for adsorption heating, cooling and 

desalination applications. 

 Both MOFs have high potential in adsorption applications. 

 The optimum desorption temperature, for the CPO-27(Ni) is higher than 90
o
C and for 

aluminium fumarate is 55-70
o
C. 

 CPO-27(Ni) outperforms aluminium fumarate at low evaporation temperature (5
o
C). 

  Aluminium fumarate outperforms CPO-27(Ni) at high evaporation temperature (20
o
C). 

 

 Abstract  

Metal-Organic Framework (MOF) materials are new porous materials with high surface area, pore 

size and volume, and tunable pore geometry thus providing high adsorption capacity. Currently, 

limited MOF materials with high water adsorption capabilities and hydrothermal stability are 

available on a large scale. Two MOF materials namely CPO-27(Ni) and aluminium fumarate have 

been identified to have a high hydrothermal stability, high water uptake of 0.47 gH2O.gads
-1

 and 0.53 

gH2O.gads
-1

 at a relative pressure of 0.9 and are commercially available.  

This work aims to measure the water adsorption characteristics of these two MOF materials in terms 

of isotherms, kinetics and cyclic stability. Also the thermodynamic cycle performance of such 

materials based on their equilibrium adsorption data was investigated under different operating 

conditions for various adsorption applications such as heating, cooling and water desalination.  
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Results showed that the CPO-27(Ni)/water pair outperformed the aluminium fumarate/water pair at 

low evaporation temperatures (5
o
C) and high desorption temperatures (≥ 90

o
C), while the aluminium 

fumarate/water pair was more suitable for applications requiring high evaporation temperature (20
o
C) 

and/or low desorption temperature (70
o
C). 

Keywords: Metal-Organic Framework, Characterization, Adsorption, Heat pump, Refrigeration, 

Desalination. 
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Nomenclature 

Symbols                                                  Description                             Unit 

A Adsorption potential                                       J.mol
-1

 

COP Coefficient of performance                                                         -- 

Dso Pre-exponential constant of the effective vapour diffusivity           m
2
.s

−1 

Ds                                                               Surface diffusion coefficient                                                                m
2
.s

−1
 

E Adsorption characteristic parameter                                                    J.mol
-1

 

Ea Activation energy                                        J.mol
-1 

F                                         Constant depending on the particles shape                                                -- 

ΔHads Isosteric heat of Adsorption                            J.kg
-1 

Ksav                                     Overall mass transfer coefficient                                                             S-1 

k0 LDF model empirical constant                  s
-1

 

n Exponent fitting parameter                                                       -- 

OPR Overall Performance Ratio                               -- 

P Equilibrium pressure                                             Pa 

PC Condenser pressure                                                                     Pa 

PE Evaporator pressure                                                                     Pa 

Ps Saturation pressure of adsorbate at adsorption temperature    Pa 

P/Ps Relative pressure                                   -- 

Qads Heat of adsorption                                                          kJ 

Qc Heat of condensation                                                                      kJ 

Qdes Heat of desorption                                                                      kJ 

Qe Heat of evaporation                                  kJ  

R  Ideal gas constant                                 J.(mol.K)
-1 

Rp                                                Radius of adsorbent particle                                                                        m 

  

T  Temperature                                                             K 

TAds Adsorber temperature                                             
o
C 

TC Condenser temperature                                              
o
C 

TDes Desorption temperature                                                                              
o
C 

TE Evaporator temperature                                                          
o
C 

X Equilibrium uptake                                              gH2O.gads
-1

 

x0 Maximum uptake                                                           gH2O.gads
-1
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1. Introduction 

Metal-Organic Frameworks (MOF) are highly crystalline materials, with high surface area and pore 

volume, that are moderately stable and can be synthesized in a very pure form and thus have great 

potential for various applications like catalysis [1], gas separations and storage [2], sensors [3] and 

heat pumps [4]. The adsorption performance of a number of MOFs including  ISE-1, HKUST-1, MIL-

100(Fe), MIL-53(Fe), Basolite 100A and Basolite F300 were investigated, showing high adsorption 

capabilities compared to silica gel and zeolite [5-12]. Also, the heat of adsorption for MOFs was 

found to be lower than the heat of adsorption for zeolites, which means a lower interaction between 

the framework and the water molecules and a lower regeneration temperature is required. HKUST-1 

unlike most of the MOFs showed a significant degradation in its cycle stability due to the destruction 

of the structure, limiting its use in water adsorption applications. Another significant advantage of 

MOFs, is that the water vapour capacity can vary as the organic linker and the metal cluster changes 

resulting in tunable properties leading to a better performance. This advantage is very apparent in 

MIL-101(Cr) which has a high water uptake of 1-1.43 gH2O.gads
-1

(at high relative pressure > 0.35) and 

a high cyclic stability [13-18]. The crucial problem with most MOFs is the commercial availability 

which limits use in many applications.  

CPO-27(Ni) (known as MOF-74(Ni)) and aluminium fumarate are two MOFs that have high water 

adsorption capabilities of 0.47gH2O.gads
-1 

and
 
0.53 gH2O.gads

-1
, respectively. The two materials are 

hydrothermally stable [19-20] and due to the previous properties they have the potential to be used in 

adsorption heat pump applications. The most important advantage of these two MOFs is that they are 

synthesized and commercially produced by Johnson Matthey and MOFs technologies respectively.  

The main objective of this work is to assess the water adsorption characteristics of these MOFs and 

investigate their performance under various operating conditions for different adsorption applications 

such as heating, cooling and water desalination.  

 

2. Experimental Work: 

This section describes techniques used to characterize the two MOFs through particle size, powder X-

Ray Diffraction (XRD), N2 adsorption and water adsorption characteristics using a Dynamic Vapour 

Adsorption analyser (DVS). The equilibrium water adsorption characteristics were then used to 

develop the P-T-x diagrams required to assess the two MOFs suitability for the various adsorption 

applications.  

 

The particle size of the two materials was measured using a Delsa™Nano Particle Size analyser. 

 

The powder XRD patterns were measured using a Bruker D8 Advance Reflection Diffractometer with 

Cu Kα radiation (1.5418 Å). The aluminium fumarate sample was scanned from 8 to 45° 2θ and the 

CPO-27(Ni) sample from 10 to 75
o
, with a step size of 0.02° and both samples were spun at 15 rpm.  

Page 4 of 24



The N2 adsorption isotherm at 77 K was used to measure the BET surface area [21] using a 

Quantachrome NOVA surface area analyser. 

 

The dynamic vapour sorption (DVS) gravimetric analyser (Advantage DVS, Surface Measurement 

Systems, UK) (Fig. S1) was used to study the water adsorption characteristics [7, 22]. The water 

adsorption isotherms were measured at 15
o
C, 25

o
C and 35

o
C for aluminium fumarate and at 25

o
C, 

35
o
C and 55

o
C for CPO-27(Ni). 

(See supporting information, S1) 

 

3. Theory: 

3.1. Adsorption Isotherm models: 

The measured adsorption isotherms for water vapour onto CPO-27(Ni) at 25
o
C, 35

o
C and 55

o
C were 

fitted using the Dubinin-Astakhov equation (Eq. 1) commonly used for adsorption equilibrium of 

gases and vapours onto microporous adsorbents [25]: 

))((
0

n

E

A
ExpxX                                                                                                                             (1)

)ln(

s
P

P
RTA                                                                                                                                       

(2)                                                                                                                                    

In the case of aluminium fumarate, to predict the water uptake at wide range of operating 

temperatures and pressure, the measured adsorption isotherms at 15
o
C, 25

o
C and 35

o
C were fitted 

using a series of equations (exponential and polynomial) in terms of X and A. 

3.2. Adsorption kinetic models: 

The rate of adsorption or the adsorption kinetics is another crucial parameter determining the 

residence time required for completion of the adsorption cycle and depending on the interaction 

between the adsorbent and the adsorbate.  

The Linear Driving Force model [26, 27, 28] (Eq. 3-6) has been one of the most used kinetics model 

as it is applicable to a wide range of adsorbents [29, 30, 31] 
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Where F is a constant depending on the shape of the adsorbent particles which is 15 for spherical 

particles and 8 for cylindrical particles. 

The values of the different isotherms and kinetic equations parameters are calculated and discussed in 

section 4.                                                                                                             

3.3. MOF-based adsorption cycle: 

In the adsorption cycle, a working fluid is evaporated, taking its evaporation heat Qevap from the 

surroundings and thereby producing useful cold in cooling applications. Then vapour is adsorbed into 

the porous material, generating adsorption heat Qads, which is larger than the latent heat of 

vaporization (usually by 10-30%) [19, 20, 25]. This heat is released to the environment in the cooling 

case or produces useful heat in the heat pump application. In the desorption process, the porous 

material is regenerated by applying heat Qdes from various external heat sources like solar energy or 

industrial waste heat. The desorbed fluid condenses at a medium temperature level, releasing the heat 

of condensation Qcond. This is useful in the heat pump and is released to the environment in cooling 

applications [16]. Equilibrium adsorption characteristics of a gas or vapour on a solid can be depicted 

in the P-T-x diagrams.  

The specific heat of adsorption can be calculated through the Clausius–Clapeyron equation (Eq. 7): 

)
1

(

)ln(

T

P
RH

waterads






                                                                                                                                  (7) 

The cooling effect in the cycle occurs during the isobaric adsorption process when the adsorbate is 

evaporated by gaining heat from the surroundings. The heating effect appears during the isobaric 

desorption process when the adsorbate is condensed by releasing heat to surroundings. The 

Coefficient of Performance (COP) is measured by the ratio of the useful energy provided by the 

device to the required input [19, 23, 32, 33]. For applications such as heat pumps, where the useful 

energy is the heat supplied by the condenser and the adsorption bed, COPh can be defined as: 

des

cads

h

Q

QQ
COP


                                                                                                                               (8) 

For cooling applications like water chillers, the useful energy from the device is the evaporation 

energy, and hence: 

des

e

ref

Q

Q
COP                                                                                                                                       (9) 

Adsorption Desalination, is a novel adsorption system producing two useful effects, namely high 

grade potable water and cooling with only a single heat source input (low grade heat source of 

temperatures from 50
o
C to 85°C) [34, 35].The performance of the system can be expressed through 

COPref or the Overall Performance Ratio (OPR) [35]: 
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des

ce

Q

QQ
OPR


                                                                                                                                 (10) 

 

4. Results and discussion 

4.1. Powder X-Ray Diffraction: 

Fig. S2 shows the powder XRD patterns of both MOFs. The sharp peaks of the CPO-27(Ni) pattern 

highlight the high crystallinity of the material, while the very broad peaks of aluminium fumarate are 

consistent with the small crystallite size (grain size) measurement. The average particle size of the 

aluminium fumarate was 1.3 µm and the CPO-27(Ni) was 107.5 µm. 

4.2. Surface area measurements: 

Fig. S3 shows the N2 adsorption isotherm at 77 K for both MOF materials. It is clear that aluminium 

fumarate had a higher N2 adsorption capacity than that of CPO-27(Ni) and hence a higher surface 

area, giving a BET surface areas of 893.965 m².g
-1

 and 469.777 m
2
.g

-1
, respectively.  

4.3. Water adsorption isotherms: 

Fig. 1 shows the measured water adsorption/desorption isotherms at a temperature of 25
o
C for both 

MOFs.  

From the figure, CPO-27(Ni) exhibited a type I adsorption isotherm with no hysteresis reaching 81% 

of its capacity at a very low relative pressure and then a plateau reaching its maximum uptake of 0.47 

gH2O.gads
-1

 at a relative pressure of 0.9. This performance is due to the presence of unsaturated metal 

centres (UMCs) existing in some MOF structures. These UMCs are metal binding sites formed after 

the removal of axial ligands from metal atoms attracting water molecules and offering extra binding 

sites to the guest molecules, especially at low pressure values [23]. On the other hand, the strong 

interaction between the water molecules and these sites requires a higher desorption temperature. To 

further investigate the performance of the material at different temperatures, the water adsorption 

isotherm of the material was also measured at 35
o
C and 55

o
C (Fig. S4).The material showed almost 

the same uptake over the investigated temperature range. 

On the other hand, aluminium fumarate exhibited a type IV isotherm with type H1 hysteresis 

indicating a narrow distribution of uniform pores. Fig. 1 shows that at low partial pressure (below 

0.2), the water uptake was low, but a steep increase in the water uptake took place at a relative 

pressure range between 0.2 and 0.3 to reach 0.35 gH2O.gads
-1 

and then the uptake continued to increase 

till it reached the maximum value of 0.53 gH2O.gads
-1

 at a relative pressure of 0.9. 

 The adsorption mechanism of aluminium fumarate differs from that of the CPO-27(Ni). In aluminium 

fumarate, the water molecules are uniformly accumulated in the inner pores of the material indicating 

the hydrophilicity of the inner pore surface, without the presence of unsaturated metal sites. 
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The limited water uptake at low relative pressure in aluminium fumarate is related to the 

hydrophobicity of the organic linker [24]. The water adsorption isotherm of the material was also 

measured at 15
o
C and 35

o
C (Fig. S5) to investigate the performance of the material at different 

temperatures and the material showed almost the same uptake over the investigated temperature 

range. 

In order to evaluate performance stability, the two materials were exposed to ten successive water 

adsorption/desorption cycles. CPO-27(Ni) showed great performance stability with a negligible 

decrease of only 0.35% (Fig. 2a). Aluminium fumarate showed a higher decrease during the first 4 

cycles (Fig. 2b) and a stable performance afterwards which could be attributed to the breathing 

phenomenon observed in some MOFs like MIL-53 causing the thermodynamic water sorption 

equilibrium to not be completely reached within the first cycles. The material was reported to exhibit 

a stable performance after the first few cycles [20]. 

 

4.4. Adsorption isotherm models: 

The equilibrium adsorption isotherm data was fitted through Dubinin-Astakhov equation (Eq. 1). 

Table 1 gives the values of parameters x0, E and n. 

The equilibrium water adsorption data was fitted through (Eq. 11-13) to predict the water uptake of 

aluminium fumarate at different adsorption temperatures: 

)000258797.0(111993.0 AExpX                                                                    A>3987             (11) 

2
0705709.10493768.936129.2 AEAEX                              2900 ≤ A≤3987             (12) 

5948.00412.30768302.111124455.3
23

 AEAEAEX           A<2900             (13) 

Fig. S6 & S7, highlight the validity of the Dubinin-Astakhov model and the proposed equations to fit 

the experimental data for both materials at different adsorption temperature. 

4.5. Adsorption kinetics models: 

The rate of water adsorption was simulated through applying the LDF model. Table 2 gives the 

values of parameters Ea and k0, Rp and Dso .Table 3 indicate the effect of temperature on the diffusion 

coefficient, as increasing the temperature will increase the surface diffusion coefficient. 

 

 

Fig. S8, highlights the validity of the LDF model to fit the experimental data for both materials. The 

values of LDF equation parameters are shown in (Tables 2 & 3) where it is evident that the diffusion 

coefficient of aluminium fumarate is lower than that of CPO-27(Ni). This is in agreement with Fig. 3 

showing the time variation of the measured fractional uptake of the two adsorbents, it is clear that the 

CPO-27(Ni) reached equilibrium much faster than aluminium fumarate. Also, Fig. S9 presents the 

measured water vapour uptake variation with time for CPO-27(Ni) and aluminium fumarate using 

different vapour pressures at 25
o
C. The figures indicate the difference in the adsorption rate between 
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the two MOFs showing that the kinetics in case of aluminium fumarate is significantly more passive 

than in CPO-27(Ni).  

The slower kinetics of aluminium fumarate may be attributed to the absence of the UMCs and the 

domination of the hydrophobicity of the organic ligand at low pressures. The faster adsorption rate of 

CPO-27(Ni)/water pair implies the potential of utilizing CPO-27(Ni) in applications requiring short 

adsorption/desorption cycle time.  

Based on the previously discussed equilibrium water adsorption data, the effect of different operating 

conditions on the performance of aluminium fumarate/water and CPO-27(Ni)/water were investigated 

to assess their suitability for various applications. The performance of the two materials was assessed 

through assuming ideal thermodynamic cycles. Thermodynamic relationships between pressure, 

adsorption temperature and water vapour concentration, as depicted in the P-T-x diagram (Fig. 4), 

were used to calculate the COP and water vapour concentration difference of each cycle. 

Condensation temperatures from 30
o
C to 45

o
C were investigated. The adsorption temperature was 

assumed to be equal to the condensation temperature. The effect of increasing the regeneration 

temperature from 70
o
C to 110

o
C was also investigated, and finally the effect of evaporation 

temperature on the thermodynamic cycle of the two materials was discussed with evaporation 

temperatures of 5
o
C and 20

o
C. 

4.6. Effect of regeneration and condensation temperature on the performance of aluminium 

fumarate/water and CPO-27(Ni)/water pairs at an evaporation temperature of 5
o
C:  

Fig. 5 illustrates the effect of condensation and regeneration temperatures on the COPh and COPref 

of CPO-27(Ni) and aluminium fumarate cycles using an evaporation temperature of 5
o
C. It can be 

seen that as the regeneration temperature increases, the COPh and COPref increase to reach a 

maximum and then remains relatively constant within the tested temperature range. However, the 

effect of the regeneration temperature is higher in the case of CPO-27(Ni) than in the case of 

aluminium fumarate. For example, for CPO-27(Ni), increasing the regeneration temperature from 

70
o
C to 110

o
C at a constant condensation temperature of 30

o
C increases the COPh from 1.35 to 

1.67.  This can be explained by the difference in water loading for the two materials at various 

regeneration temperatures (Fig. 6) where increasing the regeneration temperature from 70
o
C and 

110
o
C, increases the water loading difference from 0.034 to 0.355 l/kg for CPO-27(Ni) and from 

0.014 to 0.023 l/kg for aluminium fumarate. 

However, in case of the aluminium fumarate at a condensation temperature of 30
o
C, the COPh 

increased with increasing the regeneration (desorption) temperature to reach a maximum value of 

1.408 at 85
o
C and then decreased with further increase in the regeneration temperature to reach 

1.388 at 110
o
C. A similar behaviour was observed in some carbon materials [36, 37]. This 

behaviour is due to the fact that aluminium fumarate material is almost dry at a relative pressure 

of 0.2 (Fig. 1) corresponding to a desorption temperature of ~55
o
C at a condensation temperature 
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of 25
o
C (65

o
C [20]). Thus increasing the regeneration temperature will not desorb more water 

vapour but will contribute to increasing heat losses in the cycles. 

Also the figure shows that increasing the condensation temperature from 30
o
C to 45

o
C adversely 

affects the COPh. This behaviour can be attributed to the increase in the water vapour 

concentration at the end of the cycle, decreasing the water circulated and eventually decreasing 

the efficiency of the cycle. 

Finally, it is observable from Fig. 5 that the effect of condensation and regeneration temperature on 

the COPref follows the same trend as the COPh and it can be concluded that CPO-27(Ni) outperforms 

aluminium fumarate at low evaporation temperatures (5
o
C). 

For other adsorption applications like adsorption desalination, the amount of distilled water produced 

is an essential parameter in choosing the adsorbent type and the operating conditions. Fig. 6 illustrates 

the effect of condensation and regeneration temperatures on the amount of distilled water that can be 

produced as ‘water loading difference’ from CPO-27(Ni) and aluminium fumarate cycles using an 

evaporation temperature of 5
o
C. From the figure, increasing the condensation temperature decreases 

the water loading difference for both MOFs, while increasing the regeneration temperature from 70
o
C 

to 110
o
C increases it profoundly in CPO-27(Ni) but only slightly in case of aluminium fumarate. This 

illustrates the considerable dependence of CPO-27(Ni) performance on the regeneration temperature. 

This dependence can be related to the isosteric heat of adsorption, for CPO-27(Ni) it was found to be 

higher (16 % higher than the specific heat of vaporization of water) than that of aluminium fumarate 

(10 % higher than the specific heat of vaporization of water).    

The figure also highlights the potential of using CPO-27(Ni) in adsorption desalination cycles 

operated at low evaporation and high regeneration temperatures producing a dual effect of water 

production as high as 0.35 l/kg per cycle and a COPref  of 0.67. 

Based on Fig. 6, it is doubtless that at an evaporation temperature of 5
o
C, only the CPO-27(Ni) can be 

used in an adsorption desalination system but the system should be operated at a high regeneration 

temperature (≥90
o
C). To further assess the system the Overall Performance Ratio (OPR) was 

estimated.  

Fig.7 shows the effect of regeneration and condensation temperatures on the OPR of the desalination 

system. It is evident that increasing the condensation temperature would negatively affect the OPR of 

the system, while increasing the regeneration temperature would improve its performance. 

4.7. Effect of regeneration and condensation temperature on the performance of aluminium 

fumarate/water and CPO-27(Ni)/water pairs at an evaporation temperature of 20
o
C:  

Fig. 8 illustrates the effect of condensation and regeneration temperature on the COPh of CPO-27(Ni) 

and aluminium fumarate cycles using an evaporation temperature of 20
o
C. It is noticeable that 

increasing the condensation temperature would decrease the COPh of CPO-27(Ni) cycle while it 
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would only affect the performance of the aluminium fumarate at a condensation temperature higher 

than 40
o
C. Increasing the regeneration temperature from 70

o
C to 110

o
C would increase the COPh of 

CPO-27(Ni) and decrease the COPh of aluminium fumarate.  

When comparing the effect of the evaporation temperature, Fig. 5 and Fig. 8, it can be noticed that 

increasing the evaporation temperature will improve the performance of aluminium fumarate very 

significantly but less notably in the case of CPO-27(Ni).In other words, porous materials with a type I 

adsorption isotherm would not be significantly affected by increasing the evaporation temperature as 

much as materials possessing a type IV isotherm. 

It is also evident that the effect of increasing the condensation and regeneration temperature on the 

COPref follows the same behaviour as on the COPh.  

 

 

 

 

 

 

Fig. 9 illustrates the effect of condensation and regeneration temperature on the amount of water 

produced (water loading difference) from the CPO-27(Ni) and aluminium fumarate cycles using an 

evaporation temperature of 20
o
C. It is evident that in the case of both MOFs, increasing the 

condensation temperature would adversely affect the water loading difference. Also, increasing the 

regeneration temperature would increase the distilled water produced from both MOFs.  

Comparing Fig. 6 and Fig. 9, it is shown that increasing the evaporation temperature from 5
o
C to 

20
o
C would significantly increase the distilled water produced from the aluminium fumarate cycle as 

the water loading difference increased to 0.47 l/kg at an evaporation temperature of 20
o
C. This can be 

attributed to the fact that the material exhibits a type IV isotherm where its uptake increases 

significantly with increasing the evaporation temperature. Increasing the evaporation temperature was 

found to have a limited effect on the amount of water produced from CPO-27(Ni) as the material 

exhibits a type I water adsorption isotherm reaching 81% of its capacity at a very low relative pressure 

and hence less dependent on the evaporation temperature. 

Based on the amount of the distilled water that can be produced from the CPO-27(Ni) and aluminium 

fumarate at an evaporation temperature of 20
o
C, the CPO-27(Ni) can only be used at a high 

regeneration temperature (≥ 90
o
C), while aluminium fumarate can be used at a regeneration 

temperature as low as 70
o
C. To further assess the potential for desalination systems, the OPR was 

estimated. 
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Fig. 10 shows the effect of regeneration and condensation temperature on the OPR of the desalination 

cycles. It is evident that increasing the condensation temperature would profoundly decrease the OPR 

of the CPO-27(Ni) cycle, while it would have a slight effect on aluminium fumarate cycle. Increasing 

the regeneration temperature would enhance the performance of the CPO-27(Ni) desalination system, 

while it would negatively affect the OPR of the aluminium fumarate cycle based on COPh, COPref and 

water loading difference figures.  

Fig. 5-10 highlight that the aluminium fumarate is found to outperform CPO-27(Ni) at high 

evaporation temperature (20
o
C) while it is the opposite at low evaporation temperature (5

o
C).Also, 

Based on the adsorption kinetics, CPO-27(Ni) is more suitable for heat-powered adsorption heating 

and cooling applications where high temperature heat sources are available and short 

adsorption/desorption cycle time is required. On the contrary, the aluminium fumarate seems to be 

more suitable for solar adsorption applications where lower regeneration temperatures are used and 

comparatively longer cycle time is required. 

The potential adsorption applications of aluminium fumarate and CPO-27(Ni) and the suitable 

operating conditions based on the investigated temperature ranges are summarized in Table 4.  

5. Conclusion: 

Metal-Organic Framework materials offer great potential for a wide range of thermally driven 

adsorption applications like cooling, heating and water desalination. This paper characterizes two 

commercially available MOFs namely aluminium fumarate and CPO-27(Ni) (MOF-74(Ni)) and 

investigates their performance for various adsorption applications.  

Results showed that increasing the regeneration temperature would adversely affect the COP of 

aluminium fumarate while it improve it in case of CPO-27(Ni) in the investigated temperature range. 

On the other hand, increasing the condensation temperature was found to be detrimental to the 

performance of the two materials.  

The CPO-27(Ni) was found to be more suitable for applications working at a low evaporation 

temperature (5
o
C) and high regeneration temperature (≥90

o
C) achieving a COPref higher than 0.6, 

while aluminium fumarate showed a superior performance at a higher evaporation temperature (20
o
C) 

and low regeneration temperature (70
o
C). Both materials showed a great potential for the adsorption 

desalination application.  

This work paves the way for using aluminium fumarate and CPO-27(Ni) in thermally driven 

adsorption systems, highlighting their potential in adsorption desalination and also in adsorption heat 

pump applications that are currently dominated by conventional porous materials such as silica gel 

and zeolites. 
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Fig. 1 Water adsorption isotherm of CPO-27(Ni) and aluminium fumarate at 25
o
C. 
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 Fig. 2 Adsorption/desorption cycling experiments for a. CPO-27(Ni) and b. Aluminium fumarate. 
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Fig. 3 Fractional uptake of CPO-27(Ni) and aluminium fumarate at 25
o
C and P/Ps=0.2. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 An example of P-T-x diagram for CPO-27(Ni). 

(Ads. Temp. = 30
o
C, Cond. Temp. = 30

o
C, Eva. Temp= 5

o
C and Des. Temp= 70

o
C) 
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Fig. 5 Effect of condensation and regeneration temperature on the COPh and COPref of a. CPO-27(Ni), b. 

aluminium fumarate cycles at an evaporation temperature of 5
o
C. 
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Fig. 7 Effect of condensation and regeneration temperature on the OPR of a desalination cycle using  

CPO-27(Ni) at an evaporation temperature of 5
o
C. 
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Fig. 8 Effect of condensation and regeneration temperature on the COPh and COPref of a. CPO-27(Ni), b. 

aluminium fumarate cycles at an evaporation temperature of 20
o
C. 

 

 

Fig. 9 Effect of condensation and regeneration temperature on the water loading difference in CPO-

27(Ni) and aluminium fumarate cycles at an evaporation temperature of 20
o
C. 
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Fig. 10 Effect of condensation and regeneration temperature on the OPR of desalination cycles of CPO-

27(Ni) and aluminium fumarate at an evaporation temperature of 20
o
C. 
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Table 1 Values of Dubinin-Astakhov equation parameters: 

x0 E n 

0.462 10014.1 4 

 

Table 2 Values of LDF equation parameters: 

Adsorbent Ea k0 Rp F.Dso 

CPO-27(Ni) 25125 5.1 
53.75*10

-6
 

 

1.47*10
-8

 

Aluminium fumarate 18026 1.29 0.65*10
-6

 5.49*10
-13

 

 

Table 3 Effect of temperature on Ds: 

Adsorbent CPO-27(Ni) Aluminium fumarate 

T 298 308 298 308 

F.Ds 5.8*10
-13 

8.1*10
-13

 
 

3.8*10
-16

 

 

4.8*10
-16

 

 

 

Table 4 Summary of the potential applications of aluminium fumarate and CPO-27(Ni) 

indicating the suitable operating conditions (in the investigated temperature range). 

 

Application 

 

Comment 

Regeneration 

temperature 

(
o
C) 

Condensation 

temperature 

(
o
C) 

Evaporation 

temperature 

(
o
C) 

 

Adsorbent 

 

 

 

Desalination 

With high 

cooling 

effect 

 

≥90 

 

30 

 

5 
 

CPO-27(Ni) 

With 

moderate 

cooling 

 

70 

 

30 
 

20 

Aluminium 

fumarate 

 

 

Heat pump 

In cold 

climate 

 

≥90 

 

30-45 

 

5 
 

CPO-27(Ni) 

In 

moderate 

climate 

 

70 

 

40-45 

 

20 
Aluminium 

fumarate 

 

 

Refrigeration 

High 

cooling 

effect 

 

≥90 

 

30 

 

5 
 

CPO-27(Ni) 

Moderate 

cooling in 

hot 

 

70 

 

30 

 

20 
 

Aluminium 

fumarate 
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climate 
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