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Abstract: The aim of this paper is to take the reader through the decisions made in 
designing a holonic system architecture to support customised packing of gift boxes with 
personal grooming (Gillette) products. The paper highlights issues that cause a divergence 
between a theoretical model of a holonic system and the approach that was actually 
encoded. Copyright © 2003 IFAC 
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1. INTRODUCTION 
 
Holonic systems are a new breed of IMS geared 
towards mass customisation and high degrees of 
agility (Bussmann, et al, 2001). Holonic systems can 
be seen to exhibited features like:  
 
− Runtime ‘plug and play’ operation of equipment. 
− Independence between hardware/data resources 

from specification of how products are made. 
− Dynamic revision of processes and recipes.  
 
There are several design frameworks for building 
such holonic systems, e.g. the Holonic Component-
Based Architecture or PROSA (Van Brussel, et al 
1998). An example test bed, being commissioned in 
Cambridge University’s Institute for Manufacturing, 
is a pick and place cell for packing unique 
combinations of Gillette grooming items into boxes 
to satisfy customer orders. A key objective is to 
develop a holonic control solution for this cell. An 

interesting research topic is to examine reasons why 
a theoretical HMS design model may diverge from 
the actual code that is constructed during the project.  
 
The paper highlights some issues within this research 
topic, including the physical infrastructure and 
entities in the cell, a theoretical model for 
constructing a holonic system with these entities, and 
the actual design that was encoded. The paper also 
narrates some lessons learned about what holonic 
features can be easily developed/shown, and what 
functional gaps are introduced due to the divergence. 
The paper concludes with guidelines to build future 
HMSs that minimise these deficiencies.  
 
 

2. PHYSICAL PACKING SYSTEM 
 
A physical ‘pick and place’ packing system has been 
constructed to demonstrate holonic and agile 
manufacturing behaviours. In this packing cell, 



holons are introduced to model both shop-floor 
resources (e.g. conveyor shuttles, a robot, storage 
units) and products (gift boxes and Gillette items). 
Every holon uses its own intelligence and interaction 
with others to determine how best to use facilities 
and pack orders effectively. This system (see Figure 
1) enables the customer to select any three of four 
grooming products, pack them into one of two box 
styles, and change how the order should be packed, 
all on the fly. When contrasted against conventional 
packing systems, this solution has a strong 
commercial future (Sathern, 2002) because it is 
intended to be more flexible and robust to changes in 
order requirements. 
 

 
 
Fig. 1. Photograph of the Packing Cell. 
 
The packing cell comprises a storage unit to hold 
items, a Fanuc M6I robot to move items throughout 
the cell, a shuttle conveyor to transport batches of 
raw materials (items), and the boxes into which items 
are to be placed around the cell. The Montech track 
provides added agility by being able to control 
individual shuttles and dynamically assign transport 
tasks to them. The system layout is given in Figure 2. 
The layout of the cell has three conveyor loops and 
independently controlled gates that allow shuttles to 
navigate around the track. There are also two docking 
stations (nominally called loading and unloading) 
where shuttles are held so the robot can pick and 
place items into carried boxes. Both stations can 
perform loading and unloading interchangeably. 
 

 
 
Fig. 2. Layout of the Packing Cell. 
 
As a result of these features, the cell is able to 
demonstrate many scenarios associated with agile 

manufacturing (Arai, et al, 2001), such as the 
introduction of rush orders. The theoretical design is 
responsible for ensuring these agile behaviours are 
achieved within the scope of the aforementioned 
physical hardware. 
 
 

3. THE THEORETICAL DESIGN 
 
The theoretical or high-level design of a system 
specifies the objectives of the manufacturing system 
without defining how those objectives are met. The 
framework for this specification is illustrated in 
Figure 3.  

 
 
Fig. 3. Objectives Framework. 
 
As the diagram shows, the overall objectives for a 
system can be split into control system and 
operational objectives. Control system objectives 
relate to the functionality of individual holons, while 
the operational objectives relate to the behaviour of 
the whole system. There is an interplay between the 
two, as control system objectives may constrain what 
can be achieved operationally. Conversely, an 
expansion of operational objectives may introduce 
additional requirements for the control system.  
 
Both sets of objectives can be further divided into 
function and performance objectives. For example, as 
part of the control system objectives, there may be a 
functional requirement for a holon to manipulate a 
product in a particular way.  In addition, there tend to 
be performance objectives that are specified in terms 
of specific measures, such as how many products can 
be manipulated per minute.  
 
In a typical manufacturing system, control system 
objectives include such things as the ability to 
reliably deliver raw materials into the system 
(materials delivery), to manage parts during 
production (product management), to allow 
movement of materials and parts around the system 
(material handling), to store or buffer materials or 
parts (material storage), and to extract out finished 
products (material removal). 
 
In contrast, operational objectives define how the 
system appears from the outside. This begins with a 
specification of what the inputs are and what is 
produced but also includes aspects to do with the 
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system’s agility, such as how flexible it is in terms of 
handling different types of raw material types, 
whether delivery and removal facilities can be 
interchanged, the ability to reconfigure to meet 
different demands, or the ability to handle growth. 
The control system and operational objectives lead to 
a specification of the system architecture and overall 
system behaviour, respectively.  
 
In the following section, we demonstrate how this 
framework applies to the Cambridge packing cell. 
 
 
3.1. Control System Objectives 
 
The first issue in the design of the control system is 
the delivery of materials. Materials enter the system 
by being placed on shuttles and transported around 
the system. This has an associated shuttle loading 
holon.  Similarly, finished products leave the system 
by being removed from shuttles.   
 
Product management is assigned to a product holon. 
This holon tracks each product through the system 
and ensures that it is manufactured correctly. 
Material handling is provided by robot holons, 
loading / unloading station holons, and gate holons. 
These holons manage the physical resources to 
manipulate and move raw materials and products. 
Material storage is provided by stack holons that 
manage the storage stacks. Since raw materials can 
also be stored on shuttles, shuttles correspond to 
“virtual stack holons” that can be called upon when 
stack levels become low.  
 
 
3.2. Operational Objectives 
 
From the operational perspective, the main objective 
is to fulfil orders. Although there need not be a holon 
to manage each order, the system must be able to 
associate an order with a set of product types and 
quantities. Furthermore, each product type has an 
associated recipe. This describes the parts that 
constitute the product and how they are assembled.  
 
When an order arrives, product holons are generated 
and they seek and allocate their required material 
resources, such as empty boxes and parts to be 
packed into the boxes. They also need to allocate 
appropriate hardware resources by negotiating with 
the associated holons. The product holons then apply 
their recipe to create the product. A quality control 
phase ensures that the recipe has been completed and 
that the product has been put together correctly. 
 
To allow the system to be flexible and responsive, 
product holons have an associated priority so that it is 
possible to give preferential passage to parts 
associated with high priority products. In the extreme 
case, partly-created low priority products can be 
disassembled to allow higher priority orders to be 
filled. To increase the agility of the system, an 
additional design objective is to allow late changes to 

orders. This might be simply to change the product 
type or to manipulate some other aspect of the recipe, 
or it may be to increase or decrease the quantity. 
 

 
 
Fig. 4. Theoretical Design. 
 
Martyn, as I’m in the plane, I don’t have the original 
sketched holon architecture in front of me, is fig.4 
this?  It’s not clear in the figure which are holons and 
which are agents, the terms seem interchangeable, 
looking at the figure. 
Figure 4 summarises the theoretical design of the 
packing system. Note that unloading and loading 
holons provide similar functionality and could 
potentially be merged to provide a single holon to 
manage both operations. This seems a sensible 
simplification since the same resource is typically 
used for both operations.  
 
 

4. THE ACTUAL DESIGN 
 
The actual (implemented) design is a realisation of 
the above theoretical design, constricted by:  
 
− The facilities offered by a specific holon 

development and execution environment.  
− The peculiarities of the physical hardware.  
− The lack of robust operations from its low-level 

support software that the holons rely upon. For 
instance, the inability to guarantee electronic 
product code (EPC) readings using RF tags with 
automatic identification (Auto ID) systems. 

− The inefficiency of the blackboard system (Chirn 
et al, 2000) that interfaces to the PLC and robot.  

 
The design that was ultimately arrived at, as a 
consequence of these liabilities, is described here in 
terms of holon architecture and interactions. 
A diagram here would help, to highlight the 
departure from the planned (i.e. Martyn/Melbourne) 
architecture, to the Martyn/Cambridge interim, and 
finally to the Martyn/James final, implemented 
system.  Also, there is no description of why the 
teamed architecture was set aside, to be replaced by a 
ma one. 
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As this requires some explanation, you may not wish 
to put it all into the public paper, but into the annexe. 
 
 
4.1. Holon Architecture  
 
The holon types that have been implemented in the 
control system (with the number of instances) are: 
Order Holon (an instance is spawned for each box 
ordered), Production Manager Holon (1), Gate Holon 
(2), Reader Holon (7), Docking Station Holon (2), 
Robot Holon (1), Storage Holon (1), Box Manager 
Holon (1), and Track Holon (1).  
 
Each of these holon types has been encoded as an 
agent using the JACK Intelligent Agents™ 
environment from Agent Oriented Software Limited.  
We focus now on the features of the robot holon 
because it is one of the more complex resource 
holons, and its processing typifies the interactions an 
autonomous holon has within itself and with the 
external world. It can be observed that the robot 
holon supports the material handling functional 
objective via: 
 
− Scheduling jobs based on reward. 
− Performing various pick and place operations in 

order to pack boxes, unpacking boxes, sorting 
the storage area and unloading items into 
storage. 

− Interacting with the physical robot. 
 
Each of these is modelled as a JACK capability 
(containing appropriate events, plans and belief 
structures) within the robot. It is intended that an 
additional capability for managing faults will be 
incorporated soon. Using JACK’s design tool, we can 
represent these agent (with man icon), capability 
(square box), plan (round box), event (like an 
envelope), belief relations (cylinder). See Figure 5. 
 

 
 
Fig. 5. JACK Design of Robot Holon. 
 
Consider an internal operation of the robot – the 
decision as to what pick and place action to perform. 
The ScheduleRobot plan posts a RobotJobArrived 
event to itself, indicating that the robot should now 
execute a job (i.e. the one with the highest reward). 

Four plans in the Performing capability can handle 
this event. The choice as to which one will handle the 
event initially is determined at runtime using the 
context of these plans. Here the context uses the 
number of items and boxes on a shuttle. For example, 
the context of the UnpackBox plan is 
 
(rja.numBoxes == 1 && rja.numItems == 3); 
 
While for the UnloadShuttle plan, it is 
 
(rja.numBoxes == 0 && rja.numItems == 2); 
 
While for the SortStorage plan, it is 
 
(rja.numBoxes == 0 && rja.numItems == 0); 
 

 
 
Fig. 6. Robot Holon’s Performance Interactions. 
 
Note that rja is the identifier of an instance of the 
RobotJobArrived event that these plans handle. 
Figure 6 illustrates this event/plan relationship. The 
remaining events handled and sent by the 
RobotHolon have been removed from the figure for 
clarity. The interaction that an agent-based holon has 
with other holons is orchestrated through the 
exchange of (a)synchronous messages. Again the 
JACK design tool can be used to plot these 
interactions. Figure 7 shows an example of such 
interaction between the robot and order holons. 
 

 
 
Fig. 7. Robot-to-Order Holon Interactions. 
 
Explanation of the architectures and interfaces for the 
other holon types has been omitted for economy. 
 
 
4.2. Holon Interactions  
 



The various holonic agents interact with each other 
through the exchange of messages (which can be 
viewed as offered services), coupled with a cost 
framework. Therefore, the mechanism encapsulates 
the intricate modelling of the physical system, how 
hardware is controlled as well as the holon’s private 
decision-making processes inside each agent. To 
coordinate the actions and decisions of agents, events 
are sent either synchronously or asynchronously. No 
agent is forced to process or reply to a message 
because each agent is autonomous but, generally 
speaking, good co-operation is encouraged by the 
agents responding to information requests with 
truthful data, and by executing appropriate plans to 
achieve the goals associated with incoming events. 
 
Negotiation between the order holon and resource 
holons, as well as between resource holons (for fault 
tolerance), is managed solely in terms of price. The 
customer sets the price per box, when the batch order 
is placed via a e-manufacturing web page, and this 
price is used throughout the manufacturing process 
for sequencing the spawning of order agents, 
‘buying’ empty boxes/items, using a shuttle, 
reserving a slot in the docking station’s schedule, 
utilising the robot’s time etc.  
 
Hence demand and supply is matched in the course 
of the negotiation through a simple protocol: order 
holons in need of a particular service distribute 
requests to pre-defined instances of the resource 
agent class. The resource holons in turn evaluate the 
request in terms of their schedule and their status, 
and issue replies (bids) back to the order holon with 
the cost of the job. These costs are used by the order 
holon to select resources that are the cheapest.  
 
In classic agent design, this would be viewed as 
awarding a contract. For example, having already 
secured the services of a shuttle holding the correct 
type of empty box, consider the negotiation between 
an order holon and the docking station holons to 
agree where that order’s empty box should be 
packed. The protocol proceeds as follows. The order 
holon announces to the loading docking station holon 
that it wants a job done and that the reward for 
undertaking this job is the price given by the 
customer. The docking station considers the job, by 
determining whether it can physically handle the 
shuttle and box. If the station is faulty, it returns a bid 
of infinite value. If not, it determines the slot into 
which the job would be placed. For instance, the 
existing schedule is shown in Table 1. 
 

Table 1. Initial Reservations in Docking Station 
 
Slot Shuttle EPC Reward 
1 B00000000C000200A00D1704 $20 
2 B00000000C000200A00D2645 $12 
3 B00000000C000200A00D3199 $7 
 
If a job worth $15 is requested, then the station could 
make an offer of Slot 2. Upon receiving this 
response, the order holon issues the same request to 

the unloading docking station holon, which will give 
a similar ‘best slot’ reply. The order holon then 
evaluates both bids and selects the one with the 
earliest slot. The order holon informs the chosen 
station that it needs to book the named slot for its 
shuttle at the given price. The docking station inserts 
the tuple into its private reservation belief set and so 
demotes other jobs whose reward was lower.  
 
The order holons associated with these demotions are 
not informed of the sequence change; only the order 
holon of the newly inserted tuple is informed to 
confirm the deal. The order holon then informs the 
track holon to set the destination of the available 
shuttle to the selected docking station. Beyond 
responsiveness and the ability to cope with failed 
stations, this protocol has the merit that workload 
becomes evenly distributed across stations over time. 
This is an example of interaction between order and 
resource holons. Now consider an example resource 
to resource interaction.  When a shuttle approaches a 
switch gate, it first passes a RF tag reader. The EPC 
of the tag attached to the shuttle is gained and 
processed by the Auto ID (Kambil, et al, 2002) 
software systems called the Savant and PML Server. 
A reader holon is regularly polling the server for the 
EPC of the last shuttle to enter the reader’s range.  
 
Upon arrival, the reader holon informs the 
appropriate gate holon of the shuttle’s presence. Each 
gate has two inputs and two outputs, and so the gate 
can decide which of two waiting shuttles to let 
through. This decision is currently made on a FIFO 
basis. The gate holon interacts with the track holon to 
determine the destination of the inbound shuttle and 
to determine if there is available space into which the 
shuttle can move into. The track holon maintains a 
model of which shuttle is in what zone using a set of 
queues. The queue is added to when a shuttle enters a 
zone and popped when it departs. The track holon 
also keeps a model of the maximum number of 
shuttles that can be present in each zone (this is fixed 
at start-up and is tightly coupled with the track’s 
configuration).  
 
Hence the track holon is able to decide if another 
shuttle can enter a given zone based on the shuttle’s 
intended destination. If space is available then the 
gate holon is informed and so it can interact with the 
blackboard to set the hardware’s input/output choice 
and thus let the shuttle through. 
 
 

5. DISCUSSION 
 
This discussion describes the key holonic features the 
implemented cell exhibits, gaps in agile behaviour 
that the implementation did not achieve, and some 
pointers towards how the design divergence could be 
rectified in future systems. Some of the agile and 
intelligent manufacturing scenarios that the packing 
cell does demonstrate are: 
 



− Introducing batch orders so individual products 
(i.e. boxes) manage their own resource 
allocation. This allocation includes acquiring a 
suitable tray, shuttle and items to accomplish the 
goal of packing that box. Also included is 
negotiating with the docking stations to reserve a 
processing slot. 

− Handling of rush orders that must be packed 
earliest. Their introduction influences both the 
docking stations’ schedules and when other 
orders are to be packed.  

− Unpacking completed boxes so that urgent 
orders can be satisfied quickly. 

− Interacting shuttles and gates to ensure routing 
of shuttles around the track is both shortest time 
and gives highest priority to urgent shuttles.  

− Docking stations cooperating to evenly distribute 
their workload at runtime. 

− Failing a docking station to demonstrate fault 
tolerance and re-assignment of jobs. 

− Organising a storage unit when the robot is not 
busy so frequently used items are located at the 
head of each chute. 

 
These scenarios are sufficient to illustrate some of 
the merits associated with agile manufacturing as 
identified in section 3. However the system that was 
built has limited holonic features. It does not cope 
with the dynamic introduction of new hardware in a 
‘plug and produce’ manner. Neither does it have the 
potential to manufacture a range of products – it is 
limited both by the physical system and by the 
control system to the packing of two styles of gift 
box. Furthermore, at present there is no order to order 
interaction because boxes or items are not exchanged 
between order holons.  
 
In other words, orders are packed on a FIFO basis, 
except where there are rush orders that can be packed 
using available boxes and items without having to 
compete for scarce resources – these orders are 
packed before lower value orders. Other key 
deficiencies in the actual design are: 
This list is a hybrid of implementation (reliance on 
polling), functional performance (slowness), and 
qualitative (lack of reasoning).  I suggest jumping up 
a level of abstraction – group them in terms shuch as 
performance, flexibility/capability, ease of 
implementation.  This will help readers to understand 
where the major limitations lie, i.e., slow, but 
flexible, or flexible and hard to implement/debug. 
 
− Reliance on polling. Holons must continuously 

poll other computer systems due to there being 
insufficient mechanisms for pushing data into 
the JACK agents. (this point isn’t clear, is this a 
limitation in JACK, or elsewhere?) Seven reader 
holon each poll the PML server every 0.5 
seconds to determine if a shuttle is present. The 
Production Manager holon also polls the server 
every second to discover new orders, while each 
resource holon polls the blackboard (up to ten 
times a second) in handshaking to spot changes 
in PLC registers. 

− Slowness.  The robot holon takes a significant 
time to decide its next pick, making the system 
look clumsy. This delay is, in part, created by the 
preparation of Simple Object Access Protocol 
messages by the PML server when giving data. 

− Poor interfaces. The gate, station and robot 
holons are forced to use rigid instructions to get 
the hardware to work. Also there are no reports 
back from the blackboard of faults. So methods 
to identify and manage failures are very limited. 

− Lack of reasoning. No intelligence is coded in 
the agents to deliberate about unlikely tag reads 
or strange box/item/shuttle aggregations. 

− Poor debugging. The mechanics to test and 
debug agent code are very limited. Agents are 
distributed complex units of software whose 
behaviour changes based on their situational 
awareness. Hence better tools are needed, and 
these are currently under development by AOS . 

 
We are striving to overcome these limitations within 
the scope of the physical hardware in order to satisfy 
the entire set of functional objectives attached to the 
theoretical design. But we also have to keep an eye 
on the performance objectives and so we are 
adopting a spiral model for future developments. 
 
The phases of the spiral are: select next most 
important functional objective or limiting factor to 
work on, set appropriate performance objective 
measurements and targets, design scenario to 
evaluate system, run experiments, and finally analyse 
results. In this way we intend to increase the power 
and performance of the actual design until it grows to 
a sufficient scale to meet the desired attributes of the 
theoretical design. Note if we adopt a software 
engineering perspective and there exists a mismatch 
between what we want to build and what we were 
able to build then we have OW!  Choose another way 
to express this. because the design should reflect all 
the requirements. Another perspective is that we are 
dealing with a migration problem – we want a pure 
holonic solution (the theoretical design), but there are 
constraints. Therefore what we built was a pragmatic 
holonic solution (actual design), and to get to where 
we really want to be we need to do more research. 
 
 

6. CONCLUSION 
 
The paper presented a theoretical design for a holonic 
packing cell. The main activities of the cell’s control 
system, where agility is possible, include: 
 
− Locating and providing Gillette items in the cell. 
− Retrieving items from storage and putting them 

into the cell. 
− Providing box into cell and dispatch out of cell. 
− Assembling gift box order using retrieved items. 
 
The paper outlined an implementation to illustrate 
how a deviation between theoretical design and 
coding can introduce gaps in holonic behaviour. The 
divergence is often due to the lack of solid guidelines 



or a practical methodology in order to apply the 
chosen design framework. The development of such 
guidelines is the focus of our future research. 
 
I suggest a three-column table, with the list of 
holonic features aimed for at the start of the Packing 
Cell development in the left column.  The centre 
column would indicate (via a √ or x), as to what has 
been implemented.  The RH column would contain 
the level of difficulty in implementing the remaining 
unimplemented features, e.g E(easy), S (substantial 
work/re-design required), and I (impossible without 
re-design/new hardware, etc.). 
 
 

REFERENCES 
 

Arai, T., Aiyama, Y., Sugi, M., Ota, J. (2001). 
Holonic Assembly System with Plug and 
Produce, Computers in Industry, vol 46 no 3. 

Bussmann, S., Sieverding, J., (2001). Holonic 
Control of an Engine Assembly Plant – An 
Industrial Evaluation, proc. of IEEE conf. on 
Systems, Man and Cybernetics, Tucson, USA. 

Chirn, J.L, McFarlane, D.C., (2000). A Holonic 
Component-Based Approach to Reconfigurable 
Manufacturing Control Architecture, proc. of 1st 
int. conf. on Industrial Applications of Holonic 
and Multi-Agent Systems, Greenwich, UK. 

Kambil, A, Brooks, J., (2002). Auto ID across the 
Value Chain: From Dramatic Potential to 
Greater Efficiency, www.autoidcenter.org  

Sathern,. E. (2002). Envisioning Agile Packaging – 
Unilver envisions new packaging machinery that 
treats change as business as usual by focussing 
on a ‘holonic’ approach, www.packworld.com/ 
articles/Features/15421.html 

Van Brussel, H., et al (1998). Reference Architecture 
for Holonic Manufacturing Systems: PROSA, 
Computers in Industry, vol 31 no3. 


	BruseydivergenceCS
	The divergence
	brusey19
	holonic cell


