

The divergence of theoretical and actual
designs in a holonic packing cell
Fletcher, M , McFarlane, D. , Lucas, A. , Brusey, J. and Thorne, A.

Author post-print deposited in CURVE March 2012

Original citation:
Fletcher, M , McFarlane, D. , Lucas, A. , Brusey, J. and Thorne, A. (2003). 'The divergence of
theoretical and actual designs in a holonic packing cell' In L. Monostori, B. Kádár, & G. Morel.
Proceedings of the 7th IFAC Conference of Intelligent Manufacturing Systems (pp.107-112).
IFAC.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners.
A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge. This item cannot be reproduced or quoted extensively from without
first obtaining permission in writing from the copyright holder(s). The content must not be
changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holders.

This document is the author’s final manuscript version of the journal article, incorporating
any revisions agreed during the peer-review process. Some differences between the
published version and this version may remain and you are advised to consult the
published version if you wish to cite from it.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228145249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://curve.coventry.ac.uk/open

THE DIVERGENCE OF THEORETICAL AND ACTUAL
DESIGNS IN A HOLONIC PACKING CELL

Martyn Fletcher*, Duncan McFarlane†, Andrew Lucas*,
 James Brusey†, Alan Thorne†

Agent Oriented Software Limited,
Mill Lane, Cambridge CB2 1RX, UK*.

Institute for Manufacturing,

University of Cambridge, Mill Lane, Cambridge CB2 1RX, UK†.

Abstract: The aim of this paper is to take the reader through the decisions made in
designing a holonic system architecture to support customised packing of gift boxes with
personal grooming (Gillette) products. The paper highlights issues that cause a divergence
between a theoretical model of a holonic system and the approach that was actually
encoded. Copyright © 2003 IFAC

Keywords: Architectures, Agents, Intelligent control, Packages, Knowledge tool

1. INTRODUCTION

Holonic systems are a new breed of IMS geared
towards mass customisation and high degrees of
agility (Bussmann, et al, 2001). Holonic systems can
be seen to exhibited features like:

− Runtime ‘plug and play’ operation of equipment.
− Independence between hardware/data resources

from specification of how products are made.
− Dynamic revision of processes and recipes.

There are several design frameworks for building
such holonic systems, e.g. the Holonic Component-
Based Architecture or PROSA (Van Brussel, et al
1998). An example test bed, being commissioned in
Cambridge University’s Institute for Manufacturing,
is a pick and place cell for packing unique
combinations of Gillette grooming items into boxes
to satisfy customer orders. A key objective is to
develop a holonic control solution for this cell. An

interesting research topic is to examine reasons why
a theoretical HMS design model may diverge from
the actual code that is constructed during the project.

The paper highlights some issues within this research
topic, including the physical infrastructure and
entities in the cell, a theoretical model for
constructing a holonic system with these entities, and
the actual design that was encoded. The paper also
narrates some lessons learned about what holonic
features can be easily developed/shown, and what
functional gaps are introduced due to the divergence.
The paper concludes with guidelines to build future
HMSs that minimise these deficiencies.

2. PHYSICAL PACKING SYSTEM

A physical ‘pick and place’ packing system has been
constructed to demonstrate holonic and agile
manufacturing behaviours. In this packing cell,

holons are introduced to model both shop-floor
resources (e.g. conveyor shuttles, a robot, storage
units) and products (gift boxes and Gillette items).
Every holon uses its own intelligence and interaction
with others to determine how best to use facilities
and pack orders effectively. This system (see Figure
1) enables the customer to select any three of four
grooming products, pack them into one of two box
styles, and change how the order should be packed,
all on the fly. When contrasted against conventional
packing systems, this solution has a strong
commercial future (Sathern, 2002) because it is
intended to be more flexible and robust to changes in
order requirements.

Fig. 1. Photograph of the Packing Cell.

The packing cell comprises a storage unit to hold
items, a Fanuc M6I robot to move items throughout
the cell, a shuttle conveyor to transport batches of
raw materials (items), and the boxes into which items
are to be placed around the cell. The Montech track
provides added agility by being able to control
individual shuttles and dynamically assign transport
tasks to them. The system layout is given in Figure 2.
The layout of the cell has three conveyor loops and
independently controlled gates that allow shuttles to
navigate around the track. There are also two docking
stations (nominally called loading and unloading)
where shuttles are held so the robot can pick and
place items into carried boxes. Both stations can
perform loading and unloading interchangeably.

Fig. 2. Layout of the Packing Cell.

As a result of these features, the cell is able to
demonstrate many scenarios associated with agile

manufacturing (Arai, et al, 2001), such as the
introduction of rush orders. The theoretical design is
responsible for ensuring these agile behaviours are
achieved within the scope of the aforementioned
physical hardware.

3. THE THEORETICAL DESIGN

The theoretical or high-level design of a system
specifies the objectives of the manufacturing system
without defining how those objectives are met. The
framework for this specification is illustrated in
Figure 3.

Fig. 3. Objectives Framework.

As the diagram shows, the overall objectives for a
system can be split into control system and
operational objectives. Control system objectives
relate to the functionality of individual holons, while
the operational objectives relate to the behaviour of
the whole system. There is an interplay between the
two, as control system objectives may constrain what
can be achieved operationally. Conversely, an
expansion of operational objectives may introduce
additional requirements for the control system.

Both sets of objectives can be further divided into
function and performance objectives. For example, as
part of the control system objectives, there may be a
functional requirement for a holon to manipulate a
product in a particular way. In addition, there tend to
be performance objectives that are specified in terms
of specific measures, such as how many products can
be manipulated per minute.

In a typical manufacturing system, control system
objectives include such things as the ability to
reliably deliver raw materials into the system
(materials delivery), to manage parts during
production (product management), to allow
movement of materials and parts around the system
(material handling), to store or buffer materials or
parts (material storage), and to extract out finished
products (material removal).

In contrast, operational objectives define how the
system appears from the outside. This begins with a
specification of what the inputs are and what is
produced but also includes aspects to do with the

System
Performance

Control System
Objectives

Operational
Performance

Operational
Objectives

•Functional

•Performanc
e

•Functional

•Performanc
e

(can) influence
scope

constrain
t

System
Architecture

Algorithms /
System Behaviour

Control System

system’s agility, such as how flexible it is in terms of
handling different types of raw material types,
whether delivery and removal facilities can be
interchanged, the ability to reconfigure to meet
different demands, or the ability to handle growth.
The control system and operational objectives lead to
a specification of the system architecture and overall
system behaviour, respectively.

In the following section, we demonstrate how this
framework applies to the Cambridge packing cell.

3.1. Control System Objectives

The first issue in the design of the control system is
the delivery of materials. Materials enter the system
by being placed on shuttles and transported around
the system. This has an associated shuttle loading
holon. Similarly, finished products leave the system
by being removed from shuttles.

Product management is assigned to a product holon.
This holon tracks each product through the system
and ensures that it is manufactured correctly.
Material handling is provided by robot holons,
loading / unloading station holons, and gate holons.
These holons manage the physical resources to
manipulate and move raw materials and products.
Material storage is provided by stack holons that
manage the storage stacks. Since raw materials can
also be stored on shuttles, shuttles correspond to
“virtual stack holons” that can be called upon when
stack levels become low.

3.2. Operational Objectives

From the operational perspective, the main objective
is to fulfil orders. Although there need not be a holon
to manage each order, the system must be able to
associate an order with a set of product types and
quantities. Furthermore, each product type has an
associated recipe. This describes the parts that
constitute the product and how they are assembled.

When an order arrives, product holons are generated
and they seek and allocate their required material
resources, such as empty boxes and parts to be
packed into the boxes. They also need to allocate
appropriate hardware resources by negotiating with
the associated holons. The product holons then apply
their recipe to create the product. A quality control
phase ensures that the recipe has been completed and
that the product has been put together correctly.

To allow the system to be flexible and responsive,
product holons have an associated priority so that it is
possible to give preferential passage to parts
associated with high priority products. In the extreme
case, partly-created low priority products can be
disassembled to allow higher priority orders to be
filled. To increase the agility of the system, an
additional design objective is to allow late changes to

orders. This might be simply to change the product
type or to manipulate some other aspect of the recipe,
or it may be to increase or decrease the quantity.

Fig. 4. Theoretical Design.

Martyn, as I’m in the plane, I don’t have the original
sketched holon architecture in front of me, is fig.4
this? It’s not clear in the figure which are holons and
which are agents, the terms seem interchangeable,
looking at the figure.
Figure 4 summarises the theoretical design of the
packing system. Note that unloading and loading
holons provide similar functionality and could
potentially be merged to provide a single holon to
manage both operations. This seems a sensible
simplification since the same resource is typically
used for both operations.

4. THE ACTUAL DESIGN

The actual (implemented) design is a realisation of
the above theoretical design, constricted by:

− The facilities offered by a specific holon

development and execution environment.
− The peculiarities of the physical hardware.
− The lack of robust operations from its low-level

support software that the holons rely upon. For
instance, the inability to guarantee electronic
product code (EPC) readings using RF tags with
automatic identification (Auto ID) systems.

− The inefficiency of the blackboard system (Chirn
et al, 2000) that interfaces to the PLC and robot.

The design that was ultimately arrived at, as a
consequence of these liabilities, is described here in
terms of holon architecture and interactions.
A diagram here would help, to highlight the
departure from the planned (i.e. Martyn/Melbourne)
architecture, to the Martyn/Cambridge interim, and
finally to the Martyn/James final, implemented
system. Also, there is no description of why the
teamed architecture was set aside, to be replaced by a
ma one.

Packing Cell Product

Order and recipe

Item Provision

Item Retrieval Box Assemble

Box Provision &
Dispatch

Materials
Delivery

Materials
Storage

Material
Handling

Materials
Removal

Unloading
Station
Agent

Storage
Agent

Robot Agent
Loading
Station
Agent

Conveyor
Switch Agent

* *

As this requires some explanation, you may not wish
to put it all into the public paper, but into the annexe.

4.1. Holon Architecture

The holon types that have been implemented in the
control system (with the number of instances) are:
Order Holon (an instance is spawned for each box
ordered), Production Manager Holon (1), Gate Holon
(2), Reader Holon (7), Docking Station Holon (2),
Robot Holon (1), Storage Holon (1), Box Manager
Holon (1), and Track Holon (1).

Each of these holon types has been encoded as an
agent using the JACK Intelligent Agents™
environment from Agent Oriented Software Limited.
We focus now on the features of the robot holon
because it is one of the more complex resource
holons, and its processing typifies the interactions an
autonomous holon has within itself and with the
external world. It can be observed that the robot
holon supports the material handling functional
objective via:

− Scheduling jobs based on reward.
− Performing various pick and place operations in

order to pack boxes, unpacking boxes, sorting
the storage area and unloading items into
storage.

− Interacting with the physical robot.

Each of these is modelled as a JACK capability
(containing appropriate events, plans and belief
structures) within the robot. It is intended that an
additional capability for managing faults will be
incorporated soon. Using JACK’s design tool, we can
represent these agent (with man icon), capability
(square box), plan (round box), event (like an
envelope), belief relations (cylinder). See Figure 5.

Fig. 5. JACK Design of Robot Holon.

Consider an internal operation of the robot – the
decision as to what pick and place action to perform.
The ScheduleRobot plan posts a RobotJobArrived
event to itself, indicating that the robot should now
execute a job (i.e. the one with the highest reward).

Four plans in the Performing capability can handle
this event. The choice as to which one will handle the
event initially is determined at runtime using the
context of these plans. Here the context uses the
number of items and boxes on a shuttle. For example,
the context of the UnpackBox plan is

(rja.numBoxes == 1 && rja.numItems == 3);

While for the UnloadShuttle plan, it is

(rja.numBoxes == 0 && rja.numItems == 2);

While for the SortStorage plan, it is

(rja.numBoxes == 0 && rja.numItems == 0);

Fig. 6. Robot Holon’s Performance Interactions.

Note that rja is the identifier of an instance of the
RobotJobArrived event that these plans handle.
Figure 6 illustrates this event/plan relationship. The
remaining events handled and sent by the
RobotHolon have been removed from the figure for
clarity. The interaction that an agent-based holon has
with other holons is orchestrated through the
exchange of (a)synchronous messages. Again the
JACK design tool can be used to plot these
interactions. Figure 7 shows an example of such
interaction between the robot and order holons.

Fig. 7. Robot-to-Order Holon Interactions.

Explanation of the architectures and interfaces for the
other holon types has been omitted for economy.

4.2. Holon Interactions

The various holonic agents interact with each other
through the exchange of messages (which can be
viewed as offered services), coupled with a cost
framework. Therefore, the mechanism encapsulates
the intricate modelling of the physical system, how
hardware is controlled as well as the holon’s private
decision-making processes inside each agent. To
coordinate the actions and decisions of agents, events
are sent either synchronously or asynchronously. No
agent is forced to process or reply to a message
because each agent is autonomous but, generally
speaking, good co-operation is encouraged by the
agents responding to information requests with
truthful data, and by executing appropriate plans to
achieve the goals associated with incoming events.

Negotiation between the order holon and resource
holons, as well as between resource holons (for fault
tolerance), is managed solely in terms of price. The
customer sets the price per box, when the batch order
is placed via a e-manufacturing web page, and this
price is used throughout the manufacturing process
for sequencing the spawning of order agents,
‘buying’ empty boxes/items, using a shuttle,
reserving a slot in the docking station’s schedule,
utilising the robot’s time etc.

Hence demand and supply is matched in the course
of the negotiation through a simple protocol: order
holons in need of a particular service distribute
requests to pre-defined instances of the resource
agent class. The resource holons in turn evaluate the
request in terms of their schedule and their status,
and issue replies (bids) back to the order holon with
the cost of the job. These costs are used by the order
holon to select resources that are the cheapest.

In classic agent design, this would be viewed as
awarding a contract. For example, having already
secured the services of a shuttle holding the correct
type of empty box, consider the negotiation between
an order holon and the docking station holons to
agree where that order’s empty box should be
packed. The protocol proceeds as follows. The order
holon announces to the loading docking station holon
that it wants a job done and that the reward for
undertaking this job is the price given by the
customer. The docking station considers the job, by
determining whether it can physically handle the
shuttle and box. If the station is faulty, it returns a bid
of infinite value. If not, it determines the slot into
which the job would be placed. For instance, the
existing schedule is shown in Table 1.

Table 1. Initial Reservations in Docking Station

Slot Shuttle EPC Reward
1 B00000000C000200A00D1704 $20
2 B00000000C000200A00D2645 $12
3 B00000000C000200A00D3199 $7

If a job worth $15 is requested, then the station could
make an offer of Slot 2. Upon receiving this
response, the order holon issues the same request to

the unloading docking station holon, which will give
a similar ‘best slot’ reply. The order holon then
evaluates both bids and selects the one with the
earliest slot. The order holon informs the chosen
station that it needs to book the named slot for its
shuttle at the given price. The docking station inserts
the tuple into its private reservation belief set and so
demotes other jobs whose reward was lower.

The order holons associated with these demotions are
not informed of the sequence change; only the order
holon of the newly inserted tuple is informed to
confirm the deal. The order holon then informs the
track holon to set the destination of the available
shuttle to the selected docking station. Beyond
responsiveness and the ability to cope with failed
stations, this protocol has the merit that workload
becomes evenly distributed across stations over time.
This is an example of interaction between order and
resource holons. Now consider an example resource
to resource interaction. When a shuttle approaches a
switch gate, it first passes a RF tag reader. The EPC
of the tag attached to the shuttle is gained and
processed by the Auto ID (Kambil, et al, 2002)
software systems called the Savant and PML Server.
A reader holon is regularly polling the server for the
EPC of the last shuttle to enter the reader’s range.

Upon arrival, the reader holon informs the
appropriate gate holon of the shuttle’s presence. Each
gate has two inputs and two outputs, and so the gate
can decide which of two waiting shuttles to let
through. This decision is currently made on a FIFO
basis. The gate holon interacts with the track holon to
determine the destination of the inbound shuttle and
to determine if there is available space into which the
shuttle can move into. The track holon maintains a
model of which shuttle is in what zone using a set of
queues. The queue is added to when a shuttle enters a
zone and popped when it departs. The track holon
also keeps a model of the maximum number of
shuttles that can be present in each zone (this is fixed
at start-up and is tightly coupled with the track’s
configuration).

Hence the track holon is able to decide if another
shuttle can enter a given zone based on the shuttle’s
intended destination. If space is available then the
gate holon is informed and so it can interact with the
blackboard to set the hardware’s input/output choice
and thus let the shuttle through.

5. DISCUSSION

This discussion describes the key holonic features the
implemented cell exhibits, gaps in agile behaviour
that the implementation did not achieve, and some
pointers towards how the design divergence could be
rectified in future systems. Some of the agile and
intelligent manufacturing scenarios that the packing
cell does demonstrate are:

− Introducing batch orders so individual products
(i.e. boxes) manage their own resource
allocation. This allocation includes acquiring a
suitable tray, shuttle and items to accomplish the
goal of packing that box. Also included is
negotiating with the docking stations to reserve a
processing slot.

− Handling of rush orders that must be packed
earliest. Their introduction influences both the
docking stations’ schedules and when other
orders are to be packed.

− Unpacking completed boxes so that urgent
orders can be satisfied quickly.

− Interacting shuttles and gates to ensure routing
of shuttles around the track is both shortest time
and gives highest priority to urgent shuttles.

− Docking stations cooperating to evenly distribute
their workload at runtime.

− Failing a docking station to demonstrate fault
tolerance and re-assignment of jobs.

− Organising a storage unit when the robot is not
busy so frequently used items are located at the
head of each chute.

These scenarios are sufficient to illustrate some of
the merits associated with agile manufacturing as
identified in section 3. However the system that was
built has limited holonic features. It does not cope
with the dynamic introduction of new hardware in a
‘plug and produce’ manner. Neither does it have the
potential to manufacture a range of products – it is
limited both by the physical system and by the
control system to the packing of two styles of gift
box. Furthermore, at present there is no order to order
interaction because boxes or items are not exchanged
between order holons.

In other words, orders are packed on a FIFO basis,
except where there are rush orders that can be packed
using available boxes and items without having to
compete for scarce resources – these orders are
packed before lower value orders. Other key
deficiencies in the actual design are:
This list is a hybrid of implementation (reliance on
polling), functional performance (slowness), and
qualitative (lack of reasoning). I suggest jumping up
a level of abstraction – group them in terms shuch as
performance, flexibility/capability, ease of
implementation. This will help readers to understand
where the major limitations lie, i.e., slow, but
flexible, or flexible and hard to implement/debug.

− Reliance on polling. Holons must continuously

poll other computer systems due to there being
insufficient mechanisms for pushing data into
the JACK agents. (this point isn’t clear, is this a
limitation in JACK, or elsewhere?) Seven reader
holon each poll the PML server every 0.5
seconds to determine if a shuttle is present. The
Production Manager holon also polls the server
every second to discover new orders, while each
resource holon polls the blackboard (up to ten
times a second) in handshaking to spot changes
in PLC registers.

− Slowness. The robot holon takes a significant
time to decide its next pick, making the system
look clumsy. This delay is, in part, created by the
preparation of Simple Object Access Protocol
messages by the PML server when giving data.

− Poor interfaces. The gate, station and robot
holons are forced to use rigid instructions to get
the hardware to work. Also there are no reports
back from the blackboard of faults. So methods
to identify and manage failures are very limited.

− Lack of reasoning. No intelligence is coded in
the agents to deliberate about unlikely tag reads
or strange box/item/shuttle aggregations.

− Poor debugging. The mechanics to test and
debug agent code are very limited. Agents are
distributed complex units of software whose
behaviour changes based on their situational
awareness. Hence better tools are needed, and
these are currently under development by AOS .

We are striving to overcome these limitations within
the scope of the physical hardware in order to satisfy
the entire set of functional objectives attached to the
theoretical design. But we also have to keep an eye
on the performance objectives and so we are
adopting a spiral model for future developments.

The phases of the spiral are: select next most
important functional objective or limiting factor to
work on, set appropriate performance objective
measurements and targets, design scenario to
evaluate system, run experiments, and finally analyse
results. In this way we intend to increase the power
and performance of the actual design until it grows to
a sufficient scale to meet the desired attributes of the
theoretical design. Note if we adopt a software
engineering perspective and there exists a mismatch
between what we want to build and what we were
able to build then we have OW! Choose another way
to express this. because the design should reflect all
the requirements. Another perspective is that we are
dealing with a migration problem – we want a pure
holonic solution (the theoretical design), but there are
constraints. Therefore what we built was a pragmatic
holonic solution (actual design), and to get to where
we really want to be we need to do more research.

6. CONCLUSION

The paper presented a theoretical design for a holonic
packing cell. The main activities of the cell’s control
system, where agility is possible, include:

− Locating and providing Gillette items in the cell.
− Retrieving items from storage and putting them

into the cell.
− Providing box into cell and dispatch out of cell.
− Assembling gift box order using retrieved items.

The paper outlined an implementation to illustrate
how a deviation between theoretical design and
coding can introduce gaps in holonic behaviour. The
divergence is often due to the lack of solid guidelines

or a practical methodology in order to apply the
chosen design framework. The development of such
guidelines is the focus of our future research.

I suggest a three-column table, with the list of
holonic features aimed for at the start of the Packing
Cell development in the left column. The centre
column would indicate (via a √ or x), as to what has
been implemented. The RH column would contain
the level of difficulty in implementing the remaining
unimplemented features, e.g E(easy), S (substantial
work/re-design required), and I (impossible without
re-design/new hardware, etc.).

REFERENCES

Arai, T., Aiyama, Y., Sugi, M., Ota, J. (2001).
Holonic Assembly System with Plug and
Produce, Computers in Industry, vol 46 no 3.

Bussmann, S., Sieverding, J., (2001). Holonic
Control of an Engine Assembly Plant – An
Industrial Evaluation, proc. of IEEE conf. on
Systems, Man and Cybernetics, Tucson, USA.

Chirn, J.L, McFarlane, D.C., (2000). A Holonic
Component-Based Approach to Reconfigurable
Manufacturing Control Architecture, proc. of 1st
int. conf. on Industrial Applications of Holonic
and Multi-Agent Systems, Greenwich, UK.

Kambil, A, Brooks, J., (2002). Auto ID across the
Value Chain: From Dramatic Potential to
Greater Efficiency, www.autoidcenter.org

Sathern,. E. (2002). Envisioning Agile Packaging –
Unilver envisions new packaging machinery that
treats change as business as usual by focussing
on a ‘holonic’ approach, www.packworld.com/
articles/Features/15421.html

Van Brussel, H., et al (1998). Reference Architecture
for Holonic Manufacturing Systems: PROSA,
Computers in Industry, vol 31 no3.

	BruseydivergenceCS
	The divergence
	brusey19
	holonic cell

