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Abstract
This paper explores the possibility of employing a surface model for volume
simulation. The issues are the non-existence of internal volume that causes
object collapse and the physical properties estimation of the model.
Therefore, properties distribution scheme based on a mass spring system is
proposed where values for mass and the inner support spring stiffness at the
nodes are estimated based on the relationship of the surface nodes to the
object centre. Local and global volume behaviours are preserved when the
surface model is simulated under the influence of gravity, deformed by
external forces and topologically refined. The proposed scheme contributes
towards the employment of a deformable surface model for soft volume
simulation with haptic interaction.
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1 Introduction

Figure 1. A breast surface model with irregular mesh topology

Soft volume simulation requires both the geometrical representation as well as the physical
modelling of the object of interest. For instance, medical simulation requires the simulated
organ to look and to behave as identical as possible to the real organ. To achieve this, a
volumetric object is generally made up of tetrahedral elements that represent its surface and
internal volume. However due to the complexity of a volumetric mesh and the high
computational overhead it requires, there has been an increase in the use of a surface mesh to
emulate volume behaviour. A surface mass spring system has been employed to simulate solid
and cavernous objects such as blood vessels (Brown et al., 2001), stomachs (Choi et al., 2005)
and muscles (Nedel and Thalmann, 1998; Hong et al., 2006). However, emulating volume
behaviour is a great challenge due to the non-existence of the internal spring network to
represent the internal volume. Most volume object such as soft tissue, which is essentially made
up of water, is incompressible (Picinbono et al., 2001). So naturally, volume is preserved during
deformation despite the elasticity behaviour. The level of difficulty is increased when an



irregular mesh topology makes up the surface. Irregular mesh topology refers to the non-
uniform node concentrations throughout the surface of the object as shown in figure 1.
Therefore, to emulate volume behaviour, the local and global behaviours of the object have to
be preserved during simulation regardless of the mesh topology and the non-existence of
internal volume.

2 Related Works
Mass Spring System (MSS) consists of point masses connected by elastic spring links. When
the system is mapped against the geometric mesh as shown in figure 1, the masses are the mesh
nodes and the springs are the edges. Properties such as mass values and stiffness values have to
be distributed to the spring system. To simplify properties estimation, the object mesh usually
assumes regular topology (Delingete, 1998; Gelder, 1998; Bourguignon and Cani, 2000; Brown
et al. 2001). Deussen et al. (1995) modified the irregular mesh to produce more regular node
concentrations. Therefore, uniform properties were assumed. However, the object surface
should not necessarily have the same amount of node concentration. Irregular mesh topology or
multi-resolution allows visual acuity as well as higher computation to be concentrated within
specific areas on the surface. The system should effectively limit the computations to the
portions of object that undergo significant deformations (Brown et al., 2001). The shape of the
object determines which surface region requires a more refined topology than another.
Furthermore, a surface mesh area within the radius of influence of the interaction force can be
subdivided to achieve a more refined geometry (Zhang et al., 2002). Consequently, properties
re-estimation is required. The existing regular re-estimation methods such as discussed in (Choi
et al., 2005) preserved the local properties but did not preserve the deformation behaviour. The
displacement patterns of a node within the coarse and refined area do not coincide.

However, manipulating the properties of the surface mesh alone will not guarantee the
preservation of object volume during simulation as shown in figure 2.

Figure 2. The sphere model collapses when gravity is switched on

To achieve volume preservation using a surface model, existing method converts the surface
mesh into a volume mesh where internal spring network is created. This imposed high
computational overhead due to the re-meshing process as well as the complexity of a volume
mass spring system. This does not guarantee volume preservation as the resulted volume mesh
is still based on 2 dimensional springs that represent the edges. Bourguignon and Cani (2001)
introduced artificial springs to preserve the object volume based on the individual tetrahedral
elements. The consequent object is stiffer than it should be (Hong et al., 2006). Attempts on
muscle simulation (Nedel and Thalmann, 1998; Aubel and Thalmann, 2000) addressed shape
preservation and not volume. A more effective solution is based on independent inner springs
(figure 3) that preserve the shape of the object during simulation (Mendoza et al., 2002;
Vassilev & Spanlang, 2002; Zhang et al., 2002; Laugier et al., 2003; Choi et al., 2005; Marchal
et al., 2005; Maciel et al., 2005). The springs, which are embedded at the mass nodes, each has
zero rest length. The method has successfully preserved the shape when the MSS reaches the



equilibrium stage. However, the influence of gravity is generally excluded and the spring
stiffness is estimated based on some fine-tuning processes or assumed uniform. The stiffness
estimation has not considered the material properties of the object.

Figure 3. Inner support springs

3 Proposed Scheme
The proposed scheme manipulates the use of the inner support springs to preserve the volume of
the object during deformation as well as under the influence of gravity. In order to achieve this,
mass and the stiffness of the springs have been estimated based on the topology of the surface
mesh. The relationship of the surface nodes with the object centre (Vassilev and Spanlang, 2002)
as well as with the neighbouring triangular elements of the mesh (Cignono et al., 1999; Villard
and Borouchaki, 2002) has been explored to address the needs towards the estimation of the
MSS properties.

3.1 Mass Estimation
Based on the relationship, the inner volume of the surface mesh can be artificially discretised
into tetrahedral elements as shown in figure 4. These elements represent the volume under the
triangular elements of the surface model.

Centre of
object

i

Centre of
object

i

Figure 4. Inner volume discretisation of a surface model with irregular mesh topology

Therefore, if the total mass of the object is M, mass at node i is:

[1]
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where Vt and V are the volume of the tetrahedron under the surface triangle t and the total object
volume respectively. Ci is the distribution coefficient at node i in regards to the neighbouring
triangles. The simplest approach is to consider the barycentric relationship of i with the
neighbouring triangles (Bourguignon and Cani, 2000; Bielser, 2003). Consequently, C is 1/3.
However, this is incorrect if the nodes are of different distances L from the object centre. A

Inner support spring

Surface spring



distance correction factor is required to estimate the distribution of the mass at the triangles to
the member nodes. Therefore,

[2]
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where Lt is the total length of the nodes of triangle t to the object centre. For, a triangle , C0 + C1

+ C2 is equal to 1. This new coefficient addresses the triangle’s normal relative to the object
centre.

3.2 Spring Stiffness
The surface spring stiffness is determined based on the irregular method proposed by Gelder
(1998). The estimation for the inner spring stiffness has generally assumed a more regular mesh
topology. However, the individual volumes of the artificial tetrahedrons that represent the
surface triangles provide the correction factor that determines the spring stiffness at each node
based on the material properties. The proposed scheme aims to explore the multi-dimensional
aspect of the inner spring. In this paper, the springs assume isotropic behaviour. Hence, based
on figure 4, spring stiffness K at node i is:

[3] 
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where Li is the distance of node i from the object centre and E is the elasticity factor (Young’s
Modulus) of the inner volume.

4 Experimental Findings
The experiment framework has been implemented using Microsoft Visual C++, OpenGL and
OpenHaptics. Phantom Desktop haptic device (figure 5) has been employed to provide the
virtual interaction and the desktop PC has the specification of Intel Pentium 4, 2.40 GHz and 1
G RAM. The object mass is 50 g, surface elasticity (Young’s Modulus) is 1 N/M2, inner
elasticity factor is 10 N/M2 and each time step denotes 0.01 s.

Figure 5. Phantom Haptic instrument is used to interact with the virtual model

Three schemes are compared in this experiment, which are:
Scheme A: Regular estimation of properties
Scheme B: Irregular mass but regular inner spring
Scheme C: Irregular estimation as proposed in section 3



4.1 Properties Re-estimation
To illustrate the proposed scheme, a sphere model with irregular mesh topology has been
employed which represents objects with a convex shape such as a human’s breast. To evaluate
the estimation method, the local behaviour of the surface is observed. When a surface area is
refined, properties will need to be re-estimated. The consequent refined area should behave
identically to the original behaviour during deformation. Constant force is imposed on a node
within the selected area. The displacement patterns of the same node within the coarse and
refined area are plotted. If the patterns are identical, the deformation behaviour is preserved.
This exercise is repeated with different force amounts. The displacement behaviours are studied,
where 2 values are analysed:

i) The standard deviation between the 2 patterns determines the level of similarity
between the patterns. The smaller the standard deviation, the more identical the
patterns are,

ii) The mean deviation of the 2 patterns is calculated for the different schemes. The
least value demonstrates that the node behaviour is preserved with the least
deviation.

(a)

(b)

Figure 6. The (a) standard deviation and (b) mean deviation of each scheme over force
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Based on figure 6, the proposed scheme C preserves the node behaviour within the coarse and
refined area with the least standard deviation and mean deviation. This indicates that the
properties are more correctly re-estimated after the mesh refinement. Not only that the patterns
of the displacement are the most identical, but also produce the least deviation.

4.2 Volume Preservation
The current volume of the object is calculated during simulation based on the equation [4]. This
equation supports both concave and convex surface due to deformation.

[4]        
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where, volume V is the accumulation of the volume based on the individual triangle nodes
relative to its normal and A is the area of the triangle t. The object is put under gravity and the
visual observation concludes that the right amount of inner support has been estimated for the
mass at the nodes. Figure 7 shows that Scheme C provides the correct visual representation
compared to B.

(a) (b)

Figure 7. Gravity test: (a) Scheme B (b) Scheme C

Based on the volume variation over time (figure 8), the variation percentage of the volume
relative to the original volume is maintained at around 0.03%.
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Figure 8. Mean volume variation over time for Scheme C



When a constant force is imposed on a node, runtime volume is calculated at each time step
until the object reaches the state of equilibrium. Figure 9 shows that scheme C preserves volume
with the least variation compared to A and B. This proves that the proposed scheme improves
volume preservation during simulation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 20 30 40 50

Force (10-5) N

M
e
a

n
V

a
ri

a
ti

o
n

P
e
rc

e
n

ta
g

e
(%

)

Scheme A

Scheme B

Scheme C

Figure 9. Mean volume variation over different force amounts

5 Conclusions
The proposed scheme irregularly distributes mass and inner spring stiffness in regards to the
surface mesh topology. This is a feasible approach towards preserving a constant volume during
simulation even when gravity is switched on. The scheme improves properties re-estimation
upon topological alterations such as surface mesh refinement, where the local properties and
behaviour are preserved. The stiffness of the inner springs is derived based on the material
property which dimensionality can be extended to address anisotropy. Currently, the proposed
scheme assumes that the object has a convex shape with known centre. Further works include
addressing the global deformation effect based on the orientation of the interaction force to
create a more accurate global deformation effect despite of the non-existence of the internal
volume.
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