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Abstract: 

This paper concerns a class of maximum covering location problems in networks in 

uncertain environments. It is assumed that: (a) relative weights of demand nodes are 

either deterministic or imprecise, described by linguistic expressions, (b) potential 

facility site locations are limited to network nodes. The concept of coverage is extended 

to include a degree of node coverage which means that the borders between the subset of 

covered demand nodes and the subset of uncovered demand nodes are inexact. The 

acceptable service distance/traveling times from a facility site to demand nodes are 

modelled by fuzzy sets. Three new algorithms for choosing the best facility locations are 

developed which assume that (1) demands at all nodes are equally important, (2) relative 

weights of demand at nodes are deterministic and (3) weights of demand at nodes are 
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imprecise and described by linguistic terms, respectively. The algorithms are based on 

searching among potential facility nodes by applying comparison operations on discrete 

fuzzy sets. It is shown how to extend the proposed algorithms from one-site to multi-site 

covering problems. Illustrative examples of selecting locations for logistics centres in a 

distribution company are given. 

 

Keywords: Uncertainty, Fuzzy sets, Network covering, Location, Facility site. 
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1. Introduction 

 

 In this paper, a class of network based facility location problems in uncertain environments 

is treated. The problems under consideration belong to the class of maximum covering problems 

defined as follows: given a connected network with demand at nodes, locate one or more facility 

sites at nodes in such a way as to maximise the coverage of demand nodes. The covered nodes 

are within the acceptable service distance or within the acceptable travelling service time from a 

facility site. 

 In the conventional covering problems, it is commonly assumed that there is a critical 

distance or critical time within which the demand node is fully covered, while beyond this 

distance/time it is not covered at all. In this paper, we extended the concept of node coverage by 

supposing that the borders between the subset of covered nodes and the subset of uncovered 

nodes are inexact. Following this idea the notion of fuzzy coverage is introduced with an 

appropriate measure of coverage decreasing from full coverage to non-coverage. 

 Still another source of uncertainty in covering problems treated in this paper is imprecise 

weights of demand nodes. It is assumed here that the weights of demand nodes are described by 

vague linguistic terms that can be appropriately modelled using fuzzy values. 

 Three covering problem variants which include the notion of fuzzy coverage are defined 

and considered: 

Problem1: Demands at all nodes are equally important and the facility location objective is to 

determine one or more facility nodes which maximize a measure of belief that the largest number 

of demand nodes is covered. 

Problem 2: Amounts of demands at nodes are different either by size or by importance. A 

deterministic relative weight is associated to each demand node, which is proportional to the 
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amount of demand at the node. The objective is to determine one or more facility nodes which 

maximise a measure of belief that the largest amount of demand at demand nodes is covered. 

Problem 3: Amounts of demands at nodes are specified as imprecise weight values. They are 

described by vague linguistic terms defined by fuzzy sets. The objective is to determine one or 

more facility nodes which maximise a measure of belief that the largest coverage of demand at 

demand nodes labelled by their weights is obtained. 

 In all the three problems one site solution is considered first and then the attention is 

extended to the corresponding multi-site problems. 

 Fuzzified versions of the network covering models presented in this paper are particularly 

suitable for real world logistic tasks where both imprecisions in travelling times between network 

nodes and vaguely described weights or importance of demand nodes are very common.  

 The paper is organized as follows. In Section 2 the relevant literature is given and 

discussed. Section 3 provides assumptions and notation used in the three covering models. 

Section 4 gives three new algorithms for solving the corresponding one-site fuzzy covering 

problems. In Section 5, an extension to multi-site problems is discussed. In Section 6 illustrative 

examples are given. The procedure for discrete fuzzy numbers comparison, based on the 

probabilistic approach, and used in the three algorithms, is given in Appendix. 

 

2. Literature review 

 

 Network covering problems have a long and wealthy history. The problems have been 

defined in a variety of ways which have given rise to a large number of generalizations, 

extensions and modifications in problem solving. Particularly, the past three decades have shown 

a fast growth of the output of published materials. 
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 In the following, we provide a brief review of theoretical and applied contributions to the 

field. In view of the rather large amount of literature on the subject, the reference list is, needless 

to say, incomplete and holds only the items closely related to this paper. The reviewed models 

and algorithms are classified into the following categories: general, approximate solutions, 

stochastic/fuzzy, and anti-covering models. 

General models. Generally, it is claimed in the literature that facility location models have been 

applied in the public and private sectors for years, giving emphasis on discrete location problems. 

The very challenging and stimulating papers on network covering problems are provided by 

Church and ReVelle [6], Schilling et al, [26], Owen and Daskin [18] and Drezner and 

Wesolowsky [12]. These papers have received a strong theoretical interest and a wide attention of 

practitioners considering the questions on how to select locations for manufacturing units, 

commodity distribution, logistic centres for maintenance, and places for emergency service 

facilities, such as fire stations and ambulances. ReVelle provided a perspective on location 

science in [25]. In [12], the selection of the best location was viewed as the problem of allocating 

customers to facilities with changing costs. Drezner and Hamacher [11] gave a state-of-the-art 

review of available location models. A visionary paper by Daskin [8] offered an answer on the 

question what one should know about location modelling, and presented a taxonomy of location 

problems. 

Approximate solutions. It is already in the earliest node covering bibliographies, dating from the 

mid-seventies, where one may find that maximum covering problems are computationally 

complex and not easy to solve. In the case of general network considerations, they are usually 

NP-hard combinatorial optimization problems. The algorithms which solve the covering 

problems optimally (for example, Downs and Camm’s branch and bound algorithm [9]) take a lot 

of time and, therefore, they cannot be applied to large scale problems if the solution is to be used 

in real time. A number of authors suggested approximate solutions for the minimum set covering 

problem where the objective is to find a minimum size facility set covering all nodes, or for the 
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maximum covering problem where the objective is to select a subset of facilities in such a way as 

to maximise the sum of weights associated with demand sites. For example, Affif et al, [1] 

proposed an efficient heuristics, Lorena and Lopes [16] developed a classical genetic algorithm 

and Resende [24] applied a greedy randomized adaptive search procedure. Klose and Drexl [14] 

reviewed some contributions to the state-of-the-art probabilistic, multiobjective network location 

models. Recently, Sugihara [28] proposed a greedy based algorithm for a modified problem 

defined as to find a facility set of a predetermined size which maximizes the sum of the weights 

of vertices covered in a given capacitated graph. A genetic-like algorithm, GASUB, for 

determining a given number of facility locations from a set of potential locations so as to 

optimize a predetermined fitness function is given in [20].  

Stochasic / fuzzy models. Initially, the complexity of network covering problems has limited 

much of the literature to deterministic cases. Later on, stochastic formulations attempted to 

capture uncertainty by considering explicitly the probability distribution of uncertain input 

parameters such as demands at nodes or distance values in networks ([29] and [17]). Darzentas 

[7] developed a fuzzy model for the facility location problem based on fuzzy set partitioning, 

where parameters associated to nodes are not crisp, but described by fuzzy sets. Bhattacharya and 

Tiwary [5] considered imprecise weights in the Weber location problem with the objective to 

minimise the sum of transportation cost. In addition, it was supposed that the costs per unit 

distance were not precisely stated. A location problem with future uncertainty in the data was 

treated in [10]. The authors assumed some possible scenarios about the future values of the input 

parameters with the objective to find the location that will best accommodate the possible 

scenarios. Later on, the concept of a gradual coverage is introduced in [4] by introducing two 

distances. A demand point is fully covered if it is within the lower distance, not covered at all if it 

is beyond the larger distance, and, if its distance is between the two distances, a level of coverage 

is determined using a ‘decay function’. A stochastic set-covering location model where the 

probability of each customer being covered is not less than a specified critical value was 
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proposed by Hwang [13]. Perez et al, [21] claimed that in real applications the facility locations 

can be full of linguistic vagueness that can be appropriately modelled using networks with the 

fuzzy values which describe nodes, weights or importance of nodes, lengths of paths, etc. 

Anti-covering models. The curiosity of the network covering theory and applications is that in 

addition to the conventional maximum covering problems, the attention of some authors have 

been focussed on inverse tasks – the minimum node/weights covering applicable when locating 

an obnoxious facility (see, for example, [2] and [3]). Let us notice that all the three algorithms 

presented in this paper, designed to solve the maximum covering problem can be easily adapted 

to solve the anti-covering problems, too. 

 

3. Assumptions and notation 

 

 Consider a discrete network location model where users with demand are located at 

network nodes. The problem is to determine one or more network nodes to place facilities which 

will cover demand nodes in an optimal way. Suppose that a connected network )( LN ,=G  

consists of a collection N of nodes together with a set L of unordered pairs of nodes from N, 

called links. Each link has an associated length (or time) parameter. It is also assumed that there 

exist the  paths between each pair of nodes. The distances among nodes are computed as shortest 

paths in graph [23]. Conventionally, the basic parameter in the treated location problem is the 

given acceptable service distance or traveling service time. Each demand node can only be 

considered covered if there is a facility located at some node within the given distance/time. 

Otherwise, demand node is uncovered.  

 In the formulation of the fuzzy location problems defined in this paper, the following 

notation is used: 

NI ⊆ ,  set of potential locations of service facilities; if facilities may be located at any node of 

the network then NI = , 
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I, total number of facility nodes, 

J, total number of demand nodes, 

NJ ⊆ , set of demand nodes; the amount of demand is specified for each demand node J∈j , 

either: (1) by a deterministic parameter wj, j = 1,…, J; or (2) by a weight of demand 

node that is described by a vague linguistic term defined by triangular fuzzy numbers on 

a subjectively defined scale (1 ÷ 5) as follows:  

 a low demand node, denoted by A=(x; 1,1,5), 

 a moderate demand node, denoted by B=(x; 1,3,5) and 

 a high demand node, denoted by C=(x; 1,5,5), 

 where (x; a, m, b) denotes the membership function of the triangular fuzzy number X 

defined by the linear relationship: 

 









∈−−

∈−−

=

otherwise0

],[if

],[if

),,;( bmxm)x)/(b(b

maxa)a)/(m(x

bmaxX  

dij , shortest distance between nodes i and j; distances dij, i = 1, …, I, j = 1, …, J are  

arranged in I×J matrix D, 

R, covered demand node is a fuzzy set with stepwise decreasing membership function µ(r), 

defined by K points by the pairs (r1 , µ (r1)), …, (rk , µ (rk)), …, (rK , µ (rK)), see Fig 1. 

A degree of closeness between facility node i, i = 1, …, I and demand node j, j = 1, …, J 

is determined as follows: 

 if dij ≤ r1,   demand node j is covered by facility node i with degree µ (r1)=1, 

 if rk < dij ≤ rk+1,   demand node j is covered by facility node i with degree µ (rk+1), 

k = 1,…, K-1, 

 if dij > rK,   demand node j is uncovered by facility i,  

 

[Insert Fig. 1 here] 
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mi(rk),  number of demand nodes within rk distance from facility node i, i = 1,…, I, k = 1,…,K, 

mA , i (rk), mB , i (rk), mC , i (rk), number of low, medium and high demand nodes, respectively, within 

rk distance from facility node i, i = 1,…, I, k = 1,…,K, 

Ji(rk), subset of demand nodes within rk distance from facility node i, i = 1,…, I, k = 1,…, K, 

pi(rk), percentage of demand nodes within rk distance from facility node i,i = 1,…, I, 

k = 1,…, K, 

pi ,   a discrete and finite fuzzy set 

 ∑
=

==
K

k

kiki Iirpr
1

,...,1),(/)(µp , 

si(rk), percentage of the amount of covered demand nodes within rk distance from facility node 

i, 

i = 1,…, I, k = 1,…, K, 

si , a discrete and finite fuzzy set 

  ∑
=

==
K

k

kiki Iirsr
1

,...,1),(/)(µs , 

ti(rk),  measure of coverage of demand within rk distance from facility node i, i = 1,…, I, k = 

1,…, K, when the weights at demand nodes are linguistic terms 

ti a discrete and finite fuzzy set 

  ∑
=

==
K

k

kiki Iirtr
1

,...,1),(/)(µt , 

Qi(rk) a triangular fuzzy set which represents the overall fuzzy coverage of demand from 

facility node i within rk distance, 

i*P , measure of belief that the facility node i* ∈ I  is better than any other facility node in the 

sense that *i  covers the largest percentage of demand nodes, 
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*iS , measure of belief that the facility node i* ∈ I  is better than any other facility node in the 

sense that *i  covers the largest percentage of the amount of demands at all demand 

nodes, 

*iT , measure of belief that the facility node i* ∈ I  is better than any other facility node with 

respect to the total coverage of demand at demand nodes labeled by their weights. 

 A question arises on how to determine a membership function for the fuzzy set covered 

demand node. Various experimental methods can be used to determine membership function  

µ (r). One of the conceptually very simple methods that can be easily applied in practice is the 

Horizontal method of membership estimation [19]. In this method, determination of membership 

functions’ parameters relies on some experimental findings collected from a group of experts 

who are asked to answer questions such as: can rk be an acceptable service distance between a 

demand and a facility node. The membership degree of the selected value rk is taken as a ratio of 

the number of positive replies to the total number of responses. 

 

4. Algorithms 

 

 In what follows, we shall explain three algorithms for choosing the best facility location in 

a network with respect to demand coverage, in the presence of uncertainty. Algorithm 1, 

Algorithm 2 and Algorithm 3 solve Problem 1, 2 and 3, respectively. The essential part of the 

algorithms is the comparison of discrete and finite fuzzy sets. Different approaches to the 

comparison of discrete fuzzy sets have been suggested in the literature (e.g. ,[15]). In [27] it was 

postulated that the results of fuzzy number comparisons need to be given in the form of fuzzy 

values instead of real values. One efficient comparison method which, in addition, generates a 

measure of belief that one fuzzy set is greater than the other one, and determines a fuzzy sets 

ranking is applied in these three algorithms [22] (see Appendix). 
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Algorithm 1 

Step 1. 

Calculate the elements dij, i = 1,…, I, j = 1,…, J, and create matrix D. 

This can be done by applying one among many customary algorithms for determining the 

shortest routes in a graph, for example, well known Dantzig algorithm or Polack's matrix 

algorithm. 

Step 2. 

For each i = 1,…, I and each rk, k = 1,…, K, determine mi(rk) and calculate pi(rk) = mi(rk) / I.    

Step 3. 

For each i = 1,…, I, create a discrete and finite fuzzy set pi shown in Fig 2: 

∑
=

=
K

k

kiki rpr
1

),(/)(µp   

 

[Insert Fig. 2 here] 

 

Step 4. 

Using the comparison method given in Appendix, compare discrete fuzzy sets Ippp ,...,, 21  

and find *ip  for which fuzzy relations Iii pppp ≥≥ *1* ,........,   are true. The Ii ∈*  selected 

is the best facility node with respect to the number of demand nodes covered. 

Step 5. 

Determine Pi*., i.e., the corresponding measure of belief that i* is better then or at least 

equal to any other facility node. 

 

Algorithm 2 

Step 1. 
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Calculate the elements dij, i = 1,…, I, j = 1,…, J, and create matrix D. 

Step 2. 

For each i = 1,…, I, and each rk, k = 1,…, K determine subset Ji(rk) and calculate 












∑













∑=
∈∈ Jj

j

kriJj
jki wwrs /)(

)(

 

Step 3. 

For each i = 1,…, I, create a discrete and finite fuzzy set si shown in Fig 3: 

∑
=

=
K

k

kiki rsr
1

),(/)(µs  

 

[Insert Fig. 3 here] 

 

Step 4. 

Using the comparison method given in Appendix, compare discrete fuzzy sets Isss ,...,, 21   

and find i*s  for which fuzzy relations Iii ssss ≥≥ *1* ,........,   are true. The Ii ∈*  selected is 

the best facility node with respect to the percentage of the amount of covered demands at 

demand nodes. 

Step 5. 

Determine *iS , i.e., the corresponding measure of belief that i* is better then or at least 

equal to any other facility node. 

 

Algorithm 3 

Step 1. 

Calculate the elements dij, i = 1,…, I, j = 1,…, J, and create matrix D. 

Step 2. 
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For each i = 1,…, I and each rk, k = 1,…,K determine mA , i (rk), mB , i (rk), mC , i (rk) using 

fuzzy arithmetic operations · and ⊕, (see, [19]), create a triangular fuzzy sets Qi(rk): 

Qi(rk) = mA , i (rk) · A  ⊕  mB , i (rk) · B  ⊕  mC , i (rk)  · C         

 

Step 3. 

For each i = 1, …, I and each rk, k = 1,…, K defuzzify Qi(rk) by applying Centre-of-gravity 

method [19]. It determines a representative scalar ti(rk) of a fuzzy set Qi(rk) as an element in 

the fuzzy set domain at which a line perpendicular to the axis passes through the centre of 

the area formed by the corresponding membership function: 

ti(rk) = [defuz Qi(rk)] 

Step 4. 

For each i =1, …, I, create a discrete and finite fuzzy set ti shown in Fig 4:  

∑
=

=
K

k

kiki rtr
1

),(/)(µt  

 

[Insert Fig. 4 here] 

 

Step 5. 

Using the comparison method given in Appendix compare discrete fuzzy sets t1, t2, …, tI  

and find ti* for which fuzzy relations Iii tttt ≥≥ *1* ,........,   are true. The *i  selected is the 

best facility node with respect to the total coverage of demand at demand nodes labeled by 

their weights. 

Step 6. 

Determine *Ti , i.e., the corresponding measure of belief that i* is better then or at least 

equal to any other facility node is *iT . 
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5. Extension to the problems of locating two, three and more facility sites 

 

 All node covering models discussed to this point assume that only one facility site has to be 

located. The presented methodology can be extended to the problems to locate two, three, and up 

to L-facility sites. In such cases, there is only one additional task which is necessary to 

accomplish. 

 First, consider the problem to locate two-facility sites. At the beginning it is necessary to 

calculate the shortest distances d(i', i"), j between each pair (i', i"), i', i" ∈ I  of potential locations of 

service facilities and demand node j ∈ J. It is simply done by calculating: 

 d(i', i"), j = min (di', j, di", j), i', i" ∈ I, j ∈ J. 

The distances d(i', i"), j can be arranged in a distance matrix D
2
 with the number of rows equal to 

)!!(I

I!I

222 −
=








 , each representing a potential facility pair, and the number of columns equal J. 

After that, choosing the best facility location pair is performed following one among the three 

algorithms given in Section 3. 

 In a very similar way L best facility location sites can be chosen by generating matrix D
L
 

and then applying algorithms presented in Section 3. The number of possible location 

configurations and consequently the number of rows in D
L
 is

L)!L!(I

I!

L

I

−
=








. Thus, choosing 

the best among the possible location configurations would be computationally prohibitive for 

large values of I and L. 
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6. Illustrative example 

 

 Consider a distribution company with N =15 retailers and I = 3 potential locations for 

depots, spatially distributed on a geographical area and modelled by an undirected network, Fig. 

5. 

 The node 1, 10, and 12 are potential locations for depots. The parameters associated to the 

links are travel times between nodes in some time units. Matrix D of the shortest distances 

between the potential locations for facility service and demand nodes is given in Table 1. Fuzzy 

set covered demand nodes R is given by four pairs: R =(20,1), (24, .8), (28, .5), (30, .3). 

 

[Insert Fig. 5 here] 

 

[Insert Table 1 here] 

 

 Three cases are considered. In each case, the demands at demand nodes are specified in a 

different way. 

Case 1: All demand nodes have equal weights.  

The problem is to determine the best location for a depot which maximises the measure of 

belief that the largest number of retailers is covered. 

In Case 1 the results are obtained by applying Algorithm 1 and are given in Table 2. 

 

[Insert Table 2 here] 

 

 Location 12 is better than Location 1 or Location 10. The measure of belief that location 12 

is better or at least equal as location 1 is 0.64 and the measure of belief that location 12 is better 

or at least equal as location 10 is 0.50. 
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Case 2: Demand at retailers are described by the linguistic terms as follows: 

low demand retailers  are: 4, 6, 7  

medium demand retailers  are: 1, 2, 5, 9, 10, 12, 13, 14, 15  

high demand retailers  are: 3, 8, 11 

The problem is to determine the best location for a depot which maximises the measure of 

belief that the largest coverage of demand at retailers, labeled by their weights, is 

obtained. 

In Case 2, Algorithm 3 is applied and the results are given in Table 3. 

 

[Insert Table 3 here] 

 

 The measure of belief that location 12 is better or at least equal as location 1 is 0.64 and the 

measure of belief that location 12 is better or at least equal as location 10 is 0.53. 

 

Case 3: Potential depot location configurations are pairs of nodes (1, 10), (1, 12), (10, 12).  

The problem is to determine the pair of locations for depots which maximises the measure 

of belief that the largest coverage of demand at retailers, labeled by their weights, is 

obtained.  

 

 In order to choose the best pair of locations in Case 3, D
2
 matrix is calculated first. It is 

given in Table 4. Then Algorithm 3 is applied and the results are given in Table 5. 

 

[Insert Table 4 here] 

 

[Insert Table 5 here] 
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 The measure of belief that the pair of nodes (10, 12) is better or at least equal as the pair of 

nodes (1, 10) is 1, and the measure of belief that the pair (10, 12) is better or equal as the pair (1, 

12) is 0.78. 

 

7. Discussion and conclusion 

 

 Locating facilities in a network in such a way as to maximise demand coverage at demand 

nodes in the presence of uncertainty has been recognized as a complex problem, both 

conceptually and computationally. A large number of models concerning facility location 

problems developed so far are limited to the simplified deterministic cases where the demand at 

facility locations and the distances between them are precisely known. 

 In this paper, an attempt is made to formulate a class of network covering problems which 

imitate, as close as possible, the reality of a wide class of facility location tasks. Following this, 

an important point is identified: in real practice the description of facility location is commonly 

given full of linguistic vagueness. 

 The first step to cope with the vague nature of the coverage problems is a realistic 

assumption that the weight or the importance of the demand at a node has to be given by a vague 

linguistic term, and not simply, by some deterministic value. In this paper three primary terms 

low demand, medium demand and high demand, modelled by triangular fuzzy sets, are used to 

describe the weights of demand nodes. Further on, it is easy to extend the vocabulary list and 

include more linguistic terms. For example, two more terms such as very low demand and very 

high demand can be easily generated by applying appropriate intensification operators, i.e. by 

using fuzzy hedges, and still preserve triangular fuzzy sets as their descriptors. 
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The next step in developing a covering model which is important for a wide range of real 

situations is to introduce the concept of a gradual coverage of demand nodes. A realistic 

assumption is made that each demand node is covered if it is within a vaguely expressed 

acceptable service distance/time. It is shown that the use of fuzzy sets with a step-wise decreasing 

membership function is an appropriate way to describe the practical meaning of node coverage. If 

a demand node is within a given optimistic distance/time from a facility site the demand node is 

fully covered, and if it is beyond a given pessimistic distance/time, it is not covered at all. For a 

distance/time between the optimistic and pessimistic values a gradual coverage decreases from 1 

to 0, following the step-wise membership function. 

Three new algorithms with the embedded concept of fuzzy node coverage, which assume 

either equal, precisely known or imprecisely specified relative weights of demand nodes, are the 

main contributions of the paper. The algorithms are based on the searching among nodes – 

candidates for sitting facilities and on establishing a fuzzy preference structure on a number of 

discrete fuzzy sets which describe coverage efficiency. The selection of the best facility sites is 

supported by calculating an associated measure of belief that one facility site is the best with 

respect to the node coverage.  

For one-site problems, the algorithms involve one-dimensional searching among potential 

facility nodes. Searching time depends linearly on the number of potential locations of service 

facilities, and, in line with that, the algorithms are efficient for medium size network location 

problems where the number of demand nodes and/or the number of potential facility sites is of 

the order of hundreds. For multi-site problems the use of presented algorithms in practice is 

restricted to smaller networks since the searching time rises in a combinatorial way, following the 

formula for the number of combinations of a given number of elements divided in classes. The 

algorithms are suited for smaller networks where the number of demand nodes and/or the number 

of potential facility sites are of the order of tens. 
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 The models presented and the algorithms developed increase our capacity for solving real 

world covering problems in uncertain environments. 

 

Appendix  

Comparison of discrete fuzzy sets 

 

 This Appendix describes an efficient procedure for determining a fuzzy preference structure 

on a number of discrete fuzzy sets. The measure of belief )b( NM <  that a fuzzy relation NM <  

between two discrete fuzzy sets M  and N  is true is defined as the probability that a crisp value 

)(MSm ∈  is less than a crisp value )(NSn ∈  [22]: 

)Prob()b( nm <=< NM          A.1 

where S(M) and S(N) represent the supports of the fuzzy sets M  and N , respectively. The 

support of a fuzzy set is defined as a crisp set that contains all the elements of the fuzzy set that 

have nonzero membership degrees. Let S(M) = {m1, m2, …, mUm} and S(N) = {n1, n2, …, nUn}. 

 Let us introduce the following: 

PM(ml) - the probability that M  takes a given crisp value ml ∈ S(M) 

ΦM(ml) - the probability that M  takes a crisp value which is  smaller or equal to )(MSml ∈  

Then, 

1

1

)()()(

−

=

ΜΜ












= ∑

Um

j

jllM mmmP µµ          A.2 

∑
=

Μ=
l

j

jlM mPm
1

)()(Φ          A.3 

 Consequently, 1- )( lM mΦ  is the probability that M  takes a crisp value which is greater than 

)(MSml ∈ . 
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 Analogous expressions hold for a discrete fuzzy number N . Then, under a realistic 

assumption that random values defined on S(M) and S(N) are independent (A.1) becomes: 

[ ] [ ])(1)(Prob)b( lNl

Um

1l

Mll

Um

1l

mmPmnmm Φ−=>∧==< ∑∑
==

NM      A.4 

 

 The following relationship holds: 

)b(1)b( NMNM ≥−=<          A.5 

 In the case when I discrete fuzzy sets Ii NNN ,...,,...,1  are given, the measure of belief 

b(M < N1, …, M < Ni ,…, M < NI ) that fuzzy relations M < N1, …, M < Ni ,…, M < NI are true 

is: 

{ })(),...,(),...,b(min),...,,...,b( 11 IiIi bb NMNMNMNMNMNM <<<=<<<   A.6 
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Figure Captions 

Fig. 1 Fuzzy set covered demand node with a stepwise decreasing membership function 

Fig. 2. Discrete fuzzy set pi 

Fig. 3. Discrete fuzzy set si 

Fig. 4. Discrete fuzzy set it  

Fig. 5. Undirected network with 15 nodes and 19 links 
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Tables 

Table 1. Matrix D of the shortest distances between depots and retailers 

Table 2. Case 1: Number and percentage of retailers covered 

Table 3. Case 2: Number of A, B, C types of retailers covered 

Table 4. Matrix D
2
 of the shortest distances between the pairs of depots and retailers 

Table 5. Case 3: Number of A, B, C types of retailers covered by each pair of depot location cites 
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Fig. 5. Undirected network with 15 nodes and 19 links 
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Table 1. Matrix D of the shortest distances between facility nodes and demand nodes 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 — 6 8 14 17 18 22 22 30 28 21 31 29 35 41 

10 28 30 20 20 16 10 14 6 10 — 20 30 28 34 40 

12 30 32 22 28 14 20 24 24 32 30 10 — 6 12 18 

 



Table 2. Case 1: Number and percentage of nodes covered 

  Distances µ(rk) / rk 

 1 / 20 0.8 / 24 0.5 / 28 0.3 / 30 

Facility node No.  

of 

nodes 

covered 

%  

of 

nodes 

 

No.  

of 

nodes 

covered 

%  

of 

nodes 

No.  

of 

nodes 

covered 

%  

of 

nodes 

No.  

of 

nodes 

covered 

%  

of 

nodes 

1 6 40 9 60 11 73 12 80 

10 9 60 9 60 11 73 12 80 

12 7 47 10 67 11 73 13 87 

 



Table 3. Case 2: Number of A, B, C types of nodes covered 

 Distances µ(rk) / rk 

 1 / 20 0.8 / 24 0.5 / 28 0.3 / 30 

Facility node 

i 

No.  

of nodes 

covered 

A   B   C 

ti No.  

of nodes 

covered  

A   B   C 

ti No.  

of nodes 

covered  

A   B   C 

ti No.  

of nodes 

covered  

A   B   C 

ti 

1 2   3   2 21 3   3   3 22 3   5   3 33 3   6   3 36 

10 3   3   3 27 3   3   3 27 3   5   3 33 3   6   3 36 

12 1   5   1 21 2   5   3 31 3   5   3 33 3   7   3 39 

 



 

Table 4. Matrix D2 of the shortest distances between the pairs of facility nodes and 

demand nodes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 B B C A B A A C B B C B B B B 

   1, 10 — 6 8 14 16 10 14 6 10 — 20 30 28 34 40 

   1, 12 — 6 8 14 14 18 22 22 30 28 28 — 6 12 18 

10, 12 28 30 20 20 14 10 14 6 10 — 10 — 6 12 18 

 



 

Table 5. Case 3: Number of A, B, C types of nodes covered by each pair of facility 

location cites 

 Distances µ(rk) / rk 

 1 / 20  0.8 / 24  0.5 / 28  0.3 / 30  

Pairs of 

facility 

nodes 

Nodes 

covered 

A   B   C 

ti’,i’’ 

Nodes 

covered 

A   B   C 

ti’,i’’ 

Nodes 

covered 

A   B   C 

ti’,i’’ 

Nodes 

covered 

A   B   C 

ti’,i’’ 

1, 10 3   4   3 30 3   5   3 32 3   6   3 36 3   7   3 39 

1, 12 2   7   2 33 3   7   3 39 3   8   3 42 3   8   3 42 

10, 12 3   7   3 39 3   7   3 39 3   8   3 42 3   9   3 45 
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