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Abstract. This paper presents the interrogation of low velocity impact and compression 

after impact test results on a woven fibre composite having a fire retardant, syntactic core, 

two phase epoxy matrix. The results of the study were to be utilized in a decision making 

process regarding the appropriateness of the material usage in question for a certain 

aerospace application. The epoxy matrix of the material system had dispersed black-

pigmented particles with flame-retarding properties. Impact tests were performed at five 

impact energy levels. Two different laminate layup configurations were tested. Visual and 

C-Scan inspection were conducted, in order to observe the extent of the damage in the 

composite material.  Compression tests were performed to study the residual strength after 

impact. Analytical formulation correlations with the test results presented opportunities for 

quantifying the interfacial fracture toughness resistance. Micro-graphs of the specimen’s 

cross section were also produced in an effort to observe the fractured sections and 

characterise the various fracture mechanisms involved. The results exploitation in terms of 

design decision making are presented. 
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1. Introduction 

Aerospace structural development had always been driven by new materials 

that are being developed for performance and function. The material 

characterization presented in this article was motivated by the consideration of 

applying a special woven fibre composite material system to a conceptual aircraft 

vehicle, due to its peculiar fire retardant matrix characteristics. The composite 

under investigation was to be utilized in a location, where its fire retardant 

properties presented an opportunity for fulfilling the airworthiness bottle-neck 

design specifications. Apart from the fire self-extinguishing character that had to be 

demonstrated for the certification, strength, stiffness and damage tolerance 

requirements of the material had to be met, therefore assessed. The response of this 

new material system, due to its peculiar syntactic core matrix, to low velocity 

impact and compression after impact residual strength was the subject of the below 

presented investigation. Following, in the literature review section, a short 

summary of important research findings that are relevant to our investigation are 

presented. The intention is to draw the boundaries of the technological domain of 

our work. In section three our research input is exhibited and in section four we 

presented our contribution which lies in the proposed method of manipulating the 

results that helped with our design decision making process. 

 

2. Literature review 

Woven carbon fibre reinforced plastics (CFRP) have a better drape ability 

and are able to be morphed into complex double curvature shapes more effectively 

than conventional aerospace unidirectional (UD) material systems [1]. Although 

overall laminate stiffness and strength are somewhat lower for woven comparing to 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

UD laminates [2], the former offer greater flexibility for producing highly complex shapes 

and present opportunities for lowering the manufacturing cost [1]. The material fabric 

under investigation is shown in Fig.1a while the micro-graph in Fig.1b, depicts a section 

through the cured laminate. The mechanical properties of the material as provided by the 

manufacturer [3, 4] were inferior in terms of lamina strength and stiffness (0o tensile 

strength approximately at 292 MPa, 0o tensile stiffness approximately at 38 GPa) as 

opposed to the more widely used aerospace woven materials [2]. The design decision 

favoured this material system on the basis of its fire retarding and flame self-extinguishing 

properties. The inherent inferiority of the material system in terms of laminate strength and 

stiffness was addressed and overcame in the design process by employing slightly thicker 

laminated structural components.  

The airworthiness design specifications for this vehicle were to follow similar 

guidelines to [5]. Under those specifications, structural strength and stiffness requirements 

were met. Damage tolerance had to be demonstrated as well; therefore within the current 

study the response to low velocity impact loading and compression after impact (CAI) 

strength of representative test articles of the structural parts were investigated. The major 

concern during the investigation was the response of the two phase pigmented epoxy 

matrix material and the synergy of it with the woven carbon fibre weave in order to 

provide with an acceptable resistance level to  impact loading and with adequate strength 

under compression had an impact event occurred.  

 

On the impact behaviour of unidirectional versus woven CFRP materials 

The impact damage imprint of low velocity impact onto woven CFRP laminates via 

the various damage mechanisms employed to absorb the impact and the effect of these 
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damages upon the structural life of the material [6-8], produce a more favourable 

result than the one caused upon similar fibre and matrix UD material systems [9-

12].  

Low velocity impact damage and post-impact strength in composites have 

been investigated extensively during the last 40 years, especially for the aerospace 

grade carbon fibre epoxy composites [13-17]. The majority of the experimental 

research for the predictive capability of resistance to impact damage, damage 

extends and residual strength after impact was mainly focused and formulated 

around UD laminate composite materials [18-21]. For the unidirectional composites 

the damage phenomena and mechanism are well understood and models based on 

the strength degradation and fracture mechanics have been developed for predicting 

the damage initiation and propagation. 

Analytical prediction of impact damage and post impact performance of 

woven composite laminated structures is a more difficult task to perform than for 

UD materials. Fracture mechanisms and failure sequences are documented from 

observations [6-8] but parametric analytic formulations for predicting the impact 

performance have not attained yet the maturity level of the unidirectional ones. 

Impact performance indicators for the laminates tested herein will be presented in 

the format of experimental observations. Current research effort in terms of 

prediction is mainly on the improvement of the numerical model efficiency and 

accuracy in order to develop computer based tools for material selection in 

structural design. Up-to-date numerical computations consolidate the composite 

material mechanical and failure properties of either a UD or a woven layer into the 

properties of a three dimensional finite element generating a mesoscale 

representation of the laminate. The computational capacity needed to capture the 
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microstructural woven pattern and the assorted individual damage mechanisms during an 

explicit numerical event is not widely available as of yet.   

 

On the matrix material and inter-laminar interface importance 

It was anticipated early during the study that the fire-retardant particles dispersed 

into the matrix would affect the laminate impact performance. Impact and post impact 

phenomena are dominated by the inter-laminar fracture toughness properties of the matrix 

material [22]. Many authors have addressed the issue of assessing and even enhancing the 

fracture toughness response to impact loading and the subsequent resistance to CAI. For 

example by using different matrix thermosetting or thermoplastic materials [23] or by 

applying veils which are other layered materials within the laminates [24, 25] or even by 

applying metallic materials in the form of titanium pins in the transverse direction [26]. 

The major concern in our study was the fracture toughness properties of the two phase 

epoxy material matrix with the interspersed pigments. 

 

On the fracture toughness of woven CFRP materials 

Amongst the many material properties and loading parameters influencing the 

impact damage response of a CFRP laminate, Mode-II fracture toughness (GIIC) plays a 

fundamental role especially in the process of delamination progression under Mode-II 

inter-laminar shear. The other important material parameter that influences mostly the CAI 

strength is Mode-I fracture toughness (GIC) since the delamination progression within 

layers under compression resembles a crack opening Mode-I fracture process.  

It is recognized that the fracture toughness values required for the engineering 

investigation of delamination propagation in CFRP laminated structures, although matrix 

dominated [22], they depend on number of other factors such as the type of fibres, fibre 
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volume fraction, manufacturing process, interphase regions between the matrix and the 

fibre and many more. This being the reason why fracture toughness values are interrogated 

by testing composite layered specimen and not by using methods that test purely matrix 

materials. The engineering/scientific community has been successful so far in generating 

reliable testing procedures to quantify inter-laminar fracture toughness for unidirectional 

composites under Mode-I [27] and Mode-II [28]. These methods, when employed within 

the limitations specified, are capable of producing repeatable results with a small scatter. 

Unfortunately, when woven fabrics are tested to the above specifications, due to the 

peculiarity provided by the woven fibre architecture to the split surface morphology, run-

arrest type of propagation is experienced most of the times rather than slow stable crack 

propagation [27, 28]. Run-arrest type of crack propagation, induce dynamic effects and the 

test standards do not address these implications [27, 28]. Other peculiarities that could be 

experienced while testing woven CFRP materials are the branching of the delamination 

away from the mid-plane through matrix cracks in off axis plies and the varying toughness 

measurements due to encountering richer or poorer pocket areas of resin. All these 

implications generate a much greater scatter in the fracture toughness test results [29-31].  

The current standards of fracture toughness testing methods in Mode-I and Mode-II 

crack opening, assume unidirectional test specimens, thus test results characterize the 

fracture toughness in the 0/0 inter-laminar interface. Although the above mentioned testing 

procedures have been applied to other type of specimens with various interface 

arrangements [31], it can be argued that reliable and widely acceptable testing methods are 

not available as of today for measuring the toughness values of for example for the 0/45 

inter-laminar interface fracture toughness [29]. 

The final complication of this study was that the woven CFRP material system 

contained pigments of another substance interspersed within the epoxy matrix. The matrix 
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was practically a two phase substance and delamination was expected wander about in 

between the matrix phase where cohesive type of failure within the epoxy would be mixed 

with an adhesive type of failure between the matrix and the pigments.  

 

Summarizing 

• Woven CFRP laminates do not exhibit the strength and the stiffness values of UD 

laminates of a similar fibre-matrix system but they are more damage tolerant in terms of 

impact loading damage imprint which results in a smaller decrease in the residual 

compression after impact strength.   

• The computational capacity needed to solve finite element explicit numerical 

simulations to capture the micro-scale failure mechanisms during impact and post 

impact events is enormous. Numerical predictive solutions of that kind are not available 

in the public domain yet. 

• Amongst the important material properties influencing the impact and CAI processes 

are the Mode-I and Mode-II fracture toughness values. These are highly depended from 

the matrix material. Specific testing procedures for measuring those values for woven 

fabrics and at various angle ply directions do not exist. Tests for other than 

unidirectional laminates along the major fibre direction are conducted by slightly 

violating the region of validated applicability of the existing unidirectional testing 

methods. During the study an approximate value of Mode-II fracture toughness of the 

material system was proposed and derived indirectly by using the analytic formulation 

in [18]. 

• The main objective of this research was to present the impact damage characteristics 

and the compression after impact strength of a conceptually applied, fire retardant 

woven composite laminate. 
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3. Experimental methods 

3.1 Material 

VTS243FR/CF3500 [3, 4] is a partially impregnated pre-preg woven 

composite material manufactured by Cytec. The material system is made of two 

plies. VTS243FR is a black-pigmented, flame-retarding, epoxy syntactic-core ply. 

CF3500 is a high strength (12k) woven carbon fibre ply, with a fabric density of 

380 g/m2, twilled in 2 x 2 weave style, Fig.1a. The two plies were expected to 

infuse into one another during the curing process. The system is capable of initial 

cure temperatures between 65°C and 150°C. Following post-cure, a glass transition 

temperature of at least 160°C can be achieved [32]. VTS243FR is self-extinguish 

when tested to ISO3795/FMVS302 [3].  

Mechanical properties of cured laminate are lower than that of similar 

woven composites used in the aerospace industry (0o tensile strength approximately 

at 292 MPa, 0o tensile stiffness approximately at 38 GPa). Cured ply thickness is 

about 0.79mm and the density is 1.74kg/m3, [3, 4]. 

 

3.2 Specimen 

One of the objectives of this study was to investigate the effect of different 

layup on the damage resistance. Two stacking sequences were fabricated, i.e. a 

quasi-isotropic layup [+/-, 0/90, -/+, 90/0]s denoted as configuration C1, and [+/-, 

0/90, 90/0, 0/90]s, configuration C2. Five specimens for each configuration were 

produced, 10 specimens overall for impact and CAI testing. The nominal thickness 

of cured laminate was 6.5 mm. 
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The material was supplied in a roll form and was stored at -18°C. It was important 

to thaw the material to room temperature before kitting process takes place for 

condensation reasons. Thawing process took place overnight at room temperature before 

the role’s packaging bag was opened.  

The semi pre-preg was cut into square 340 x 340 mm pieces required for the 

fabrication of the test specimens. The panels were cured under constant pressure of 627 

kPa at elevated temperature of 100 °C for 135 minutes. The temperature increase ramp rate 

was 0.5 °C per minute and the cooling down rate 1.5 °C per minute. The panels were 

subsequently post-cured in a pre-heated autoclave for 1 hour at 180 °C to fully develop the 

material’s glass transition temperature. The ramp rate of post curing temperature increase 

was 0.3 °C per minute and the cooling down rate was 3 °C per minute until 60 °C. After 

curing, specimens of 100 x 150 mm were cut out of each panel. This dimension is the 

ASTM standard for impact and compression after impact tests [33, 34]. 

 

3.3 Test facilities and procedures  

Low velocity impact 

The impact test procedure adhered to the guidelines [33]. Prior to impact testing, 

visual and ultrasonic C-Scan observations were made to ensure that no physical damages 

or delamination were present. Impact test was performed by using the Rosand 

Instrumented Falling Weight Impact Tester. The striker used for the impact test was blunt 

with a hemispherical tip. The total mass of the drop weight was 2.2 kg for all the tests.  

Time histories of the impact force, velocity, acceleration, deflection and absorbed energy 

were measured and recorded by a computer controlled processor. Five specimens were 

tested from each configuration at the impact energy levels of 8, 15, 25, 35 and 50 J. 
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Impacted specimens were inspected by ultrasound C-scanning to measure the 

delamination shape is according to ASTM D7136 [33]. 

 

Compression-after-impact (CAI) 

The compression test set up was originally designed by Boeing and was 

later adopted by ASTM D7137 [34]. The machine used was an Avery 600 kN. 

Compression loading was induced at a constant head displacement rate of 0.1 

mm/min. The load was applied onto the specimens until ultimate failure. The 

machine was stopped immediately after the specimen failure to allow for the 

retention of the distortion just before / at failure. 

 

4. Experimental results and discussion 

4.1 Impact test 

The main focus of this study was to quantify the damage tolerance extends 

of the fire retardant CFRP material. The synergy of the woven fabric and the matrix 

was of great importance to the study. Judging from the material mechanical 

properties published by the manufacturer [3, 4], slightly thicker specimens were 

designed to counterbalance the slightly inferior mechanical properties benchmarked 

against other material system candidates. Some of the thickness effects for a 

different material system were captured in [35]. Amongst the results discussed in 

[35], a higher peak force is expected for thicker laminates, smaller transverse 

displacement, increased damage tolerance and shear failure under CAI.  

Figure 2 presents images of ultrasonically detected delamination damage for 

the five C1 and five C2 configuration specimens along the various impact energy 

levels. The maximum damage diameter and area were defined according to [33]. 
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Configuration C1 had bigger damage areas than those of C2, although the maximum 

diameter was similar at each energy level. The results were used to construct Fig.5. It was 

evident that bigger damage was incurred into the quasi-isotropic layup C1 for the same 

amount of impact energy.  

Impact force versus time histories is shown in Fig.3. Figure 3a depicts the 

comparison of the two configurations at four impact energies, indicating that C1 and C2 

had virtually the same dynamic response at each energy level. Since the response obtained 

was very similar, only C1 configuration is further presented in Fig. 3b that depicts all 

impact energy levels tested in one plot. The quasi-isotropic C1 configuration is stiffer than 

C2 in terms of transverse deflection. This result was also evident from the stepper initial 

rise of impact force response versus time shown in Fig.3a. Similarly in Fig.4a, the 

maximum impact force attained from the C1 configuration is somewhat larger at least for 

the impact levels of 8 and 15 J. Thus the stiffer in terms of transversal deflection quasi-

isotropic layup, resist the impact loading more and a bigger damage was inflicted onto it. 

Figure 3 also shows that generally the two layup configurations responded similarly apart 

from the 15 J impact case. At that impact energy level, configuration C2 exhibited a 

distinctly more compliant character, also captured in Fig.4a.  

An interesting parameter to be investigated during the impact events is the first load 

drop in the impact force versus time graphs [22]. This first peak point in the graph 

indicates damage initiation. In our study, even with filtered impact force versus time 

results a clear picture providing with the first load drop was not able to be produced. 

Instead, following the suggestions in [19], the impact force versus deflection diagram was 

further processed by removing the high frequency components from it. The result of the 

filtered image is shown in Fig.4b. The change in the tangency indicated the change in the 

laminate stiffness along the transverse direction, which in turn implied the initiation of 
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damage. The first load drop was found to be approximately at 4.2 – 4.5 kN for both 

layup configurations. This load is often called as the threshold impact force for 

delamination onset or the critical impact force and is denoted as Pcrit [20].  

As mentioned earlier, Mode-II fracture toughness (GIIC) is an important 

parameter, amongst many others, for assessing the resistance to impact damage 

especially the damage initiation. With woven CFRP materials the derivation of GIIC 

values from tests is a rather tedious task if not impossible to perform. For UD 

materials, there is a widely accepted analytical formulation which relates the 

critical threshold values of Pcr to GIIC [18] and is shown below (eq.1): 

 

)1(9

GEt8
2

IIC
32

ν−
π

=crP         (1) 

 

In the above equation, E and v are the equivalent Young’s modulus and 

Poisson’s ratio of the quasi-isotropic laminate and t is the thickness of the laminate. 

Reference [22] suggested for equation (1) to be inversely applied in order to 

estimate GIIC from the values of Pcr. It is also suggested that acceptable results were 

obtained for GIIC values in the case of UD materials related to actual test results. 

The value of Pcr which depends purely on the matrix material system [22] was 

observed in Figure 4b to be in the vicinity of 4.2 kN. Following a similar approach 

and disregarding the rest of the complications of the woven architecture along with 

the two phase matrix system, an equivalent bulk mode II fracture toughness GIIC 

was calculated in the range of 300 J/m2. That result apparently came close to the 

values presented in [22] for other UD material systems tested which had similar Pcr 

critical threshold values. It needs to be reminded that this bulk fracture toughness 
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quantification, takes into account all the microstructural behaviour that promote or retard 

mode fracture, meaning the effect of the pigments and the effect of the woven surface 

architecture. In [29], it is shown that higher GIIC values are expected for a woven CFRP 

material system as opposed to a UD of the same material properties for the fibres and 

matrix. Thus for the material in our study the Mode -II inter-laminar fracture toughness 

GIIC, resembled more the values exhibited by UD epoxy material systems. The decrease in 

the expected GIIC can be partly attributed to the two phase epoxy matrix. 

Since the first load drop occurred at approximately 4.2 kN, damage in the form of 

delamination exist for all laminates even at the impact level of 8 J. For the higher impact 

levels as shown in Fig.4a, the response is more or less the same and most probably other 

damage modes are present besides delamination. Similarly for the 8 J experiments both 

configurations responded similarly. The only graph which presented some difference was 

the one at 15 J level. That can be translated as an indication of triggering the shifting from 

certain damage modes to include others as well, possibly fibre breakage that occurred for 

configuration C2 but not for C1.  

Figure 5 shows the delamination area versus impact energy. Under the same impact 

energy, the C2 configuration had smaller damage area than that of C1, especially at the 

higher impact energies of 35-50 J.  

Delamination area versus peak impact force is shown in Fig.6. The two 

configurations had virtually the same response, except at the higher impact force range of 

10-12 kN, in which C2 had approximately 20% smaller damage area. 

 

4.2 Microscopic observation 

After the impact events, microscopic pictures were taken to inspect the cross-

section of impact damaged specimens. Microscopic samples of 10 x 30 mm size were cut 
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off around the impact zone and potted into resin pool of 35 mm diameter and 

allowed to be hardened and self-cured overnight. Polishing was performed initially 

by a manual grinder machine, and followed by an automatic grinder. Two of the 

most representative pictures are shown in Fig.8.  

Microscopic images revealed that the failure mechanism for impact energy 

levels below 15 J is mainly due to the internal delamination and matrix cracking; an 

example of low impact energy is illustrated by in Fig.8a for the 8 J impact. When 

the impact energy was beyond 15 J, more damage modes were observed which 

confirms the transition region captured in Fig.4a, at least for configuration C2. An 

example the highest impact energy of 50 J is shown in Fig. 8b showing 

delamination, matrix cracking, and also significant portion of fibre breakage. 

 

4.3 Compression-after-impact  

Figure 7 shows the CAI strength vs. impact energy for the two lay-up 

configurations. For impacts below 15 J the C1 configuration had lower CAI 

strength because it had suffered larger impact damage (Fig.5). However, beyond 

the 20-25 J mark, the CAI strength values of the two configurations were virtually 

the same despite the C1 specimens having had much larger impact damage area at 

higher impact energies of 35 J and 50 J (Fig. 5). This sign indicated the change of 

damage/failure mode under the compressive load for higher impact energy 

discussed in the previous section in the light of microscopic inspections. The 

strength of the C2 configuration was expected to be greater along the 0/90 plys 

since more fibres are aligned along these directions. Performing a rough 10% rule 

Hart-Smith strength estimation, C2 configuration could potentially exhibit 1.33 

times higher strength than configuration C1 under tensile loading.  Therefore effect 
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on the decrease in the CAI strength if assumed normalized to the actual un-notched 

laminate strength is more severe for the C2 configuration. 

The impactor head punctured barely visible impact type of damage (BVID) on the 

laminates at energy levels of 8 and 15 J. Above15 J, the damage was fairly visible (VID). 

  Figure 9 shows the cross sections of failed specimens after CAI covering the full 

range of impact energies. Following observations were made:  

• Since the 8 J impact caused the smallest damage area, specimens (both C1 and C2) 

failed at much higher compressive load in the CAI test comparing to the ones impacted at 

higher energy levels. The photos of the 8 J impact specimens depicted a clear outer ply 

mode I delamination and fibre crushing in the main core of the specimen due to the high 

compressive load.  

• Configuration C2 exhibited the outer layer delamination at all impact energy levels, 

which indicated the weaker interface in terms of mode I fracture toughness for the inter-

laminar region of adjacent plys having a 45o shift in the orientation  

• When the impact energy was greater than 8 J, fractured patterns in terms of cracked 

matrix under shear and broken fibres in a “pine tree” pattern were formed underneath the 

impactor head. These locations marked the CAI test failure initiation points. 

Overall, The laminate CAI strength measured is smaller than most of the 

commonly used fibre CFRP materials employed currently in the airframe industry [38], 

where a rather general and rough estimate for impacted laminates with Visible Impact 

Damage (VID) can average from 200 to 250 MPa in terms of CAI strength levels. 

 

4.4 Design decision 

The outcome of the study indicates that C1 configuration was preferred over 

configuration C2. In general the two layups performed similarly at least above a certain 
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impact energy level. Although the damage imprint was larger for C1, the ratio of 

the decrease in the residual CAI strength to the original un-notched strength was 

better. Also the quasi-isotropic arrangement can carry variable direction in-plane 

loading more efficiently. The reasons for the minor difference in impact and CAI 

response can be attributed partly to fracture toughness properties and partly to the 

residual thermal stresses arising from the mismatch of the Coefficient of Thermal 

Expansion (CTE). The more directional configuration C2 had lower curing induced 

residual stress in the matrix due to less mismatch of the CTE. The C1 quasi 

isotropic configuration had more inter-laminar regions interfacing +45/-45 to 0/90 

layers. On the other hand, for the inter-laminar regions interfacing layers of the 

same orientation, fibre tows from one layer sit among the bundles of the adjacent 

layer, effect which greatly enhances the resistance in shear thus affects the mode II 

fracture toughness.  

 

5. Conclusions 

A new material system has been assessed on its resistance to low velocity 

impact and in terms of residual strength in post-impact compression. Based on the 

impact damage size and CAI strength, the test results indicated a design application 

window for the woven material system for the two selected layup configurations. 

Two different layup configurations of a woven carbon fibre composite with a fire 

retardant epoxy matrix were impacted at five energy levels. Impact damage size 

was measured by ultrasonic C-scan and the subsequent CAI strength was measured 

by compression load test until specimen failure.  

The material system was more complex in microstructure as opposed to a 

unidirectional one, taking into account the pigmented epoxy matrix and the woven 
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interlaminar surface architecture. Nevertheless, by the use of the manipulated force-

displacement diagrams along with the critical load formula originally conceived for the 

unidirectional materials, a plausible quantification of “equivalent bulk Mode II fracture 

toughness” can be assumed. 

The results obtained indicate the usage limitations for this material system, 

specifically for the two layup configurations tested. The material may be used in certain 

applications where a major driver for materials selection for the structural location under 

consideration would be exposure to flame. 

Relating the CAI strength measured by testing to the most commonly used 

materials in the airframe industry [38], the CFRP material system presented here in would 

ideally be best utilized in non-critical, non-primarily loaded structural components, whose 

probable failure during service will not result in the loss of the aircraft. 
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Figure captions  

 

Figure1: a) The 2 x 2 twill weaving pattern of CF3500 woven carbon fibre ply. b) 

Microscopic image of cross section of cured VTS243FR/CF3500 composite; image scale 

shown on bottom right: 320 mm 

 

Figure 2: Images of ultrasound detected delamination area for the 10 impacted specimens 

of two configurations (C1, C2) at various impact energy levels 

 

Figure 3: a) Impact force versus time histories for the two layup configurations at four 

impact energy levels: 8 J, 15 J, 35 J and 50 J. b) Impact force versus time for configuration 

C1 at various impact levels 

 

Figure 4: a) Impact force versus impactor displacement for the two layup configurations at 

four impact energy levels. b) Smoothened impact force versus impactor displacement for 

identifying the critical impact force 

 

Figure 5: Delamination area vs. impact energy for all specimens 

 

Figure 6: Delamination area vs. maximum impact force for all specimens  

 

Figure 7: CAI strength vs. impact energy for two layup configurations  

 

Figure 8: Microscopic photo of the C1 specimen: a) 8 J impact is mainly delamination and 

matrix cracking. Damage location shown is near the specimen mid thickness. b) 50 J 
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impact revealing multiple damage modes of delamination, matrix cracking, and fibre 

fracture. Location shown is near the back face of the specimen. Note: grey background is 

the potting resin 

 

Figure 9: Photos of failed specimens after the CAI tests at various impact energy levels. 

“Pine tree” shaped fracture pattern clearly visible 
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