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Homopolar osillating-dis dynamo driven by parametri resonaneJ	anis PriedeApplied Mathematis Researh Centre, Coventry University, Coventry, CV1 5FB, United KingdomRaúl Avalos-ZúñigaUniversidad Autónoma Metropolitana, D.F., MéxioFrank PlunianUniversité Joseph Fourier, CNRS, LGIT, Grenoble, FraneWe use a simple model of Bullard-type dis dynamo, in whih the dis rotation rate is subjetto harmoni osillations, to analyze the generation of magneti �eld by the parametri resonanemehanism. The problem is governed by a damped Mathieu equation. The Floquet exponents, whihde�ne the magneti �eld growth rates, are alulated depending on the amplitude and frequeny ofthe osillations. Firstly, we show that the dynamo an be exited at signi�antly subritial disrotation rates when the latter is subjet to harmoni osillations with a ertain frequeny. Seondly,at superritial mean rotation rates, the dynamo an also be suppressed but only in narrow frequenybands and at su�iently large osillation amplitudes.In dynamo experiments, a high driving power is nees-sary to ahieve the self-exitation of the magneti �eld.The ensuing liquid metal �ow is usually strongly turbu-lent. In both Riga and Karlsruhe dynamo experiments[1, 2℄, the turbulent �utuations were partly inhibited bythe internal walls, whereas in the Cadarahe experiment[3℄, the absene of suh walls resulted in large-sale �ow�utuations [4℄. The e�et of �ow �utuations on thedynamo threshold has been addressed in several reentstudies [5, 6, 7, 8, 9, 10, 11, 12, 13, 14℄. Solving the kine-mati dynamo problem for a given non-stationary �owusually governed by the Navier-Stokes equations showsthat turbulene generally has an adverse e�et on thedynamo exitation, unless the �utuations are strongenough to drive the dynamo by themselves without anymean �ow. In the latter ase, we speak of a �utua-tion dynamo [15, 16℄, whose experimental implementa-tion seems hardly feasible beause of the high exitationthreshold. However the possibility that �utuations ex-ite the magneti �eld by the parametri resonane meh-anism [17℄ an not be exluded. Parametri resonanehas been proposed in the somewhat di�erent ontext ofspiral galaxies as promoter of bisymmetri magneti �eldstruture [18, 19, 20, 21℄.In this paper, we use a simple model of the Bullard-type dis dynamo [22℄ to show that the magneti �eldan indeed be exited by the parametri resonane meh-anism, even when relatively small harmoni osillationsare added to signi�antly subritial dis rotation rates.Consider a Bullard-type dis dynamo [22℄ whih on-sists of a solid onduting dis rotating with a generallytime-dependent angular veloity z(t) about its axis, anda wire twisted around the axle and onneted by slidingontats to the rim of the dis and the axle as shown inFig. 1. The dis is assumed to be segmented so thatazimuthal urrent an �ow only at its rim. This orre-sponds to the modi�ation of the Bullard dis dynamosuggested by Mo�att in order to eliminate exponential

Figure 1: Sketh of a homopolar dis dynamo.growth of the magneti �eld in the limit of a perfetlyonduting dis [23℄. The system is desribed by the fol-lowing set of dimensionless equations (for details see Ref.[23℄)
ẋ = r(y − x),
ẏ = xz + mx − (m + 1)y,
ż = g [1 + x(mx − (m + 1)y)] − kz,

(1)where x and y are magneti �uxes through the loop madeby the wire and the rim of dis, respetively; z is thedimensionless angular veloity of the dis; r aounts forthe resistane of the dis relative to that of the loop, and
m haraterizes the relative mutual indutane of the disand the loop; the dot stands for the time-derivative d/dt.The dis is driven by a generally time-dependent torque
g, and braked by a visous-type frition haraterizedby the oe�ient k whih is neessary for the struturalstability of the system [24℄. Heneforth, we assume thefrition to be strong with respet to the inertia of the
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(b)Figure 2: Growth rate γ versus the reiproal frequeny (a) and the ritial amplitude δc versus the frequeny (b) for themarginal mean rotation rate at α0 = 0.dis aounted for by ż in Eq. (1), whih, thus, resultsin z = z0 [1 + x(mx − (m + 1)y)] , where z0 = g/k. Theremaining two 1st-order ODEs in (1) an be ombinedinto a single 2nd-order Du�ng-type equation [7℄ with anon-linear frition
ẍ + (1 + βx2)ẋ − αx + λx3 = 0, (2)where x and t are resaled by (m + 1 + r) and (m +

1 + r)−1, respetively, and α = r(z0 − 1)/(m + 1 + r)2,
β = z0(m + 1)(m + 1 + r), and λ = rz0. Further, wefous on the evolution of small initial perturbations ofthe magneti �eld haraterized by x ≪ 1, for whih Eq.(2) an linearized by setting β = λ = 0. Then the onlyremaining parameter α depends diretly on the deviationof the dis rotation rate from its ritial value α = 0.For α > 0, a small initial magneti �eld starts to growexponentially provided that the dis rotates steadily [22℄.In this study, we are interested in how the generation ofthe magneti �eld is a�eted by the unsteadiness of thedis rotation

α = α0 + δ cos(ωt), (3)whih besides the mean part α0 ontains also an osil-latory omponent with the amplitude δ and the irularfrequeny ω. Then the linearized Eq. (2) redues to adamped Mathieu equation
ẍ + ẋ − (α0 + δ cos(ωt))x = 0.Using the substitution x(t) = exp(−t/2)χ(ωt/2), theequation above an be transformed into the anonialMathieu equation

χ̈ + [a − 2q cos(2τ)] χ = 0, (4)where a = −(1 + 4α0)/ω2, q = 2δ/ω2 and τ = ωt/2.Aording to Floquet theory, a partiular solution to Eq.(4) an be written as χ(τ) = exp(iντ)f(τ), where f(τ)is a π-periodi funtion and ν is the Floquet exponent�both dependent on the parameters a and q. Aording

to this solution, the amplitude of the magneti �eld x(t)evolves exponentially in time with the maximum growthrate γ = (|ℑ [ων]| − 1) /2, where the modulus aountsfor the time-re�etion symmetry of Eq. (4) [26℄. Thus,the amplitude of the magneti �eld grows exponentiallywhen γ > 0, whilst the marginal state is de�ned by γ = 0.We use the Maple omputer algebra software to alulateFloquet exponent whih de�nes the growth rate γ de-pending on the amplitude δ and the frequeny ω. Next,we �nd the ritial osillation amplitude δc as the fun-tion of frequeny ω for �xed values of the mean rotation
α0 by solving numerially equation |ℑ [ων]| = 1 orre-sponding to γ = 0. Eventually, we determine the mini-mal osillation amplitude δmin and the orresponding fre-queny at whih an exponentially growing magneti �eld�rst appears. The orresponding numerial results arepresented and disussed below.We start with a marginal mean dis rotation rate
α0 = 0, whih orresponds to the dynamo exitationthreshold when the dis rotates steadily, i.e., γ = 0 when
δ = 0. As seen in Fig. 2(a), the dis osillations aboutthe ritial rotation rate with a su�iently small ampli-tude (δ = 0.25) brings the growth rate to a onstantlevel below zero as the frequeny is redued (reipro-al frequeny inreased). As the osillation amplitudeinreases, �rst, the growth rate splits into separate fre-queny bands whose width dereases as ∼ 1/ω for ω → 0.In order to show this inreasingly �ne-sale struture ofthe growth rate as ω → 0, we use the reiproal frequenywhih is proportional to the period of dis osillations.Seondly, the growth starts to inrease with the osilla-tion amplitude and approahes zero again at δ ≈ 0.75 fora ertain ritial frequeny. Further inrease in the osil-lation amplitude to δ = 1 results in the appearane of sev-eral frequeny bands with positive growth rates (γ > 0)whih are shown as �lled regions in Fig. 2(a). The riti-al amplitude δc at whih the growth rate turns zero, isshown for α0 = 0 in 2(b) against the osillation frequeny.Marginal state with γ = 0 orresponds to the boundaries
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(b)Figure 3: Growth rate γ versus the reiproal frequeny (a) and the ritial amplitude δc versus the frequeny for a stronglysubritial mean rotation rate at α0 = −10.of the separate frequeny bands shown by di�erent ol-ors. Growth rate is positive orresponding to the dynamoation inside the �lled frequeny bands whih approaheah other losely as the osillation amplitude inreases.Note that only a ertain number of �rst instability bandsare shown in Fig. 2(b). There is an in�nite sequene ofsimilar instability bands of dereasing width as ω → 0.Thus, the range of unstable frequenies, whih is inter-vened by in�nitely many, muh narrower stability bands,extends down to ω = 0, whereas it is bounded from aboveby the �rst instability band. The ritial osillation am-plitude, whih is the lowest for the �rst instability band,rises to an asymptoti value depending on α as ω → 0.The minimal value of the ritial osillation amplitudeand the orresponding frequeny at whih it ours areplotted in Fig. 4 versus subritial (negative) values of
α.The redution of dis rotation rate to a moderatelysubritial value of α0 = −1, results in the inrease ofthe minimal osillation amplitude neessary for the dy-namo ation (γ > 0) up to δc ≈ 2. It means that themaximum dis rotation rate (3) during the osillationyle temporally exeeds the ritial value α = 0 for asteady rotation. This, however, hanges when the disrotation rate is redued further down to α0 = −10, forwhih the growth rates and the orresponding genera-tion bands are shown in Fig. 3. In this ase, a positivegrowth rate band is seen in Fig. 3(a) already at δc = 8.This implies that α < 0 during the whole yle of disosillation. Thus, the dynamo appears at a maximumdis rotation rate below its ritial value for a steady ro-tation. There is a range of frequenies seen Fig. 3(b), atwhih a subritial growth of the magneti �eld is possi-ble with the the osillation amplitude δc < −α0 = 10. Asseen in Fig. 4, suh a subritial exitation of magneti�eld appears already at α0 . −4, where the minimal re-quired osillation amplitude δmin beomes smaller than
−αc, whih is shown by the dashed line. Note that fora strongly subritial α0 and steadily rotating dis, an

initial perturbation of the magneti �eld osillates withthe period O(1/
√−α0) whih is muh shorter than theharateristi damping time O(1). Thus, for suh α0 thedamping of magneti �eld osillations beomes relativelyslow that enables parametri exitation of the magneti�eld by a relatively weak modulation of the dis rotationrate.For α0 < −0.25, the bands of unstable frequenies areassoiated with the subharmonis of Mathieu equationde�ned by a1/2 = 1, 2, 3, . . . in Eq. (4) [26℄. Thus, themost unstable band orresponds to the �rst subharmoniwith ω1 =

√−4α0 − 1 whih is seen in Fig. 4 to approx-imate ωc well for ω & 1. In addition, it is interesting tonote that the ritial frequeny, ωc, at whih δmin ours,is numerially very lose to δmin itself in the whole rangeof α0 < 0.For a superritial dis rotation rate with α0 = 1, thegrowth rate γ, whih is seen in Fig. 5(a) to be positivefor a steadily rotating dis (δ = 0), �rst redues as theosillation amplitude is inreased to δ = 2. Moreover, γ
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(b)Figure 5: Growth rate γ versus the reiproal frequeny (a) and the ritial modulation amplitude δc versus the frequeny fora slightly superritial mean rotation rate at α0 = 1. Filled urves orrespond to suppressed dynamo.is seen to beome negative within ertain, relatively nar-row frequeny bands. These negative growth rate bands
(γ < 0), where the dynamo is suppressed by the disosillations, are shown in Fig. 5(a) by �lled urves. Asseen in Fig. 5(b), the width of the �rst suppressed fre-queny band notieably inreases while the whole bandshifts towards the high-frequeny range, i.e., low reip-roal frequenies, as the osillation amplitude inreases.At the same time, the width of the subsequent frequenybands, where the dynamo is suppressed, remains very
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