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Transport processes for harmful species through concrete barriers made with 

mineral wastes. 

by 

Professor Peter A Claissea and Dr Esmaiel Ganjianb 

 

 

ABSTRACT 

 

Composite concrete barriers represent a good alternative to current landfill 

containment systems because they can be made using waste minerals and thus have a 

lower environmental and economic cost.  They are also more robust when in place.  

This paper presents results from laboratory testing and site trials and modelling of a 

concrete barrier system.  Laboratory trials to determine the effect of cracking on the 

composite barrier are also reported.  It is concluded that cracking will not cause 

failure.  The modelling of the transport processes provided a good prediction of the 

movement of some species in the site trials. 
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1. INTRODUCTION 

 

1.1 

When waste is deposited in landfill it is necessary to contain the leachate using a low 

permeability liner so that it may be treated before being discharged into the 

environment.  The novel barrier system which is described in this paper has been 

developed because current liner systems based on high density polyethylene 

membranes and bentonite enhanced sand  have a high economic and environmental 

cost and are easily damaged after installation.   

 

It is of note that, while current policy requires that deposition in landfill should be 

minimised, very significant quantities of waste are still being landfilled and this will 

still form an important part of the waste industry for several decades. 

 

The proposed composite barrier system has two layers of concrete with a layer of clay 

between them and is shown in figure 1.  The principal intended benefits are: 

 

• Low permeability combined with high cation exchange capacity to give 

improved containment. 

• Composite construction to overcome problems with cracking 

• Construction from waste materials which would otherwise go into landfills. 

• A relatively hard concrete surface to permit operation of vehicles and to 

prevent damage from large items of waste compacted onto it. 

 

This paper describes a programme in which transport properties of the barrier were 

measured in the laboratory and used to predict the performance of site trials.     Four 

elements were studied: Na, K, Ca and S.  These elements are not generally of concern 

in the environment but it was not possible to use toxic elements such as Hg because 

the work involved large quantities of leachate in field-scale trials. 

 

The key transport processes are discussed and the basis of the modelling is described.  

Results from laboratory and site trials are then presented and compared with the 

theoretical predictions.  The results from the initial period of the site trials have been 
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reported in a previous paper (1).  The results for the final 2 years of the trial and 

further laboratory testing including cracked samples are included in this paper. 

 

1.2 Research Significance 

The transport processes in concrete are key determinants of the durability of concrete 

structures. In particular the transport of chlorides in reinforced structures is the main 

cause of corrosion.  This paper describes the analysis of transport in a waste 

containment barrier but the same processes are equally relevant to durability 

calculations (2). 

 

1.3 Previous research 

During the 1980’s a very large research programme was carried out in the UK to 

develop designs for repositories for nuclear waste (3,4).  The design which was 

developed to the greatest extent was the repository for intermediate and low level 

waste.   This repository was required to have a predictable performance in a deep 

saturated geological environment over a timescale of up to a million years.  The design 

essentially involved placing the waste in concrete containers and placing these 

containers in an excavated underground cavern.  This cavern was then to be backfilled 

with a relatively soft cementitious grout (5). 

 

One of the achievements of the nuclear programme was to analyse and define the 

performance which was actually required of the concrete when used for this 

application.  This performance requirement is quite different from the requirements 

for concrete in normal construction and lead to the development of some very unusual 

concrete mixes.   

 

The barrier design uses conventional engineering materials but its method of 

operation is far from conventional for an engineering structure because it is essentially 

sacrificial (6).  The main function of the barrier is to condition the chemistry of the 

repository to high pH by dissolving alkalis in the groundwater.  The alkalis are free 

sodium, potassium and lime and subsequently the calcium silicate hydrate which 

forms the structure of the hardened cement.  At the high pH values the harmful 

species from the waste which are permeating through the barrier are adsorbed onto the 

cement matrix and immobilized.  Clay based liners were considered for the nuclear 
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repository but concrete was chosen as the best option for the UK.  The nuclear 

programme was stalled in the 1990’s by the refusal of planning permission for the test 

facility at Sellafield in Cumbria.   

 

2  TRANSPORT PROCESSES IN A COMPOSITE CONCRETE BARRIER 

 

2.1 Advection  

In this process the pressure of the leachate head causes water flow which carries 

dissolved ions through the barrier.  The rate of transport through the barrier will be 

determined by the coefficient of permeability k which has the units of m/s and is 

defined from equation 1 (7): 

 

sm
x

hhkV /)( 21 −=      [1] 

where V is the Darcy velocity of the fluid flowing through a thickness x (m) with 

pressure heads h1 and h2 (m) on each side. 

 

2.2 Diffusion  

In this process the dissolved ions move through the water at a rate determined by the 

concentration gradient.  The flow per second per unit cross sectional area of a porous 

solid (the Flux, F) is given by equation 2 (7).  

 

smkg
dx
dCDF l // 2ε=       [2] 

where ε is the porosity, D is the intrinsic diffusion coefficient and Cl is the ionic 

concentration in the pore fluid. 

 

2.3 Adsorption 

By far the most effective containment mechanism will be chemical containment.  

Many harmful species are immobilised by the chemistry of the barrier.  In the 

modelling this has been represented by a linear adsorption isotherm which is 

measured as a capacity factor for each element in the leachate in each layer of the 

barrier.  To describe these processes two different ionic concentrations must be 

defined: 
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Cl  kg/m3 is the concentration of ions per unit volume of liquid in the pores.  These ions 

will pass through the barrier under the influence of the physical transport processes.  

The concentration per unit volume of the solid will be  ε Cl where ε is the porosity. 

 

Cs kg/m3 is the total concentration (including adsorbed ions) per unit volume of the 

solid.  The ions which are adsorbed onto the solid will not move. The capacity factor is 

defined in equation 3 (8).   

 

l

s

C
C
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Note that we may calculate εαε
−=

−
==

Cl
ClCs

liquidinionConcentrat
solidinionConcentratk  [4] 

 

2.4 The Computer Model 

A computer model has been written to simulate the transport processes (1).  This 

model was used both to obtain transport properties from the laboratory results and to 

predict the results from the site trials.  In each application the calculations are 

identical.  The only differences are in the exact output given and the length of time 

that a run simulates.  The model is based on physical transport processes (diffusion 

and advection) with linear adsorption and assumes that the barrier layers are 

homogeneous and saturated at the start of the trial. 

The model works by repeated application of equations 1, 2 and 4 through time and 

space.  The adsorption processes are assumed to reach equilibrium within each time 

step. 

 

2.5 Cracking and other preferential flow paths. 

Cracking could be caused by drying or thermal effects or the imposed stresses on the 

barrier and would permit transport regardless of the properties of the concrete.   The 

solution to this is to use composite systems of concrete and clay and their performance 

has been demonstrated experimentally in the work described in this paper. 

 

A possible cause of premature chemical failure is the formation of impermeable 

"boulder-like" pieces with preferential flow paths for water around them. These 
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boulders could develop impermeable surface layers through the formation of 

carbonates, chloroaluminates or magnesium compounds in a similar manner to that 

observed at the surface of existing concrete structures in hostile environments. If this 

occurred the alkaline buffering and sorption capacity of the interior of the boulders 

would be lost. In this way the total buffering and sorption capacity of the repository 

would be substantially reduced. 

 

In the plans for nuclear waste it is envisaged that almost all of the cementitious material 

will be in the form of a soft grout (5). This material has been chosen to comply with 

various operational criteria including being readily pumpable into small spaces between 

the packages and having a low strength. These requirements have the effect that the 

formation of hard impermeable boulders will be strongly inhibited.  For non-nuclear 

waste the strength of the concrete was also kept as low as possible. 

 

2.6 Action of sulphates 

Penetrating sulphates react with hardened concrete and produce reaction 

products which have a volume which is greater than the available pore space (6,7).  

In normal structures this cause expansion of the matrix which continues until the 

critical stress is developed and cracks form.  It is of note, however, that in a deep 

nuclear waste emplacement the effect is harmless because there is no void space in 

the whole repository and all compressible wastes are supercompacted to save 

space.  The entire system is also subject to long-term compression from the 

surrounding rock and this will prevent any expansion and the resulting 

compressive stresses may even be beneficial.  For non-nuclear applications with 

typical waste emplacement at depths possibly greater than 20m the expansive 

stresses would be sufficient to cause cracking but the cracks would not open and 

would remain sealed with reaction product.  In the event of any dissolution of this 

product the multi-layer barrier design described below would make the cracks fill 

with clay which would be extruded from the inter-layer. 

 

3  THE NOVEL BARRIER DESIGN 

 
The design concept of the novel composite landfill liners is to emplace a number of 

different layers, each of which compliments and enhances the behaviour of the others 
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(1,11). Each of the layers has different properties, so that any defects such as cracks, 

are likely to form at different locations in different layers, thus limiting the creation of 

connected pathways through the barrier. In the design considered in this work, three 

layers are envisaged as illustrated in figure 1.  The clay-based hydraulic barrier is 

sandwiched between two layers of concrete.  The clay may be a natural material or, 

for some applications, the concept of an “artificial pourable clay” made from a setting 

mix based on waste gypsum or ash has been developed. 

 

In most current landfill designs the sided of the cells slope, typically at 30 degrees 

to the horizontal.  This enables conventional machines to work and compact the 

mineral layers.  In order to provide maximum deposition volume on restricted 

sites a number of vertically sided cells have been built, but the technology for this 

has been very expensive.  The proposed novel barrier system would be well 

suited to this application because the two concrete layers could be built as 

conventional concrete walls and then the pourable clay placed between them as 

the waste level rose to contain the resulting fluid pressures. 

 

4  LABORATORY TESTING 

 

4.1 Mix Designs 

The mix designs are shown in table 1.  The designs were chosen to make use of 

available industrial wastes and give an adequate strength (5 MPa) and permeability 

(10-9 m/s) (5,6).  Tests were carried out on samples taken from the mixes at the time 

of the pours for the site trials (12,13). 

 

4.2 Diffusion Tests 

 The diffusion cells were used to examine mass transport in reactive systems. An 

aggressive solution, simulating an acetogenic leachate typical of the early stages of 

landfill evolution (see table 2) was allowed to react with the sample, whilst 

concentration changes due both to diffusion and reactive transport were monitored in 

the cells. 

 

This diffusion test is intended to measure both the diffusion coefficient and capacity 

factor of species partitioned between a solution and a porous sample. The basis of the 
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test is a divided cell with the sample in the centre.  Artificial leachate is placed on one 

side and deionised water on the other.  Chemical analysis is used to track changes 

with time on each side (figure 2) (13).   

 

The capacity factors and diffusion coefficients were calculated from the diffusion 

tests on the mixes used for the site cell using an optimisation routine in the computer 

model. 

 

The modelled input – output and experimentally measured (real) input- output 

concentrations of the diffusion cell are plotted for two typical examples in figures 3 

and 4.  The results show that, for the limited data used, the model optimisation gave a 

very good agreement between the modelled values and the experimental values.   This 

was achieved by the progressive changing of the capacity factor and diffusion 

coefficient by the optimisation routine.  In figure 3 increasing either parameter 

increases the transport into the sample and will thus increase the rate of decline of the 

input concentration.  The output concentration will, however, change more if the 

diffusion is increased but the adsorption is decreased.  In figure 4 a high initial 

concentration in the sample (measured by pore fluid expression and input into the 

model) gives a rising concentration on both sides of the sample. 

 

The derived results for diffusion and adsorption are in Table 3. 

 

4.3 Permeability Tests 

The permeabilities of the specimens were determined using a continuous high-

pressure through flow experiment.  A solution was eluted through the materials at 

pressures up to 10 MPa depending on the compressive strength of the particular 

specimen (12).  The apparatus measured both the flow and pressure drop across the 

samples. Measurements were made after one sample volume of liquid had passed 

through the concrete or mortar specimens.  Assuming an average permeability of 10-9 

and a maximum leachate head of 1 m above the liner, this corresponds to 16 years of 

exposure in service.  The results are in Table 4. 
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4.4 Pore Fluid Concentrations 

Samples of pore fluid were expressed under pressure from specimens of the different 

mixes using a pore press similar to an OPI-CAD cell (17).  The concentrations were 

obtained from them using ICP analysis. 

 

4.5 Cracked Samples 

In addition to the basic transport measurements the most important design 

consideration was the effect of cracks.  These were investigated using the cell which 

was used for permeability measurements. 

 

Two sets of different tests were carried out to check the self-sealing property of the 

multi layer barriers. In the first set of test a 100 mm diameter mortar disc 33.4 mm 

thick was cracked by applying small loads using a compression test machine.  Fibre 

Reinforcement was used in the sample to prevent it from falling apart.  The cracks 

induced in the disc were clearly visible by naked eye and were measured between 0.5 

mm and 1.2mm wide (see figure 5). A 55 mm thick metal spacer ring packed with 

clay from the trial site was placed on the top of the cracked disc.  A two-layer test was 

then carried out on the high pressure cell apparatus using the synthetic leachate with 

Fluorescein dye. After running the high pressure cell for about an hour at 95 bar 

pressure, liquid started to leach out showing the fluorescein colour. When left for 

another 5 hours at 95 bar the leaching stopped.  About 0.8 sample volumes of liquid 

were collected during this period. No more leaching was observed when the cell was 

continuously run at the same pressure for another 24 hours (see figure 6).    

 

In the second set of tests hair line cracks (about 0.2 mm wide) were induced in mortar 

samples (similar to cell number 2 bottom layer mix) and clay (passing 5 mm mesh 

sieve) was packed inside the sample (see figure 7). A mortar disc (similar to the cell 

number 2 top layer mix) was then placed on top of the clay and cracked mortar (Fig. 

8). The thicknesses of the three layers were proportional to those in the site trial cells. 

Running this multi layered sample at 100 bars for 3 days showed no leaching from it 

at all. After dismantling it was noticed that the top mortar had disintegrated under the 

high-pressure leachate flow but no trace of leachate could be found in the bottom 

cracked mortar.  These experiments therefore indicated that, under the expected high 

saturation pressures, the clay would effectively seal cracks in the concrete.  
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5  SITE TRIALS 

 

5.1 Objectives 

Three cells were constructed on a licensed landfill operation site at Risley, Cheshire 

UK with different cementitious composite mineral waste materials (11). This landfill 

site receives both domestic and industrial waste. The results from cells 2 and 3 are 

reported here (cell 1 was dismantled early due to site requirements and is not 

reported).  

 

The purpose of the cells was as follows. 

 

• To  provide validation data for the modelling of the performance of the barriers in 

service. 

• To demonstrate a construction method. 

• To demonstrate that the novel mixes can be made in industrial quantities (150 

tonnes of concrete were used in the three test cells). 

• To provided samples of real site batched concrete for laboratory testing. 

 

5.2 Layout and construction methods of the cells: 

A typical test cell is shown schematically in Figure 9. The barriers were made up of 

two layers of concrete with a layer of clay between them.  These inverted pyramid 

shape cells measured 8 metres wide and contained waste to a maximum depth of 1.1 

metres. The slopes of the cells were 30° and the cells contained 5.4 m3 of waste. Table 

5 gives the dimensions and volume of each layer in the test cells. The excavation was 

carried out with an excavator which was also used to place the concrete and mortar 

mixes designed for the different cells. The concrete layers were placed and levelled by 

the excavator. The compaction of concrete layers was carried out by two poker 

vibrators and the compaction of clay layer was carried out using the outside surface of 

the excavator’s bucket.  

 

5.3 Observations from the construction 
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During the construction of cell numbers 2 and 3 the mix proportions actually used 

were different to those designed in laboratory due to inaccurate weighing of different 

materials and partial hydration of CKD while stored at the plant.  The mixes actually 

made were tested and showed higher permeabilities than the mixes initially designed 

in the laboratory. 

 

5.4 Emplacement of waste and leachate 

Shredded waste was used due to size and shape constraints of the cells. It was placed 

and compacted up to the top level of the test cells. A leachate which was the most 

aggressive solution found in the landfill was obtained from the treatment plant and the 

cells were filled 100 mm below the top giving a 1 m head at the deepest point. The 

cells were covered with a tarpaulin cover to prevent rainwater ingress and contain 

odour. 

 

5.5 Instrumentation and sampling 

Two types of sampling lines were used between the layers of the cell liners using 3 

mm plastic tubes in both. In one type the ends of the 3 mm plastic tubes were glued 

inside porous stone discs of 60 mm diameter. In the other type the layer was drilled 

and the 3 mm plastic tubes ends were sealed in place in the set concrete with sponge 

around the end of the line.  The sampling lines were placed as an array in the various 

liner materials and levels. Liquid samples were obtained by applying a vacuum to the 

lines.    

 

5.6 Modelling transport in the tests cells 

Cell 3 needed to be refilled after 12 months.  The reason for this was inadequate 

compaction of the clay layer leading to an increased permeability.   The effective 

indicated premeability was calculated as follows: 

Total Volume of the leachate leaked  ≅ 4.54 m3  

Surface area of pyramid in bottom of clay layer = 25.3 m2   

Thus indicated permeability  k = 5.2  × 10 –9 m/s 

This corresponds to nearly the same permeability as a Bentonite Enhanced Sand liner 

and indicates satisfactory performance even when very poor construction practice was 
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evident; but it did affect the modelling considerably.  The permeability calculated from 

these site observations was therefore used for the clay layer in the model.  

 

6  RESULTS AND DISCUSSION. 

 

6.1 Comparison between model and observations 

The initial concentrations of different elements in site leachate and in the pore pressed 

solutions from the barrier components are in table 6.  These were used in the model 

together with the capacity factors and diffusion coefficients obtained from the 

diffusion tests. The comparisons of the modelling results and the site observations are 

shown in figures 10 to 15 for Ca, Na and K for cells 2 and 3 respectively.   On these 

graphs error bars are shown between the 10th and 90th percentiles from probability 

calculations at ages of two and four years (in figures 13,14 and 15 these have been 

offset slightly for clarity).  The observed concentrations which are shown on the graph 

are based on the average from up to four different samples taken in different parts of 

the cells.  For some of these a considerable spread of results was recorded. 

 

The results for cell 2 in figures 10, 11 and 12 lie within the error bars except for the 

high observed concentrations of sodium (1500 ppm) and potassium (almost 8000 

ppm) at the bottom of the clay layer.  Table 6 shows a very high initial concentration 

of sodium in the lower layer concrete and this could have been drawn into the 

sampling line from below by the applied vacuum.  The observed potassium, however, 

rose significantly above the lower layer concentration after 3 years.  The results for 

calcium and sodium make it unlikely that the pore fluid from the upper layer reached 

this level and it is clear that the leachate had not arrived because it only had a 

concentration of 5000 ppm.  A possible explanation would be a reduction in pH of the 

upper surface of the lower concrete layer causing a reduction in the capacity factor 

and a resulting rise in to solution concentration. 

 

The main differences between the model and the experimental observations in cell 3 

were again at the bottom of the clay layer.  The observed rise in calcium was not 

predicted but a predicted rise in potassium did not occur.  The predicted potassium 

peak was caused by the high permeability value used in the model as a result of the 

observed drop in fluid level in the cell.  This caused the model to be dominated by 
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advection causing the high potassium concentration from the top layer to permeate 

rapidly through the clay.  The probable explanation of the discrepancy is that the 

observed higher permeability was caused by localised poor compaction of the clay 

and did not occur at the sampling points.  This would also explain why the calcium 

concentration (which originated in the clay) did not drop as quickly as predicted. 

 

It has been observed (16) that transport processes in landfills are associated with a 

high degree of uncertainty.  The processes modelled in this paper used real landfill 

leachate which was undergoing biological reactions throughout the experiment and 

took place in a site environment with all of the associated uncertainty.  The 

combination of these factors with the uncertainty associated with the stated 

assumptions in the model has given rise to some unexpected events.  Nevertheless this 

is a useful exercise to indicate likely trends in a real environment.  Long term results 

which will involve transport processes far closer to the steady state are actually likely 

to be more accurate.   

 

7  CONCLUSIONS 

 

The most significant properties of a concrete barrier material are the permeability, the 

diffusion coefficient and the capacity factor for adsorption.  These may be measured 

in the laboratory and used in numerical modelling of the barrier. 

 

The diffusion coefficient and capacity factor may both be obtained from diffusion 

tests by modelling the results. 

 

Experimental work has indicated that minor cracking will be sealed by the clay.  No 

barrier can withstand the effect of gross failure of the substrate.  This would cause 

major cracks to form and should be avoided. 

 

Predicting leachate transport in a real environment is very difficult but many of the 

trends were predicted and the long-term steady state flow should be easier to 

calculate. 
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1.  

 Proportions Used 

kg/m3 % By mass 

Composition of top layer mortar for cell No.2: 

Ferrosilicate slag sand (< 5 mm) 1575 65.9 

Cement Kiln Dust – 60% 490 20.5 

Lagoon Ash – 40%  325 13.6 

Water 200  

Composition of top layer concrete for cell No.3: 

Ferrosilicate slag (< 150 mm to dust)  0  

Limestone (<20 mm) 715 29.8 

Ferrosilicate slag sand (< 5 mm) 1105 46 

Cement Kiln Dust – 60% 340 14.2 

Lagoon Ash – 40%  240 10 

Water 220  

Composition of lower layer concrete for cell No.2: 

Chrome Alumina Slag (< 40 mm) 1175 49.6 

Chrome Alumina Slag (< 5 mm) 720 30.4 

Green sand 100 4.2 

Cement Kiln Dust – 60% 165 7 

T1Sodium sulphate Solution (lt) 165  

Composition of lower layer concrete for cell No.3: 

Chrome Alumina Slag (< 40 mm) 1175 50.3 

Chrome Alumina Slag (< 5 mm) 720 30.8 

Green sand 110 4.7 

Portland Cement – 5.2% 

CEM1 42.5N to BSEN 197-1 

25 1.1 

Cement Kiln Dust – 69.8% 185 7.9 

Lagoon Ash – 25%  120 5.2 

Water 240  

 

Table.1: Composition of mixes. 



 2 

 

2.043 g  Concentrated Sulphuric acid 

4.48 g  Acetic acid 

1.897 g  Potassium chloride 

7.755 g  Calcium acetate 

 1.186 g  Ammonium chloride 

 0.91 g  Sodium chloride 

 2.588 g  Sodium hydroxide 

 

Table 2 Composition of synthetic leachate, per litre of solution (pH=5.1) 

 

Chemical 

 Element 

Top layer mix 

Cell 2 & 3 

(Porosity = 12%) 

Bottom layer mix 

Cell 2 

(Porosity = 9%) 

Bottom layer mix 

Cell 3 

(Porosity = 9%) 

 α D  α D  α D 

Ca 7.74 3.7×10-10 0.5 1.77×10-10 0.09 1.35×10-10 

Na 0.43 1.19×10-10 0.09 10-14 1 4.58×10-13 

K 0.86 1.07×10-10 1.02 1.71×10-12 1 6.73×10-12 

S 1 2.07×10-12 1.37 10-14 27.67 2.93×10-14 

 

Table 3:  Capacity factor (α) and D (diffusion coefficient) values for the four major 

elements in the trial cells. 
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 7 days 

strength 

 

 (MPa) 

28 days 

strength 

 

 (MPa) 

Intrinsic 

permeability 

to water @ 28 

days (m/s) 

Intrinsic 

permeability 

to leachate @ 

28 days (m/s) 

Cell 2 top 1.1 1.7 4.5 ×10-9 5 ×10-9 

Cell 2 base 4.4 6.9 2.3 ×10-9 4.5 ×10-9 

Cell 3 top 0.9 1.3 1.2 ×10-8 7.5 ×10-9 

Cell 3 base 2.8 6.0 1.2 ×10-8 6.2 ×10-9 

 

Table 4: Characteristics of the mixes used in the site trial cells. 

 

 

 

Thickness (m) Depth to lowest 

point (m) 

Width (m) Volume (m3) 

Waste - 1.1 3.84 5.4 

Upper 

Concrete 

0.2 1.33 4.65 4.16 

Clay 0.5 1.9 6.66 18.61 

Lower 

Concrete 

0.3 

 

2.25 7.87 18.28 

 

Table 5: Dimensions and volume of each layer of test cells. 

 

  Cell 2 Cell3 

Elements Site 

leachate 

Top 

layer 

Clay 

layer 

Bottom 

layer 

Top 

layer 

Clay 

layer 

Bottom 

layer 

Ca 344 4 350 1214 4 350 14 

Na 2300 450 450 10802 450 450 2157 

K 4730 15193 300 1761 15193 300 761 

S 770 2000 500 549 9294 500 50 

 

Table 6 Initial liquid concentrations used in models for site trials (mg/l). 
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Figure 1: The new composite landfill liner.    
 
 

 

 

Composition 
 
 
Alkali activated slag or pozzolan 
concrete containing spent 
foundry sand and metallurgical 
slag aggregate 
 
Non-swelling clay or “artificial 
clay”. 
 
 
 
Concrete containing aggregate of   
larger particles of metallurgical 
slag and waste and spent foundry 
sand. 

Main Physical Function 
 
 
Mechanical support of vehicles 
during operational phase and initial 
containment of leachate 
 
 
Physical containment of leachate 
and crack sealing. 
 
 
 
Chemical conditioning of leachate 
to promote adsorption and physical 
containment with low permeability 
and diffusion coefficient. Base for 
sealing layer.  

Hard-wearing layer 

Softer sealing layer 

Base layer 

Sub-soil 
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Fig.2  Diffusion cells. 

 

 

 
Figure 3  Concentrations from laboratory diffusion testing for calcium 
 
 
 

 
Figure 4  Concentrations from laboratory diffusion testing for potassium 
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Fig. 5: Narrow cracks induced in the F.R. mortar disc. 
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Fig. 6: Cracked sample after clay has sealed the cracks. 

 
Fig. 7: The set up of bottom layer mix and compacted clay with silicone rubber round 
the rim and inside wall to prevent ingress of leachate from rim and interfaces. 
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Fig. 8: Multi layer sample with partially compacted clay inside it. 
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Figure 9: Typical trail test cell layout. 
 

 
Figure 10.  Concentrations of calcium in site trial cell 2 
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Figure 11.  Concentrations of sodium in site trial cell 2 
 

 
Figure 12.  Concentrations of sodium in site trial cell 2 
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Figure 13.  Concentrations of calcium in site trial cell 3 
 

 
Figure 14.  Concentrations of sodium in site trial cell 3 
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Figure 15.  Concentrations of potassium in site trial cell 3 
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