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Abstract

It may take weeks or months before a stealthy attack is detected. As networks
scale up in size and speed, monitoring for such attempts is increasingly a chal-
lenge; collection and inspection of individual packets is difficult as the volume
and the rate of traffic rise. This paper presents an efficient method to overcome
such a challenge. Data reduction has become an integral part of passive network
monitoring, which could be motivated as long as it preserves the required level
of precision. This paper examines the feasibility of employing traffic sampling
together with a simple, but a systematic, data fusion technique for monitoring;
and whether the design of the network affects on non-sampling error. Proposed
approach is capable of monitoring for stealthy suspicious activities using 10%-
20% size sampling rates without degrading the quality of detections.

Keywords: stealthy attacks, Bayesian, simulation, traffic sampling, anomaly
detection

1. Introduction1

Launching stealthy attacks is one of sophisticated techniques used by skillful2

attackers to avoid detection and can take months to complete the attack life3

cycle. Tools and techniques to launch such attacks are widely available. In order4

to detect stealthy activities it is necessary to maintain a long history of what5

is happening in the environment. Most systems cannot keep enough event data6

to track across extended time intervals for this purpose due to the performance7

issues and computational constraints [1, 2]. Decision to inspect each and every8

individual packet for security analysis may consume more resources at network9
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devices for packet processing and more bandwidth for transmissions them to10

collection points [3]. Sophisticated computing systems may be required for11

analysis and storage such a huge volume of data. The performance of network12

can be affected by such overheads and hence to quality of the service. All13

these facts motivate for a data reduction which could be motivated as long as14

it preserves the required level of precision for the monitoring objectives which15

can be either traffic engineering, accounting or security specific.16

This paper presents a study for an efficient monitoring scheme for stealthy17

attacks on computer networks which can consider as an early warning system.18

Traffic sampling is employed together with a simple data fusion technique to19

propose the algorithm which applies over the sampled traffic. The study has two20

objectives. First, investigating the feasibility of proposed method for stealthy21

activity monitoring; and secondly, examining whether design of the network22

affects on detection. The rest of the paper is organised as follows. Section 223

provides a brief overview of intrusion detection in computer systems, and ex-24

plains why conventional methods which are largely developed for rapid attacks25

cannot be employed in stealthy activity monitoring. Section 3 presents a moni-26

toring algorithm which identifies Bayesian approach as a method for information27

fusion. Sampling technique employed by the monitoring scheme is presented in28

Section 4. Section 5 presents a methodological way to trace anonymous stealthy29

activities to their approximate sources. Experimental design is presented in30

Section 6. Sections 7 presents experimental outcomes. Related literature is pre-31

sented in Section 8. Finally, conclusions are drawn in Section 9 where further32

work is also suggested.33

2. Security Monitoring34

Computer systems are dynamic systems having many components such as35

clients, servers, switches, firewalls and Intrusion Detection Systems (IDSs). At36

each time interval these components produce large amounts of event based data37

which, in principal, can be collected and used for security analysis. The sig-38

nature elements of an attack is scattered spatially and temporally, and often39

embedded within the totality of events of the distributed systems, and motiva-40

tion1 and source2 behind some events are not always certain. In addition there41

are number of monitoring obstacles in such an attack scenario: evidence scarcity42

(weak), colluded activities, large attack surfaces, variety of users and devices,43

high volume high speed environments, normal variations to node behaviours44

and anomalies keep changing over the time [4, 5]. Due to the above challenges45

most of the existing anomaly detection techniques solve a specific formulation46

of the problem which induces by various factors such as data types and types47

11. An alert of multiple login failures, 2. An execution of cmd.exe 3. An abuse of legitimate
credentials either by individuals or malware.

2Using various proxy methods and zombie nodes. manipulation of TCP/IP elements, using
relay or random routing.
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of anomalies of interested, and encourage unsupervised anomaly detection tech-48

niques [6]. Proposed monitoring scheme in this paper is an effort to address49

most of above obstacles in one solution.50

In signature based intrusion detection an attack scenario signature is needed51

to distinguish a given attack (say A) from other attacks (B and C ) and from52

normal network activities. When a stealthy attack is progressing the critical53

challenge is how to correlate these events across spatial and temporal spaces54

to track various attack scenarios such as A, B and C. The detection accuracy55

relies on the accuracy of scenario signature as well as the accuracy of event56

correlation [7]. Maintaining state information of every packets and comparisons57

between current packets and previous all packets are needed in event correla-58

tion. Most systems cannot keep enough event data to track across extended59

time intervals to do this when a stealthy attack is progressing. As a result the60

scarcity of attack data within a short period of time allows a stealthy attacker61

to go undetected hiding her attempts in the background noise and other traffic.62

Hence using signature detection techniques for stealthy activity monitoring is a63

challenge.64

Proposed monitoring algorithm in this paper is anomaly based. Finding non-65

conforming patterns or behaviours in data is referred to as anomaly detection.66

An intrusion is different from the normal behaviour of the system, and hence67

anomaly detection techniques are applicable in intrusion detection domain [6].68

Intrusive activity is always a subset of anomalous activity is the ordinary belief69

of this idea [8, 9]. When there is an intruder who has no idea of the legitimate70

user’s activity patterns, the probability that the intruder’s activity is detected71

as anomalous is high. This has been formulated in [10] as a pattern recog-72

nition problem. When the actual system behaviour deviates from the normal73

profiles in the system an anomaly is flagged. Information fusion would be a pos-74

sible method for data reduction. However given the nature of problem domain,75

anomaly detection techniques need to be computationally efficient to handle76

large sized of inputs. Hence considering any complex method, e.g. methods like77

Principal Components Analysis [11], for information fusion is ignored as they78

introduce extra computational overheads which aimed to minimise as much as79

possible in this work.80

3. Monitoring Algorithm81

The monitoring algorithm is inspired by previous work [12] which is inspired82

by [13]. It is an incremental approach which updates normal node profiles83

dynamically based on changes in network traffic (events). If some aberrant84

changes happen in network traffic over the time, it should be reflected in profiles85

as well and suspicious activities can be raised based on that profiles is the basic86

assumption. The algorithm has two functions: profiling and analysis.87

3.1. Profiling88

The profiling is the method for evidence fusion across space and time by89

updating node profiles dynamically based on changes in evidence. Simply put,90
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it computes a suspicion score for each node in the system during a smaller time91

window w and that score is updated as time progresses to compute a node score92

for a larger observation window W . By just looking at an alert generated by an93

event it is impossible to simply judge the motivation (cause) behind it. Other94

contextual information can be used to narrow down the meaning of such an95

event [14]. For example, suspicious port scanning activity may have the following96

characteristics: a single source address, one or more destination addresses, and97

target port numbers increasing incrementally. When fingerprinting such traffic98

analysts examine multiple elements (multivariate) and develop a hypothesis for99

the cause of behaviour on that basis. A similar manner (multivariate approach)100

can be followed in the profiling to acknowledge the motivation uncertainty. Note101

that What and Why are two different questions. Projecting Why into What102

based on your own guesses is methodologically irresponsible. Hence it needs103

a simple, but systematic, approach to profile suspects based on motivation of104

activities instead of number of activities (what you see). In other words, security105

events must be analysed from as many sources as possible in order to assess106

threat and formulate appropriate responses. Extraordinary levels of security107

awareness can be attained by simply listening to what its all indicators are108

telling you [15]. Note that proposed profiling technique in this paper fuses109

information gathered from different sources into a single score for a minimum110

computational cost. It reduces data into a single value which is important to111

maintain information about node activities for a very long observation period112

W . A multivariate version of simple Bayes’ formula is used for this task.113

3.2. The Bayesian paradigm114

The posterior probability of the hypothesis Hk given that E is given by the
well-known Bayes formula:

p(Hk/E) =
p (E/Hk) .p(Hk)

p(E)
(1)

The hypothesis for the monitoring algorithm is built as follows. Let H1 and
H2 be two possible states of a node in a network and define H1 - the node
acts as an attacker and H2 - the node does not act as an attacker. Then H1

and H2 are mutually exclusive and exhaustive states. P(H1) is an expression
of belief, in terms of probability, that the node is in state H1 in the absence
of any other knowledge. Once obtained more knowledge on the proposition H1

through multiple information sources (m indicators), in the form of evidence
E={e1,e2,e3,...,em} on attack surface including the human element, the belief
can be expressed in terms of conditional probabilities as p(H1/E). Using the
Bayes’ theorem in Equation 1 and assuming statistical independence between
information sources:

p(H1/E) =

m∏
j=1

p(ej/H1).p(H1)

2∑
i=1

m∏
j=1

p(ej/Hi).p(Hi)

(2)
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When likelihoods p(ej/Hi) and prior p(Hi) are known, the posterior p(H1/E)115

can be calculated for a given w. These posterior terms p(H1/E) can be accumu-116

lated by time to use as a metric to distinguish suspected nodes from other nodes117

during a W . Note that distinct types of information sources such as signature118

based IDSs, anomaly detection components, file integrity checkers, SNMP-based119

network monitoring systems can be used for this purpose. Hence the assump-120

tion on statistical independence above is reasonable. Any influence/interested121

technical and socio-technical indicators of changes in behaviour (e.g. changes122

in access patterns, differences in use of language, typing patterns, transferring123

large amounts of data onto or off the node, etc; if human actors are involved)124

can be included as input variables (i.e. elements of E) in the profiling algo-125

rithm as long as such indicators operate statistically independent. Extending126

proposed approach to a very large scale attack surface is easy since it is a matter127

of adding a new indicator (attack vector) in E. Existing domain knowledge will128

serve to enhance the performance of this monitoring algorithm since it takes129

advantage of prior knowledge about the parameters. Which is especially use-130

ful when technical data is scarce. However prior and likelihoods are the most131

critical parameters to this approach since Bayes’ factors are sensitive to them.132

Proposed monitoring algorithm would be useful in monitoring threats listed in133

Table 1. The potential threats and their indicators in Table 1 is not exhaustive134

and for illustrating purpose only.135

3.3. Analysis136

The analysis comprised of detecting anomalous profiles in a given set of137

node profiles. If attacker activity pattern is sufficiently reflected by profiles then138

detecting anomalous profiles would be sufficient to identify attackers. This work139

uses a statistical method to detect anomalies. An anomaly is an observation140

in a dataset which is suspected of being partially or wholly irrelevant because141

it is not generated by the stochastic model assumed for that dataset is the142

underlying principle of any statistical anomaly detection technique [17]. Such143

techniques are based on the key assumption that normal data instances occur in144

high probability regions of a stochastic model, while anomalies occur in the low145

probability regions of the stochastic model [6]. Based on these concepts Peer146

and Discord analysis is proposed in this work for detecting stealthy activities in147

a given set of node profiles. Both techniques acknowledge the fact that baseline148

behaviour on networks is not necessarily stable, for example, operational or149

exercise deployments often mean the behaviour of nodes will potentially change150

dramatically. Hence, a defence method that is effective today may not remain151

effective for tomorrow, and any novel algorithm should account for this level152

of complexity. Proposed approach evolves the baseline behaviour by the time153

according to the other network parameters and their current states.154
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3.3.1. Peer analysis155

Aggregating posterior probability terms in Equation 2 over the time helps
to accumulate relatively weak evidence for long periods. These accumulated
probability terms

∑
t
p(H1/E) (t is time), known as node scores, can be used

as a measurement of the level of suspicion of a given node at any given time
with respect to her peers as follows. A given set of node profiles, e.g. profiles
corresponding to a similar peer group, is a uni-variate data set. Hence it is
possible to use the uni-variate version of Grubb’s test [18] (maximum normed
residual test) to detect anomalous points in the set, subject to the assumption
that normal node profiles in a given set follow an unknown Gaussian distribu-
tion [19]. The set-up where it has the distribution is very well a mixture of
Gaussian. Because testing of the hypothesis for any given time is a Bernoulli
trial in this work. Accumulated Bernoulli trials makes a Binomial distribution
which can be approximated by a Normal distribution. For each profile score ω,
its z score is computed as:

z =
ω − ω̄
s

(3)

Where ω̄ and s are mean and standard deviation of the data set. A test instance156

is declared to be anomalous at significance level α if:157

z ≥ T =
N − 1√
N

√√√√ t2α/N,N−2

N − 2 + t2α/N,N−2

(4)

where N is the number of profile points in the set, and tα/N,N−2 is the158

value taken by a t-distribution (one tailed test) at the significance level of α
N159

and degrees of freedom (N − 2). The α reflects the confidence associated with160

the threshold and indirectly controls the number of profiles declared as anoma-161

lous [6]. Note that the threshold T adjusts itself according to current state of162

a network. This is a vertical analysis to detect one’s aberrant behaviour with163

respect to her peers. In other words it compares each node’s activity changes164

against to activity changes of her peer group. Hence it is called as peer analysis165

in this paper. This analysis technique accounts for regular variations such as166

diurnal, familiarity and ageing.167

Looking at one’s aberrant behaviour within similar peer groups (e.g. same168

user types, departments, job roles, etc.) gives better results in terms of false169

alarms than setting a universal baseline [20, 21]. Hence first classifying similar170

nodes into peer groups, based on behaviour related attributes/features, and then171

applying the monitoring algorithm is recommended. Investigations for suitable172

classification algorithms for this task is left as a future work.173

3.3.2. Discord analysis174

When a stealthy attack is progressing, malicious activities are occurring175

according to an on-off pattern in time. As a result, lack of agreement or harmony176

between points in the profile sequence of a given node can occur in a similar177

or different on-off fashion. This type of anomalies are known as discords [22].178
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In a stealthy attack environment, discords are random time context and peer179

analysis technique itself is not sufficient to detect them if the progression rate180

of malicious activities is far lower than the similar innocent activities. The181

objective of discord analysis in this work is to detect sub-sequences within a182

given sequence of profiles which is anomalous with respect to the rest of the183

sequence. Problem formulation occurs in time-series data sets where data is184

in the form of a long sequence and contains regions that are anomalous. The185

underlying assumption is that the normal behaviour of the time-series follows186

a defined random pattern, and a sub-sequence within the long sequence which187

does not conform to this pattern is an anomaly. In general, the purpose of this188

analysis is to detect one’s aberrant behaviour with respect to her own behaviour189

regardless of her peers. Following method is proposed for discord analysis.190

At the (t − 1)th time point, using an Auto-regressive integrated moving191

average model ARIMA(p, d, q) [23] which describes the auto-correlations in192

the data, 95% Confidence Interval (CI) for the tth profile score is predicted.193

If the observed profile score at time t lies outside of the predicted CI then194

absolute deviation of the profile score from CI is calculated. This deviation is195

used as a measure of non-conformity of a given profile score to the pattern of196

its own sequence (group norms). These deviations average out over time to197

calculate the anomaly score for a given node. Note that this anomaly score198

is the average dissimilarity of profile scores with its own profile sequence of a199

node. This dissimilarity occurs randomly from time to time due to the deliberate200

intervention of the attacker. The length of the ARIMA model (i.e. n - number201

of previous points to be used) is critical as containing anomalous regions in202

input sequence makes difficult of creating robust model of normalcy. Note that203

keeping the length of the ARIMA model less than the minimum of time gaps204

between two consecutive attack activities will give better results. However since205

the time gap between two consecutive attack activities is unknown in advance,206

using a smaller observation window (i.e. slicing whole observation period into207

many smaller parts as much as possible) to generate short time profiles would be208

the better. A node does exhibit sudden changes in behaviour when compared to209

its past behaviour is not necessarily suspicious as it could be a regular variation210

of the node behaviour [20]. Proposed Discord analysis technique considers such211

variations as completely legitimate as it monitoring for changes to the changing212

pattern of node behaviour.213

The key challenge for anomaly detection in network security domain is that214

the huge volume of data, typically comes in a streaming fashion, thereby re-215

quiring on-line analysis. It is essential to employ a data reduction method to216

overcome large-scale data handling. Employing statistical sampling would be a217

possible method. Despite the benefits, there is an inherent tension and debate218

of using traffic sampling for security specific tasks. Obviously, signature based219

detection methods can be seriously affected by sampling as selection of a subset220

of signature elements would not be sufficient to recognise a predefined pattern221

in a signature definition database. But in anomaly based detection, should all222

traffic still need to be investigated? In the abstract view, an anomaly is a devi-223

ation of a computed statistic from a norm of the normal statistics. If sampling224
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changes the statistics of normal and anomalous traffic equally, it is reasonable225

to hypothesise that detection would not be affected by the sampling rate. This226

hypothesis is also investigated in this paper.227

4. Employing sampling228

Network data constitutes a potentially unlimited population continuously229

growing up by the time. Using multi-stage sampling with stratification is usual230

in large populations. This ensures that observations are picked from each of231

strata, even though the probability of being selected items from some stratus232

are very low when using simple random sampling (SRS). This feature is very233

useful in a security specific view. Hence, given a smaller observation window w,234

the traffic is sampled using the Stratification sampling technique with optimum235

allocation method. This sampling technique has been designed to provide the236

most precision for the least cost. If h is a traffic stratum, the best sample size237

nh for stratum h during a w is given by:238

nh = n.
[Nh.sh√

ch
]∑ Ni.si√

ci

(5)

where nh-sample size for stratum h, n-total sample size, Ni-population size239

for stratum i, si-standard deviation of stratum i, and ci-direct cost (in terms240

of time, bandwidth, and computational resources) on the collection infrastruc-241

ture to sample an individual element from stratum i. Note that the direct cost242

should be in a common unit (CU) of measurement for the amount of computa-243

tional cost spending on different parameters. The time, bandwidth, memory or244

processor requirements that constitutes one common unit (1CU) varies based245

on which requirement is being measured, and how each parameter is critical and246

scarce to the network. Hence definition of such a unit (CU) would be subjec-247

tive. For instance one can define: 1CU is memory equivalent of 128MB, 1CU is248

bandwidth equivalent of 56KBPS, 1CU is CPU-Time equivalent of 100 nsec etc.249

International unit (IU) in pharmacology is a well-known example for a similar250

approach for a common unit of measurement for the amount of a substance [24].251

The main advantage of above sampling technique is producing the most repre-252

sentative sample of a population to the least cost. Hence it is the ideal sampling253

technique to employ with the problem as “cost” parameter can be minimised,254

subject to the required precision, to obtain a light-weighted monitoring scheme.255

The rule of thumb in stratification sampling that a population should not consist256

of more than six strata can be changed even into hundreds given the millions of257

observations in the population in this domain. Traffic classification is employed258

to establish the strata. Using a basic classification technique (e.g. using L4/L3259

access lists and Protocols) would be enough. Stratification ensures that each260

traffic type is adequately represented. The SRS technique is used to select a261

nh size sample from a given stratum h for a w. Random sampling techniques262

have a distinct advantage over other alternative methods for data reduction.263

It allows retention of arbitrary details while other methods for data reduction264
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(e.g. filtering and aggregation) require the knowledge of the traffic features of265

interest in advance.266

Each element of the population having a non-zero probability of selection is267

a preliminary condition for any random sampling techniques. Sampling traffic268

from backbones or edge routers seriously violates this condition in terms of secu-269

rity specific view, though it is sufficient for Traffic engineering and Accounting270

tasks. Since it ignores consideration of traffic within same broadcast domains, it271

ignores potential insider activities as well. Therefore in this work traffic is sam-272

pled at each broadcast domain, but considering the incoming traffic only. All273

outgoing traffic to any external network is considered as a separate broadcast274

domain for the purpose of traffic sampling. Considering incoming traffic only275

avoids selection of a given unit (packet or flow) twice for inclusion in a sample276

at source and destination points.277

5. Tracing the Source278

A common problem with many analysis tools and techniques today is that279

they are simply not designed for purposes of attribution[25]. Attribution of280

cyber activity - “knowing who is attacking you” or “determining the identity281

or location of an attacker or an attacker’s intermediary”- is naturally a vital282

ingredient in any cyber security strategy [26, 27]. Although current approaches283

are capable of alarming suspicious activities, most of them are not suitable284

for this information age because when computers are under attack “who” and285

“why” are frequently unknown [28, 29].286

The localization process becomes evermore difficult when the attacker em-287

ploys various proxy methods and zombie nodes (e.g. bots), Manipulation of288

TCP/IP elements (e.g. IP Spoofing), using relay or random routing (e.g. Tor289

networks) approaches can help an attacker protecting her location. Prolifera-290

tion of weakly encrypted wireless networks could also help an attacker getting291

anonymous locations. Tracing packets back to the source hop by hop is required292

in identifying sources of anonymous activities. This section presents a method-293

ological way to trace such activities to their approximate sources by extending294

the above monitoring algorithm. The tracing algorithm has two functions: tree295

formation and tree traversal. Tree formation builds an equivalent tree structure296

for a given attack scenario. It enables tree traversal to move towards the at-297

tacker’s physical source.298

299

5.1. Tree formation:300

If the topological information is available, Tree formation is performed as301

follows. The victim node is the starting point. The Gateway node to victim is302

considered as the root of the tree and all immediate visible nodes (either inter-303

nal or external) to the root are considered as children of the root. If a given304

child is a host node in the network then it becomes a leaf of the tree. If it is305

a gateway then it becomes a parent node of the tree and all immediate visible306
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nodes to that node are attached as its children. This process is continued until307

the entire topology is covered (see Figure 22).308

309

input : Topological information together with victim’s location
output: Tree structure for the given attack scenario
Initialize the tree ϑ to have the root as the gateway of the victim;
List all nodes into the list τ ;
/* attached each node to the tree*/;
tree-construction(ϑ,τ);
/*ϑ - Tree;
, ω - A node*/;
foreach node ω in τ do

if num-of-hops-between(ϑ,ω)==1 then
insert ω into ϑ;

end

end
foreach ϑ.child do

tree-construction(ϑ.child,τ)
end

Algorithm 1: Tree formation for a given attack scenario.

310

5.2. Tree traversal:311

Once the equivalent tree structure is built, channel profile score (zkt) should312

be computed for each path of the tree at each step of the tree traversal algorithm313

as shown in Equation 7. Let314

ckt =

∑
t
p(Hk/E)

nk
(6)

where nk is the number of nodes behind kth channel. Then

zkt =
ckt − c̄t
σt

(7)

315

is the Z-score of channel k at time t. where c̄t =

∑
i
cit

n , σt =

√∑
i

(cit−c̄t)2

n−1 , and316

i = 1, 2, 3, ..., n.317

318

To traverse a non-empty tree, perform the following operations recursively319

at each node, starting from the root of the tree, until suspected node is found.320

1. Visit the parent node321

2. Compute channel scores for all children of the parent322

3. Traverse the highest channel scored sub tree if that score is above the323

threshold (if an attacker node is found backtrack to the parent)324
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4. Traverse the next highest channel scored sub trees (only sub trees above325

or around threshold and/or significantly deviated from rest of nodes of326

same parent)327

The algorithm continues working towards a built tree node by node, narrowing328

down the attack source to one network and then to a node. At this point it329

is possible to run more standard trace back methods by contacting the entity330

which controls that network if it is beyond the analyst’s control.331

332

input : A Tree constructed for anonymous stealthy attack scenario
output: A node where attacker is located
proposed-traverse(ϑ);
while not found do

visit node ω;
if node ω is a leaf then

return;
else

profile all children of node;
proposed-traverse(node.top scored child);
proposed-traverse(node.next scored child);

end

end
Algorithm 2: Tree traversal for a given tree.

333

6. Experiments334

A series of experiments were conducted simulating stealthy suspicious ac-335

tivities in simulated networks to evaluate the proposed approach in this paper.336

Simulating such activities on a real network certainly gives more realistic condi-337

tions than in a simulated network. However practical constraints of the project338

keep away using a real world network for this purpose. Network simulator339

NS3 [30] is used to build a network topology (see Figure 1) consisting of a340

server farm and number of subnets of varying size. Table 2 presents a summary341

of specifications of event generation in simulated experiments.342

A Poisson arrival model with inter-arrival time gap between two consecutive343

events as an exponential was assumed for events generation. Each simulation is344

run for a reasonable period of time to ensure that enough traffic is generated.345

Attackers are located at nodes in subnets. Suspicious and benign traffic were346

generated within and between subnets to simulate both attack and legitimate347

activities. Four types of suspicious activities (rate denoted by λa, a =1,2,3,4. in348

Table 2) was simulated. A stealthy attack is defined as a predefined sequence of349

such suspicious events executing an on-off manner. During the off period attack350

node acts as a healthy node. Note that “Noise” in table 2 represents the Suspi-351

cious events generated by healthy nodes, but at different rates λn, n = 1, 2, 3, 4.352

It was ensured to maintain λa ∈ λn±3
√
λn and λn(≤ 0.1) sufficiently smaller for353
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Figure 1: A screen-shot of a network topology used for experiments.

all experiments to characterise stealthy suspicious activities which aim at stay-354

ing beneath the threshold of detection and hiding behind the background noise.355

The idea to use the above relationship for generating attacker activities was to356

keep them within the normality range of innocent activities (i.e. background357

noise).
√
λn is the standard deviation of rates of suspicious events generated by358

normal nodes.359

Though it did not produce all signature elements needed to characterise real360

attacks, representation of suspicious events by a subset of such characteristics361

(parameters) was sufficient to this work as its focus on temporal and spatial362

aspects of events arrivals. Note that traffic classification is sufficient to the pro-363

posed sampling method in this work, and does not require attack classifications.364

Node Event Model Parameters Duration (s) Repetitions

Attack
Legitimate

P
oi

ss
on

µi, i=1,2,3,...,10.
3600*12*60=2592000 or above,
scores are updated at
every minutes (w=60s)

Between 1-100
Suspicious λa, a=1,2,3,4.

Healthy
Legitimate µi, i=1,2,3,...,10.
Noise λn, n=1,2,3,4.

Table 2: A summary of specifications of event generation

Basic payload information, i.e. L4/L3 access lists and Protocols such as365

http, ftp, udp and arp, was used for traffic classification. Traffic which cannot366

identify using basic payload information was pooled into a common stratum.367

A simple R [31] script was written to sample packets as described above. ci368

in Equation 5 is set to a constant value as there is no significant difference of369
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the cost between different type of traffics (stratum) for inclusion in a sample in370

simulations. Visible source of an event is always considered as the true source371

for experiments in this work. Prior probabilities and Likelihoods are assigned372

as described below.373

p(H1) =
1

2
= 0.5 (8)

Equation 8 suggests there is a 50% chance for a given node to be a stealthy374

attacker. However, this is not the case in many situations. In networks, one375

node may have a higher prior belief of being suspicion than another. Since prior376

probabilities are based on previous experiences, p(H1) can be judged based on377

information gathered from contextual analysis. However if there is no basis to378

distinguish between nodes or groups of nodes, equally likely (i.e. same probabil-379

ity of occurring) can be assumed. For the experiment presented in this paper,380

first followed the equally likely assumption, and prior probabilities were assigned381

as in equation 8. Then the posterior probability of a given node at time t− 1 is382

used as the prior of the same node at time t when time is progressing. This lets383

prior probabilities to adjust itself dynamically according to suspicious evidence384

observed over time.385

p(ej/H1) = kj (9)

Equation 9 expresses the likelihood of producing event ej by a subverted386

node. For the purpose of demonstration different, but arbitrary, values (≤1)387

were assigned for k to distinguish different type of events (ej) produced for the388

simulation. Likelihoods for real world implementation can be estimated as fol-389

lows. If ej is an event resulting from a certain type of known attack (e.g. a390

UDP scan or LAND2 attack), then k can be assigned to one. However, k cannot391

always be one, as described in Section 2, as there are some suspicious events392

(e.g. an alert of multiple login failures) that can be part of an attack signature393

as well as originate from normal network activities. The question is how to es-394

timate p(ej/H1), i.e. the true positives, if ej becomes such an observation. One395

possible solution would be to use existing IDS evaluation datasets to estimate396

true positives. Estimating likelihoods for real world implementation is feasible,397

and [32] is a good example for that which provides a detailed description of the398

likelihood estimation in insider detection.399

According to [13], in some cases, the historical rate of occurrences of certain400

attacks is known and can be used to estimate the likelihood that certain events401

derive from such attacks or it may be sufficient to quantify these frequencies by402

an expert in a similar way to estimating risk likelihoods to an accuracy of an403

order of magnitude. Note that [13]’s claim is completely theoretical as it follows404

2A Denial of Service (DoS) attack which sets the source and destination information of a
TCP segment to be the same. A vulnerable machine will crash or freeze due to the packet
being repeatedly processed by the TCP stack.
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Figure 2: Z- Score graphs are sensitive to node behaviour.

the Subjectivist3 interpretation of probability theory [33]. According to [14], the405

biggest challenge is the absence of large publicly available data sets for research406

and comparisons, but within an organization it is entirely possible to empirically407

analyse day-to-day traffic and build statistical models of normal behaviour.408

7. Results409

In this section, experimental results are presented. Graphical forms (e.g.410

Z-Score graphs) are using to present information. Visualisation helps to quickly411

recognise patterns in data.412

7.1. Peer Analysis Outcomes413

To investigate whether proposed Z-score graphs reflect the behaviour of414

nodes, three attacker nodes were located in a 50 size subnet. All others were415

innocent. Two out of three attackers stopped their attack activities at 200 and416

300 time points respectively. Figure 2 presents the outcome, where A1, A2 and417

A3 are attacker nodes while Min and Max are the minimum and maximum418

Z-scores of normal nodes. T is the Grubbs’ critical value (threshold). If an419

attacker node changed its behaviour, the corresponding z-score graph (see A2420

and A3 in Figure 2) responses to that behaviour by changing its direction.421

Peer analysis technique was tested against 24 test cases varying the subnet422

size between 25 and 250 and the number of attackers between 0 and 7. Peer423

analysis technique was capable of detecting stealthy attackers in all cases. Only424

3There are three fundamental interpretations of probability: Frequentest, Propensity and
Subjectivist. In Subjectivist, probability of an event is subjective to personal measure of the
belief in that event is occurring.
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Figure 3: Z-Scores of node profiles for test case 16.

one case where four stealthy attackers were located in a hundred size subnet425

is presented in Figure 3. In Figure 3, nodes corresponding to A1, A2, A3 and426

A4 denote attackers. Min and Max denote the minimum and the maximum427

Z-scores of normal nodes at each time point. Aberrant node profiles A1, A2, A3428

and A4 in Figure 3 always corresponded to the four stealthy attackers located429

in the subnet. They are above or near the threshold (T ), and most importantly,430

there is a clear visual separation between the set of normal nodes and anomalous431

nodes. Hence it is possible to recognise stealthy suspicious activities using the432

proposed method.433

Behaviour of the proposed approach in best and worst cases is also investi-434

gated. There were no attacks in best cases while all nodes were subverted in435

worst cases. Similar graphs, as shown in Figure 4, were obtained for both cases.436

Almost all the nodes are nearly below the threshold (T ), and none of nodes can437

be seen separated from the majority. In a situation where monitoring system438

depends only on peer analysis technique and has seen similar graphs as in worst439

(or best) cases, it is safe to assume that all nodes are subverted (instead of as-440

suming free of attackers) and doing further investigations on one or two nodes to441

verify. If investigated nodes are attackers, it is reasonable to consider all nodes442

are attackers or vice versa. However, note that Discord analysis technique is443

capable of detecting attackers in worst case too.444

7.2. Discord Analysis Outcomes445

Discord analysis technique was tested against number of test cases used for446

peer analysis, in addition to testing it against a special test case defined as447

follows. In a stealthy attack environment, discords are random time context448

and peer analysis technique itself would not be capable to detect them if the449

progression rates of malicious activities are far lower than the rates of similar450
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Figure 4: Z-Scores of node profiles for test case 7.

innocent activities. Therefore a small subnet consisting of five nodes including451

one attacker was set-up in a subnet. The attacker’s activity rate was decreased452

until observing a node score graph like in Figure 5 where peer analysis technique453

itself failed to detect the attacker. In Figure 5, the attacker which is denoted454

by the red dotted line always keeps a very low profile score than all innocent455

nodes denoted by other lines (see magnified version in Figure 6). As it is seen456

in Figures 5 and 6, the attacker hides behind the normal nodes, and since the457

attacker’s profile score is far lower than all normal nodes it is not detected by458

the peer analysis technique. The randomness of event generation can also be459

seen from Figure 6.460

Discord analysis is capable of detecting the attacker very well in this case.461

First using an ARIMA(p, d, q) model 95% CI is predicted for each node in the462

network (see Figures 7 and 8 which are created for the attacker node and a463

normal node respectively). Then at each time point, anomaly score for all five464

nodes were calculated and converted them to Z-scores and plotted against the465

time line as in Figure 9. Twenty five previous points was used as the length of466

the ARIMA model in this case. In Figure 9, the node corresponded to A denotes467

the attacker. Min and Max denote the minimum and the maximum Z-scores468

of anomaly scores of normal nodes at each time point. T is the Grubbs’ critical469

value (threshold) for a single outlier. As it is obvious in Figure 9 attacker node470

is distinguished from innocent nodes.471

7.3. Network parameters472

This section investigates how different network parameters: traffic volume,473

subnet size and number of attackers affect on monitoring of stealthy activities.474
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Figure 6: Magnified version of Figure 5 - the red dotted line denotes the attacker, all other
lines denote innocent nodes.
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Figure 7: Node scores and 95% CI intervals for the attacker node. Black lines denote CIs
while the red line denotes the attacker (A).
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green line denotes the normal node (N).
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Figure 9: Z-Scores of anomaly scores for Discord analysis.

7.3.1. Traffic volume475

A simple measure called detection potential is defined to explain how far476

an attacker node is deviated from the threshold. It helps to compare between477

different network conditions. The detection potential d is defined as:478

d = z − T (10)

on the basis of the higher the detection potential the better for the detection.479

An attacker was located in a 51 size subnet and generated suspicious events.480

The same experiment was repeated six times by keeping all parameters un-481

changed, except attacker’s traffic volume. If the attacker’s traffic volume is482

V at the first time, then at each repetition the attacker’s traffic volume was483

incremented by one time as 2V , 3V , ...,7V . For each experimental run the de-484

tection potential (deviation of node scores from the norm) was calculated, and485

standardised values of the detection potentials are plotted as in Figure 10. As486

shown in Figure 11, the detection potential is proportional to the traffic vol-487

ume. The higher the traffic volume produced by an attacker is the better for488

her detection using the monitoring algorithm.489

7.3.2. Subnet size490

An attacker was located in a 500 size subnet and the same experiment was491

repeated six times by keeping all other parameters, except the subnet size,492

unchanged. Subnet size was changed to 400, 300, 200, 100, 50 and 25 at each493

experimental run, and Figure 12 and 13 were obtained. As shown in Figure 12,494

attackers have a less chance to hide behind innocent events when the subnet size495

decreases. The detection potential is negative exponential to the subnet size,496

and going beyond 100 size subnet would not make any real sense in terms of497

detection (see Figure 13). The smaller the subnet size is the better for detection.498
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Figure 14: Z-Score graphs for same size subnets with different number of attackers (250 size
subnet, two attackers).

7.3.3. Number of attackers499

The same experiment was repeated many times by keeping all conditions500

unchanged, except the number of attackers. The outcomes of only two test cases,501

two and seven attackers, are presented in Figures 14 and 15. The attacker’s node502

score is dependent on the number of attackers on her own subnet (compare503

attackers’ Z-scores between both graphs).504

7.4. Sampling results505

A series of experiments have been conducted by changing the sampling rate506

r, hence n in Equation 5. Figures 16 and 17 present the outcomes of the pro-507

posed approach when r = 20% and r = 10% of the whole traffic N respectively.508

Min and Max represent the minimum and the maximum profile scores of normal509

nodes in the subnet where attacker node A is located. T represents the Grubbs’510

critical value (threshold) for attackers’ subnet. As it is obvious from Figure 16,511

proposed algorithm together with chosen sampling technique is capable of de-512

tecting stealthy activity using a 20% size traffic sample. It is also possible using513

even a 10% size sample, but after a considerable time lag.514

Figure 18 compares the detection potential against the sampling rate r. It515

is obvious that a point of diminishing returns is existed in Figure 18. When516

r is larger enough to produce a reasonable level of accuracy, making it further517

large would be a simply waste of resources of monitoring infrastructure? This518

answers the question “in anomaly based detection, should all traffic still need519

to be investigated?”520

7.4.1. Network Design521

A sampling process has two types of errors: sampling and non-sampling.522

Sampling error occurs because of the chance, and it is impossible to avoid but523
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Figure 15: Z-Score graphs for same size subnets with different number of attackers (250 size
subnet, seven attackers).
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Figure 16: Running the detection algorithm over 20% size sample.

can be minimised by defining unbiased estimators with small variances. Non-524

sampling errors can be eliminated, and occurred due to many reasons: inability525

to access information, errors made in data processing, etc [34]. This section526

examines what impact would varying network size and subnet structure have527

on Non-sampling error. An attacker is located in a 224 size network and π̂ is es-528

timated in each case as described below. Each simulation was repeated over 100529

times. Goodness-of-fit test [35] is applied to statistically test the independence530
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Figure 18: Detection potential vs sampling rate.

(or homogeneity) of proportion π over sampling rates, number of subnets and531

subnet sizes. If any dependency is found it is depicted in a graph (see Figures 19532

and 20).533

Proportion of anomaly packets φ is considered as the parameter of interest534

for this analysis and hence sample proportion π is defined as π = (a/n); where535

a is the number of suspicious packets in a given sample size n. Note that536
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Sampling
rate(r)

5% 10% 20% 40% 80% Whole
trace

π̂ 0.00038 0.00034 0.00036 0.00035 0.00036 0.00036
P.Value 0.0970 0.0929 0.0952 0.0971 0.9770 N/A

Table 3: Proportion over sampling rates.

proportion of illegitimate to legitimate traffic, i.e. a : (n − a), is a dominating537

factor for likelihood of false alarms in an IDS [36]. Though the distribution538

of φ is binomial, in a network scenario, this can be approximated by a normal539

distribution given a overwhelm number of packets to deal with (it satisfies the540

conditions of n.π̂ ≥ 15 and n.(1−π̂) ≥ 15). Hence, φ ∼ Normal
(
π̂,
√

π̂(1−π̂)
n

)
,541

where π̂ is the observed proportion from samples. This can be used to draw542

inference about the unknown population proportion φ.543

Sampling rate (r) Traffic samples at 5%, 10%, 20%, 40%, and 80% rates of544

the whole trace were drawn and π̂ was calculated. The null hypothesis H0 is the545

assertion that the sample proportion π conforms to the whole traffic proportion546

φ. The alternative hypothesis H1 is the opposite of H0.547

H0 : ∀r πr = φ (11)

H1 : ∃r πr 6= φ (12)

π̂s and p-values of testing H0 vs H1 are given in Table 3 where p-values are548

greater than the significance level α = 0.01 for all cases. Therefore there is no549

enough evidence to reject the null hypothesis H0. Hence it can be concluded550

that sample proportion π conforms to the whole traffic proportion φ. In other551

words π can be used to draw inference about φ, and chosen sampling technique552

is capable of producing representative samples to the population.553

Number of subnets (b) An attacker is located in a 224 size network and554

same experiment was repeated for four more times by doubling the number555

of subnets each time (in other words each subnet was divided into two in its556

immediate repetition) but keeping all other conditions unchanged. The null557

hypothesis H0 is the assertion that the proportion π is not affected by the558

number of subnets b, where b=1, 2, 4, 8, 16. The alternative hypothesis H1 is559

the opposite of H0. If k is a constant:560

H0 : ∀b πb = k (13)

H1 : ∃b πb 6= k (14)

π̂s and p-values of testing H0 vs H1 are given in Table 4. Since p-values561

are less than the significance level α = 0.01 for some cases it is possible to562

conclude that there is no enough evidence to accept the null hypothesis H0,563

which means that proportion is affected by the number of subnets. Figure 19564
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Number of
Subnets(b)

0 2 4 8 16

π̂ 3.58E-04 2.86E-04 1.12E-04 8.52E-05 1.97E-05
P.Value N/A 2.65E-01 6.03E-06 3.94E-07 1.04E-11

Table 4: Proportion over Number of Subnets.

Figure 19: Proportion vs Number of subnets at each sampling rate.

presents the relationship between number of subnets b and proportion π at each565

sampling rate. When b is increasing π̂ is decreasing (deviates from the actual566

value) regardless of sampling rates.567

Subnet size (n) An attacker was located in a 5 nodes size subnet in the568

network, and π̂ was calculated at each sampling rate. The same experiment569

was repeated by adding more nodes to produce different subnet sizes: 10, 20,570

40, and 80 without changing other parameters. The null hypothesis H0 is the571

assertion that the proportion π is not affected by the subnet size n, where n=5,572

10, 20, 40, 80. The alternative hypothesis H1 is the opposite of H0. If k is a573

constant:574

H0 : ∀n πn = k (15)

H1 : ∃n πn 6= k (16)

π̂s and p-values of testing H0 vs H1 are given in Table 5. Since p-values are575

less than the significance level α = 0.01 for some cases there is no enough evi-576

dence to accept the null hypothesis H0, which means that proportion is affected577

by the subnet size. Figure 20 presents the relationship between subnet size n578
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Subnet
Size(n)

5 10 20 40 80

π̂ 7.28E-04 8.61E-04 8.84E-05 2.06E-04 5.24E-05
P.Value 2.20E-16 2.20E-16 2.80E-01 6.39E-04 N/A

Table 5: Proportion over Subnet sizes.

Figure 20: Proportion vs Subnet size at each sampling rate.

and proportion π, where n is increasing π̂ is decreasing in overall (deviates from579

the actual value), regardless of sampling.580

7.5. Source Anonymity581

Using the topology in Figure 21, attack events were generated with anony-582

mous source addresses in order to simulate two cases: single and multiple at-583

tackers. In the single attacker case, an attacker is located at a node in subnet584

S6 and in multiple attackers case, three attackers are located one in each in585

three different subnets S3, S5 and S6. Figure 22 presents the equivalent tree586

structure produced by Algorithm 1 for above scenario. The root denotes the587

victim node while gij and hij denote a gateway or a host node at level i in Fig-588

ure 22. j is a node number. Dashed rectangles represent a collection of leaves589

corresponded to hosts in each subnet. Once the tree is obtained, Algorithm 2590

is run to locate the attackers as shown in Figure 23 for single attacker, and591

Figure 24 for multiple attackers.592

Figure 23 presents the steps of tracing process from the root of the derived593

tree. In Step 1, Min and Max represent the minimum and maximum Z-scores594

of all immediate visible nodes (11 in total, except g13
) to the root at each time595

point. Since that graph suggests moving towards g13
, Step 2 graph is created596
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Figure 21: Network topology used for source anonymity experiment.

at node g13 , and so on. Finally search is narrowing down to the subnet S6.597

Step 4 graph is created at S6 ’s gateway node g34 , where A denotes the Z-598

scores corresponded to the true attacker located in that subnet. Min and Max599

represent the minimum and maximum Z-scores of all other nodes in subnet S6.600

T denotes the threshold which is not defined when number of data points in a601

set is less than three. In that case the highest scored path is chosen to move602

towards (see Step 2) in finding attacker or directions to her location.603

A similar manner should be followed in interpreting graphs in Figure 24604

obtained for multiple attackers. In that case, once an attacker is found tracing605

algorithm should be back tracked to its immediate parent node and should606

proceed with next highest Z-scored sub tree to find other suspicious nodes. After607

Steps 3 and 6, algorithm back tracks to the root node. Table 6 summarises travel608

sequences for tracing single and multiple attackers.609
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Figure 22: Equivalent tree structure for the given scenario.
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Figure 23: Tracing steps: single attacker case.
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610

Scenario Travel sequence (until all attackers are found)
Single attacker root, g13 , g25 , g34

Multiple attackers root, g12
, g23

, root, g13
, g25

, g34
,root, g11

, g21

611

Table 6: Traversal sequences for tracing attackers.612

8. Related Work613

8.1. Monitoring stealthiness614

A scalable solution for insider detection using Bayesian analysis is presented615

in [13]. Authors maintain incremental profile scores for each node in the system616

and distinguish suspicious nodes from normal nodes by setting a predefined base-617

line. If a cumulative score of a particular node is deviated from the predefined618

control, an anomaly is declared and that node is identified as an insider who619

warrant further investigation. The major drawback of this approach is setting620

a predefined control as the baseline. Setting predefined controls is very chal-621

lenging in network security monitoring. In a network, normal behaviour keeps622

evolving and a current notion of normal behaviour might not be sufficiently623

representative in the future. Threshold needs to evolve according to the context624

and current state of the network. [37] integrates user’s technological traits (sys-625

tem call alerts, intrusion detection system alerts, honey pot, systems logs, etc)626

with data obtained from psychometric tests (predisposition, stress level, etc) for627

insider detection. User profiles are used to identify the users (human actors)628

who warrant further investigation. [37, 38]. [39] is similar to [37]. It provides629

a research framework for testing hypothesises for insider threats by integrat-630

ing employee data with traditional cyber security audit data. This approach is631

based on pattern recognition and model-based reasoning. Reasoner is the pat-632

tern recognition component which analyses the large amount of noisy data to633

distinguish variations from norms. Data is processed using a dynamic Bayesian634

network which calculates belief levels assigned to indicators and assessed the635

current indicators with the combination of previously assessed indicators to de-636

termine the likelihood of behaviours that represent threats. Probabilities are637

assigned for the Reasoner through expert knowledge. Simulation method is used638

to evaluate the proposed approach realising the difficulty to find real cases in639

this domain. When addressing non human threats it finds difficulties due to the640

psychological profiling components. Hence it is highly organisational dependent,641

and expertise knowledge is needed to fine-tune the model in order to fit with642

new environments. However the idea proposed in all above works to incorporate643

wider range of information into the monitoring process is very interesting. This644

idea increasingly becomes popular among security community [14].645

A co-variance matrix based approach for detecting network anomalies is646

proposed in [40]. It uses the correlation between groups of network traffic sam-647

ples. [41] is an approach which uses connection based windows to detect low648

profile attacks with a confidence measure. Multiple neural network classifiers to649
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detect stealthy probes is used in [42]. Evidence accumulation as a means of de-650

tecting stealthy activities is proposed in [43]. A graph-based anomaly detection651

(GBAD) systems is presented in [44] to discover anomalous instances of struc-652

tural patterns in data that represent entities, relationships and actions. GBAD653

is applied to datasets that represent the flow of information between entities, as654

well as the actions that take place on the information. Authors claim GBAD can655

apply to tackle several security concerns including identifying violation of sys-656

tem security policies and differentiating suspected nasty behaviour from normal657

behaviour. Authors acknowledged the need of reducing the time spent for main658

computational bottleneck. Hence these approaches are not efficient in terms659

of computational cost (specially for event correlation) for monitoring stealthy660

activities lasting in several months. Numbers of anomalous instances are far661

fewer than the number of normal instances is a main constraint for correlation662

based anomaly detection approaches [6, 45] to succeed in monitoring for stealthy663

attacks. Accumulating evidence according to a systematic way would help to664

overcome this issue.665

Information visualisation has been proposed in many scholarly works [46, 47,666

36, 48, 49] as a method for anomaly detection . Researches in this line often claim667

“having to go through huge amount of text data (packet traces, log files, etc) to668

gain insight into networks is a common but a tedious and an untimely task as669

terabytes of information in each day is usual in a moderate sized network” [48].670

Therefore they propose to visualise packet flows in the network assuming that671

it will help network professionals to have an accurate mental model of what672

is normal on their own network and hence to recognise abnormal traffic. For673

example, [46] claims that “the human perceptual and cognitive system comprises674

an incredibly flexible pattern recognition system which can recognise existing675

patterns and discover new patterns, and hence recognising novel patterns in676

their environment which may either represent threats or opportunities”. In677

principle all above works acknowledge that visualisation (by means of graphs or678

animation) is useful in identifying anomalies patterns. But our position, though679

visualisation can be motivated on this as visual cognition is highly parallel680

and pre-attentive than the text or speech, it does little on stealthy activities681

monitoring. Just presenting raw data in graphical form would not be sufficient.682

Visualising a traffic flow of a large network for a very long time will end up with683

a very complicated web of traffic flows. It would be very difficult to compare this684

with analyst’s mental model of the netflow already made in mind. Therefore685

some kind of data reduction and simplification (information fusion) is needed686

before visualising security measures. Essentially these approaches are not either687

systematic or accounted for the “motivation” uncertainty behind an event.688

The work presented in [50] is one of the most recent work similar using689

Bayesian for stealthy activities monitoring, but in a different domain detect-690

ing lone wolf terrorists. [21] combines traditional notion of Motive, Means, and691

Opportunity with behavioural analysis techniques to place each individual on a692

sliding scale of insider risk. User behaviour is compared with her own baseline693

and as well as the behaviours of members in their own peer groups using the694

Euclidean distance. A method for detecting insiders with unusual changes in be-695
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haviour by combining anomaly indicators from multiple sources of information696

is provided in [20]. Authors build a global model and find outliers by comparing697

each user’s activity changes to activity changes of his peer group. [51] defines a698

Bayesian network model that incorporates psychological variables that indicate699

degree of interest in a potential malicious insider. A complex Bayesian network700

for capturing conditional dependencies between different attributes can be found701

in [52]. Using Bayesian technique and its variants for intrusion detection can be702

found in [53]. The relevance of information fusion for network security monitor-703

ing is widely discussed [6, 54]. A comparison of performance between Bayesian704

technique, Counting approach, Linear Regression and Artificial Neural Network705

in insider detection includes [32] which concludes that Bayesian technique is706

better than the other methods. Also [13] demonstrates that Bayesian approach707

is superior to the counting algorithm. All above approaches, except [13, 43],708

require storage of large volumes of event data for analysis. Systems that try709

to model the behaviour of individuals or protocols are forced to retain large710

amounts of data which limits their Scalability. Monitoring algorithm proposed711

in this work is different from [13, 43] by hypothesis, analysis technique and712

decision criteria.713

8.2. Data reduction714

With reference to the Sampling, objectives of network monitoring can be715

classified as Traffic engineering, Accounting and Security specific where accuracy716

requirements in each objectives are quite different. Using sampling for Traffic717

engineering and Accounting is widely studied [55], and already been employed718

by commercially available tools [56]. However those studies are not relevant to719

this work as our objective is a security specific. A successful sampling technique720

in Engineering and Accounting would not be essentially an efficient method in721

Security. Therefore only security related sampling works will be reviewed in this722

section. [57] samples malicious packets with higher rates to improve the quality723

of anomaly detection. High malicious sampling rates are achieved by deploy-724

ing in-line anomaly detection system which encodes a binary score (malicious725

or benign) to sampled packets. Packets marked as malicious are sampled with726

a higher probability. Obviously this approach involves additional processing727

and storage overheads. [58] evaluates quantitatively how sampling decreases the728

detection of anomalous traffic. Authors use the packet volume as the parame-729

ter of interest for this analysis. That work concludes that detecting anomalies730

with low sampling rates is entirely possible by changing the measurement gran-731

ularity, and uses relationship between the mean and the variance of aggregated732

flows to derive optimal granularity. Proposed analysis method in this work was733

impressed by this idea. [59] investigates the performance of various methods of734

sampling in network traffic characterisation. They use several statistics that can735

be used to compare two distributions for similarities, and to compare sample736

traces with their parent population. [60] evaluates the effect of the traffic mix737

on anomaly visibility using traces collected at four different border routers and738

using prior knowledge of two different worm types. Effects of traffic sampling739

on privacy and utility metrics can be found in [61]. But none of above focuses740
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on stealthy activities. Note that methods proposed for typical rapid attacks741

cannot be used to monitor for stealthy activities due to several constraints in-742

cluding the limitations of computational resources [12, 13, 62, 63]. To the best743

of authors knowledge, the work presented in this paper is the first attempt to744

use sampling technique for stealthy activity monitoring in computer networks.745

Based on the sampling frame, existing sampling proposals can be classified746

into two groups: packet-based and flow-based. Packet-based techniques [57, 58,747

59, 60, 64, 65] consider network packets while flow-based techniques [66, 64, 67]748

consider network flows as elements for sampling. Packet sampling is easy to749

implement as it does not involve any processing before selection of samples.750

But in the case of flow sampling, monitored traffic is processed into flows first751

and then apply sampling technique on whole set of flows for drawing a sample.752

This requires to use more memory and CPU power of network devices. The753

most widely deployed sampling method in the literature is packet sampling. It754

is computationally efficient, requiring minimal state and counters [60]. [68] is755

a study of combination of packet and flow sampling. A comparison of packet756

vs flow sampling can be found in [66]. According to [66, 67] flow sampling is757

more accurate than packet sampling. However it should be noted that this not758

necessarily means that flow sampling is always better than packet sampling.759

However, suitability of a sampling method depends on the input parameters to760

the detection algorithm and monitoring objectives. For example, if inputs to the761

detection algorithm is flows, obviously flow sampling should be performed well762

in that scenario than sampling on any other element. [64, 65] are examples to763

justify that suitability of a sampling frame depends on the detection algorithm.764

Former investigates how packet sampling impacts on three specific port scan765

detection methods and the same work has been extended in later to investigate766

the impact of other methods. Event based and Timer based are the two possible767

mechanisms to trigger the selection of a sampling unit for inclusion in a sample.768

Event based approaches collect one elements out of N elements using the chosen769

sampling method. Naive 1 inN sampling strategy by Cisco NetFlow [56] is a well770

known example for that method. It samples one packet after every N packets.771

Event based approaches consume more CPU and memory of network devices as772

it involves some processing (counting). In a timer based approach, one packet is773

sampled during N time units. Though this approach is effective in terms of CPU774

and memory consumption, since it depends on the system timer, choosing larger775

Ns returns higher sampling errors due to the non-time-homogeneous nature of776

packets arrivals to the network.777

8.3. Tracing778

Tracing back is one of the most difficult problems in network security, and779

a lot of research being conducted in this area [69, 70]. But deterministic packet780

marking and out of band approaches are not relevant to this work as proposed781

approach in this work is a probabilistic approach. [71] controls the flooding tests782

network links between routers to approximate the source. To log packets at key783

routers and then to use data mining techniques in determining the path which784

packets traversed through the network is proposed in [72, 73]. The upside of785
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this approach is traceability of an attack long after it has completed. As it is786

obvious, a downside is that not scalable. [74] propose to mark within the router787

to reduce the size of packet log and to provide confidentiality using a hash-based788

logging method. [75] suggest probabilistically marking packets as they traverse789

through routers. Authors propose router marking the packet with either the790

routers IP address or the edges of the path that the packet traversed to reach the791

router. With router based approaches, the router is charged with maintaining792

information regarding packets that pass through it. However above approaches793

are focused on DDoS attacks while this paper interests on events related to slow794

stealthy attacks.795

9. Conclusion796

Analysts find difficulties to weed through the noise of routine security events797

and determine which threats warrant further investigations. The profiling tech-798

nique presented in this paper addresses this issue acting as early warning system.799

It acknowledges the motivation uncertainty to reduce the possible false alarms800

which prevent distraction from actual malicious activities. Proposed approach801

maintains long-term estimates computed on sampled data that individuals or802

nodes are attackers rather than retaining event data for post-facto analysis.803

These estimates can be used as triggers of threats which enable authorities to804

respond to protect systems and deter attackers, for example, by physical, proce-805

dural and technical controls such as reduction in permissions and privileges and806

other incident response activities. Proposed method (section 3) significantly807

reduces the data amounts to handle and maintain. It maintains only a num-808

ber of digits equal to the number of nodes in the network to provide a unified809

view of the state of the network. One advantage of this monitoring strategy810

is combining multiple indicators not in an ad-hoc but rather in a data-driven811

manner. Sampling technique utilised in this work draws representative samples.812

However required level of sampling rate depends on several factors: detection813

algorithm, parameter of interest, sampling method, level of precision required,814

duration of monitoring, rate of attack events etc. Further research is needed to815

identify limitations of sampling in security of cyber physical security systems.816

With regards to the attribution, finding the correct origin of the activities is817

very important in cyber systems to locate the right person responsible with a818

view of persuading them not to do that again. In a situation there are mul-819

tiple suspected sites to investigate prioritisation centres of attention would be820

a problematic. Proposed tracing algorithm would help on that, but not solved821

the attribution problem completely. Investigating more advanced anonymity822

monitoring technique (e.g. [76]) with the tracing algorithm will be interesting823

to develop it as more attribution oriented. This is left as future work.824
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