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2 Laboratoire de Physique Théorique et Modélisation (CNRS UMR 8089),
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Abstract

We perform numerical simulations of the lattice-animal problem at the upper
critical dimension d = 8 on hypercubic lattices in order to investigate logarithmic
corrections to scaling there. Our stochastic sampling method is based on the pruned-
enriched Rosenbluth method (PERM), appropriate to linear polymers, and yields
high statistics with animals comprised of up to 8000 sites. We estimate both the
partition sums (number of different animals) and the radii of gyration. We re-verify
the Parisi-Sourlas prediction for the leading exponents and compare the logarithmic-
correction exponents to two partially differing sets of predictions from the literature.
Finally, we propose, and test, a new Parisi-Sourlas-type scaling relation appropriate
for the logarithmic-correction exponents.
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1 Introduction

A lattice animal is a cluster of connected sites on a regular lattice. The enumeration of
such objects – also called polyominoes – is a combinatorial problem of interest to math-
ematicians [1], while in physics, they are closely linked to the problems of percolation
[2] and clustering in spin models [3]. In chemistry they form a basis for models of ran-
domly branched polymers in good solvents [4]. Lattice animals linked by translations
are considered as belonging to the same equivalence class, and as such are considered to
be essentially the same. Of interest is ZN , the number of distinct animals containing N
sites. A related objective is the calculation of the radius of gyration RN , related to the
average distance of occupied sites from the centre of mass of the lattice animal. A number
of variants of the lattice animal are studied: bond lattice animals, which are clusters of
connected bonds; weakly embedded and strongly embedded trees. It is believed that all
these different models belong to the same universality class [5].

It is now established that the number of lattice animals and the radius of gyration
behave, to leading order in N , as [4]

ZN ∼ µNN−θ , (1)

RN ∼ Nν . (2)

Here θ is related to the rate of growth of ZN and ν = 1/dH where dH is the Hausdorff
(fractal) dimension of the lattice animals.

It is useful to define the generating function (or grand-canonical partition function)
for the model as

Z =
∞
∑

N=0

KNZN . (3)

The growth constant µ is related to the critical fugacity Kc defining the radius of conver-
gence of the generating function (3). To leading order,

Z ∼ |1− µKc|
θ−1, (4)

giving the identification µ = 1/Kc. The growth constant µ is related to the critical fugacity
of the corresponding field theory and depends on the lattice coordination number, while
the entropic exponent θ and the correlation-length exponent ν are universal [6].

Lattice animals may be viewed as the graphs arising from high-temperature expansions
of related magnetic models, in particular the high temperature expansion of (the derivative
of) the free energy of the q = 1 Potts models, which in turn is related to the percolation
problem. Parisi and Sourlas related the problem of branched polymers, and hence lattice
animals, in d dimension with the Yang-Lee edge problem in d−2 dimension, and predicted
that θ and ν are related by [7]

θ = (d− 2)ν + 1 . (5)

This relation was re-derived in an interesting fashion [8]: identifying Z as the high-
temperature expansion of a magnetic model leads to the identification of K with the
magnetic and thermal scaling fields of the related magnetic model, indicating that the
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lattice animal is controlled by a single scaling field. This leads to the relations 3−θ = γ =
α. The exponents α and γ are the usual critical indices related to the divergence of the
specific heat and susceptibility of the related Potts model. Substituting the mean-field
exponents into the usual hyperscaling relation α = 2− dν would lead to an upper critical
dimension of 6, whereas the correct upper critical dimension is 8, indicating that there is
an anomalous scaling and that hyperscaling is modified, with d replaced by d− 2:

α = 2− (d− 2)ν (6)

and Eq.(5) is recovered.
In Ref. [5], the Parisi-Sourlas predictions for the leading behaviour for both Eqs.(1)

and (2) were verified in dimensions d = 2 to d = 9 using a high-statistics numerical study
with lattice animals with up to several thousand sites in each case. The measured values
of θ and ν were compatible with the Parisi-Sourlas scaling relation.

Although experimentally inaccessible, a complete understanding of the lattice-animal
problem includes the upper critical dimension d = 8. At and above this dimension, the
critical exponents take on the mean-field values ν = 1/4 and θ = 5/2 [9]. In eight dimen-
sions, the scaling forms (1) and (2) are modified by multiplicative logarithmic corrections.
Indeed, in the high-precision study of Ref. [5], very large corrections to Eqs.(1) and (2)
were reported in eight dimensions. While it was presumed that these corrections are loga-
rithmic in nature, no attempt at a detailed fit to them was made because the authors were
unaware of theoretical predictions beyond the leading order, and because of the notorious
difficulty in fitting to such logarithms. It is expected that at the upper critical dimension
dc = 8, ZN and RN scale as

ZN ∼ µNN−θ(lnN)θ̂ , (7)

RN ∼ Nν(lnN)ν̂ , (8)

with θ = 5/2 and ν = 1/4. The values of the logarithmic correction exponents θ̂ and ν̂
are the subject of the present article.

The mean-field exponents for the lattice animal model correspond to the exponents
calculated from a φ3 theory with reduced temperature t = 0 and where the reduced mag-
netic field h is used as a temperature-like variable. This is consistent with the realisation,
stated above, that in this model there is only one scaling field, linked to the magnetic
field of the underlying magnetic model. The full set of mean-field exponents are

α =
1

2
, β =

1

2
, γ =

1

2
, δ = 2, ν =

1

4
, and η = 0 . (9)

These exponents are related by Fisher renormalisation to the standard mean-field expo-
nents obtained setting h = 0 and varying t. These Fisher-renormalised exponents are

αX = −1, βX = 1, γX = 1, δX = 2, νX =
1

2
, and ηX = 0 . (10)

Whilst in the lattice animal model there is only a single scaling field (h), in the equivalent
Yang-Lee model it is possible to vary both t and h independently.
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This pairing via Fisher renormalisation and scaling relations have permitted new an-
alytic predictions for the logarithmic corrections [10]: θ̂ = 1/3, consistent with the pre-
diction of Ref. [11] and ν̂ = 1/9. The latter differs from a previous renormalisation-group
based prediction: ν̂ = −1/72 [11]. We therefore considered it worthwhile to revisit the
problem of lattice animals in d = 8 dimensions in an attempt to discern whether the
numerics support either of these analytic predictions for logarithmic corrections.

In what follows we find numerical support for logarithmically-corrected scaling be-
haviour in eight dimensions, with θ̂ = 1/3. Although the numerics for the radius of gy-
ration yield less convincing results, they appear more compatible with the value ν̂ = 1/9
predicted in Ref. [10] than ν̂ = −1/72 predicted in Ref. [11].

2 Scaling at the upper critical dimension

While the leading exponents θ and ν in Eqs.(7) and (8) are not in doubt, there are two
sets of predictions in the literature for their logarithmic-correction counterparts θ̂ and ν̂.
In Ref. [11], Ruiz-Lorenzo analytically studied these and other logarithmic corrections for
a generic φ3 scalar field theory at its upper critical dimension d = 6. This theory, with
imaginary coupling, is known to describe the Yang-Lee problem [12]. The latter originates
from the study of the Yang-Lee edge singularity, which may be regarded as a critical or
pseudo-critical point.

Parisi and Sourlas advanced a relationship between the Yang-Lee singularity in D
dimensions and the lattice-animal problem in d = D+2 dimensions [7]. Recently, an exact
mapping between the two problems established this relationship on a rigorous footing [13].
The renormalisation-group calculation of Ref. [11] for the Yang-Lee problem (φ3 theory
with imaginary coupling) in d = 6 dimensions yields a free energy as a function of the
magnetic field, the singular part of which is of the form

f ∼ h
3

2 (ln h)
1

3 . (11)

The grand canonical partition function for the lattice animals is

Z =
∑

N

KNZN , (12)

where, with ZN given by Eq.(8), scales as

Z ∼ |1−Kµ|θ−1| ln |1−Kµ||θ̂ . (13)

The Parisi-Sourlas mapping, then, identifies Eq.(11) for the Yang-Lee problem with
Eq.(13) for the lattice animals, with the magnetic field in the former case being replaced
by the fugacity in the latter. This leads to the predictions θ = 5/2 and θ̂ = 1/3 for the
lattice-animal problem in d = 8 dimensions [11], which are supported by previous direct
calculations [4]. The φ3-approach also leads to analytic predictions for the correlation
length,

ξ(h) ∼ h−1/4| lnh|−1/72, (14)
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which translates to ν = 1/4 and ν̂ = −1/72 for lattice animals.
The lattice animal and Yang-Lee problems can be considered either with the field or the

order parameter held constant, with constant field being the more natural in field theory
[14]. The corresponding two sets of critical exponents are linked via Fisher renormal-
ization [15]. The Fisher renormalization scheme for logarithmic-corrections was recently
established in Ref. [10]. In Ref. [11], Ruiz-Lorenzo has also determined the constant-order-
parameter critical exponents and, in particular, the constant-order-parameter logarithmic-
correction exponent for the correlation-length is given as ν̂X = 5/18 [11]. Applying
the Fisher-renormalization relations from Ref. [10] with this value yields the prediction
ν̂ = 1/9, which is different to the constant-field estimate ν̂ = −1/72 quoted above.

To summarize, the renormalization-group approach of Ref. [11] yields constant-field
estimates for the leading entopic and Flory critical exponents which agree with mean-field,
have been checked numerically in Ref. [5] and which are not in doubt. The corresponding
logarithmic exponents are θ̂ = 1/3 and ν̂ = −1/72. In Ref. [11], constant-order-parameter
estimates are also given, which, when Fisher renormalized also yield θ̂ = 1/3 but ν̂ = 1/9.
while all leading exponents and Ruiz-Lorenzo’s RG calculations for the φ3 theory agree
with mean-field predictions, and while calculations for the logarithmic-correction expo-
nents agree with all previous estimates where they exist (besides the Yang-Lee problem,
these include for spin glasses and for percolation in six dimensions), the disparity between
the estimates for ν̂ requires further investigation and we chose a non-perturbative, nu-
merical approach. It is also necessary to check if θ̂ = 1/3 is supported numerically, as this
has not been tested non-perturbatively before.

3 Numerical approach

The numerical data was obtained using the prune-enriched Rosenbluth method (PERM)
which is a variant of the Rosenbluth-Rosenbluth Monte Carlo method for self-avoiding
walks designed to avoid the ensembles being dominated by a few high weight clusters and
to avoid undue time being used calculating clusters with small weights [16]. This is avoided
by reducing the width of the weights distribution by pruning low-weight configurations
while cloning high-weight ones. To apply this approach to lattice animals, we have to
estimate the cluster weight while it is still growing. The approach, which is discussed
in detail in Ref. [5], generates independent clusters from different Monte Carlo tours and
therefore leads to straightforward estimates for the errors in the raw data for the partition
sums and gyration radii.

In Fig. 1 lnZN − aN is plotted against lnN . The constant a = lnµ is set to the best
fit value a = lnµ = 3.554830. The asymptotic value of the slope is consistent with the
expected value of θ = 5/2. To investigate the logarithmic corrections, the leading scaling
behaviour is subtracted out, and lnZN − aN + (5/2) lnN is plotted against ln (lnN) in
Fig. 2. The middle line shows the plot corresponding to the best fit value of a = 3.554830,
whilst the other two lines correspond to the upper and lower error bounds a = 3.554827
(upper line) and a = 3.554833 (lower line). The insert shows the last section of the curve,
which can be seen to have a slope consistent with θ̂ = 1/3. (Note that although the
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Figure 1: The leading dependency of the partition sum ZN on the animal size N with
a = lnµ = 3.554830. The line is of slope −5/2 to guide the eye.
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Figure 2: The three sets of data correspond to a = lnµ = 3.554827 (upper set) a =
3.554830 (middle) a = 3.554833 (lower). The asymptotic slope is expected to yield the
logarithmic-correction exponent θ̂. While the pre-asymptotic, smaller-N data has a slope
of about 0.58, the middle data of the inset, which corresponds to larger N values has a
line of slope ∼ 1/3 and a line of this slope is included to guide the eye.
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Figure 3: The points show the log correction to Z2

N/Z2N . The solid line has the expected
slope of θ̂ = 1/3. The dashed line is a fit to the data and has slope 0.58. The measured
slope corresponds to the slope of the pre-asymptotic part of the curve shown in Fig. 2
(see text).

horizontal axis has relatively short range, since it is on a log-log scale it corresponds to a
wide range of animals sizes, from N ≈ 6000 to N = 8000.)

The slope in the sizes of animals calculated is sensitive to the precise value of a. One
may attempt to eliminate a by using two values of N , as

Z2

N

Z2N
∼ N−θ

(

ln2N

ln 2N

)θ̂

. (15)

In Fig. 3 we plot ln(Z2

N/Z2N) + 5/2 lnN against ln(ln2 N/ ln 2N), and the larger-N value
of the slope appears closer to 0.58 than to the expected θ̂ = 1/3. However, this method
relies heavily on the first half of the data, which corresponds to relatively small N values
and is far from asymptotic. Indeed, the pre-asymptotic portion of the best-fit curve in
Fig. 2 is also well fitted by a straight line of slope 0.58, and we therefore consider the
asymptotic regime not to have been reached in Fig. 3.

The situation for ν̂ is less clear. Although the leading behaviour is again well verified,
as shown by Fig. 4, the curve for the logarithmic correction is far from having reached
its asymptote. The insert in Fig. 4 compares the last portion of the graph with the
prediction ν̂ = 1/9. Whilst tending towards the correct value in the insert, the true
asymptotic value remains to be determined. However, the graph does indicate that the
logarithmic correction exponent ν̂ is likely positive, and so supports ν̂ = 1/9 more than
ν̂ = −1/72.
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animals and the the line is of slope 2ν̂ = 2/9 to guide the eye.
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4 Discussion

The scaling relation θ = (d − 2)ν + 1, introduced in Ref. [7], is essentially hyperscaling
with the dimension replaced by d − 2 for lattice animals corresponding to dimensional
reduction arising in the mapping from lattice animals to the Yang-Lee model. In Ref. [17],
a set of scaling relations for logarithmic corrections were developed, which included the
corresponding hyperscaling relation α̂ = d(q̂ − ν̂) in which α̂ is the correction exponent
for the specific heat or free energy and q̂ is a logarithmic-correction exponent for the
finite-size scaling of the correlation length.

In the case of lattice animals, α̂ may be identified with θ̂, from Eq.(13). Then, reducing
the dimensionality appropriately, we find

θ̂ = (d− 2)(q̂ − ν̂) . (16)

This is the logarithmic counterpart to the Parisi-Sourlas equation.
The value q̂ = 1/6 was proposed in Ref. [17] for lattice animals, also on the basis of

scaling relations. Together with the estimates θ̂ = 1/3 and ν̂ = 1/9, Eq.(16) holds in the
present case. Indeed, the value ν̂ = 1/9 fits the full set of scaling relations for logarithmic
corrections proposed in Ref. [17]. On the other hand, ν̂ = −1/72 does not satisfy the
scaling relations when used in conjunction with the other exponent values known and
reported in Ref. [11].

We have revisited the problem of lattice animals at the upper critical dimension d = 8
and re-verified that the universal exponents θ and ν take their mean-field values there. We
also provide numerical evidence in support of the (uncontested) logarithmic counterpart
to the entopic index, θ̂ = 1/3 and give an estimate for the growth non-universal constant
µ. Regarding the logarithmic counterpart of the ν exponent, there are two candidate
values in the literature. One of these is a direct constant-field calculation in Ref. [11],
and the other is a Fisher renormalized version of the constant-order-parameter value also
determined in Ref. [11]. Only the latter is consistent with the scaling relations, including a
logarithmic version of the Parisi-Sourlas relation proposed herein. Our numerical evidence
also indicates that the latter value is more likely to be the correct one, but, because of
difficulties in achieving the asymptotic scaling regime, does not absolutely confirm the
particular value.
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