
Efficient simulation of the random-
cluster model
Elçi, E.M. and Weigel, M.

Published version deposited in CURVE June 2014

Original citation & hyperlink:
Elçi, E.M. and Weigel, M. (2013) Efficient simulation of the random-cluster model. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, volume 88 (3): 33303
http://dx.doi.org/10.1103/PhysRevE.88.033303

Publisher statement: © 2013 American Physical Society

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228144502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.88.033303
http://curve.coventry.ac.uk/open

PHYSICAL REVIEW E 88, 033303 (2013)

Efficient simulation of the random-cluster model

Eren Metin Elçi and Martin Weigel
Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United Kingdom

and Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
(Received 27 July 2013; published 16 September 2013)

The simulation of spin models close to critical points of continuous phase transitions is heavily impeded by
the occurrence of critical slowing down. A number of cluster algorithms, usually based on the Fortuin-Kasteleyn
representation of the Potts model, and suitable generalizations for continuous-spin models have been used to
increase simulation efficiency. The first algorithm making use of this representation, suggested by Sweeny in
1983, has not found widespread adoption due to problems in its implementation. However, it has been recently
shown that it is indeed more efficient in reducing critical slowing down than the more well-known algorithm due to
Swendsen and Wang. Here, we present an efficient implementation of Sweeny’s approach for the random-cluster
model using recent algorithmic advances in dynamic connectivity algorithms.

DOI: 10.1103/PhysRevE.88.033303 PACS number(s): 05.10.Ln, 05.70.Fh, 75.10.Hk

I. INTRODUCTION

In the vicinity of a continuous phase transition, particle or
spin systems of statistical mechanics develop extended spatial
correlations signaling the onset of long-range translational
order through spontaneous symmetry breaking. It has been
realized early on that these phenomena suggest a description
of the ordering in geometrical terms, using analogies to
the percolation transition [1]. While Fisher’s droplet model
initially considered simple clusters of like spins (geometrical
clusters) as the relevant quantities, it was only gradually
realized in the 1980s that the relevant collective degrees of
freedom, or “physical clusters,” are indeed of a different nature,
and they can be constructed by breaking the geometric clusters
up following a suitable stochastic prescription activating bonds
within clusters with probability p = 1 − exp(−J/kBT) < 1
[2]. Initially, this breakup was only applied to one spin species
(of the Ising model, say), leading to inconsistencies in the
symmetric high-temperature phase. It was in an independent
line of thought by Fortuin and Kasteleyn [3] that an equivalence
of the partition function of the q-state Potts model [4] to a
correlated bond-percolation problem known as the random-
cluster model with partition function

ZRC =
∑
G ′⊆G

vb(G ′)qn(G ′) (1)

was established. Here, G ′ denotes the set of b(G ′) activated
edges on a lattice graph G, resulting in n(G ′) connected
components, and the bond weight v = p/(1 − p). These
results led Hu [5] to generalize the above bond activation
probability to all geometric clusters irrespective of their
orientation. As a consequence, the right choice of physical
droplets is now well understood, and the equivalence of
their percolation properties and thermal quantities has been
explicitly checked [6].

The growth without bounds of static correlations in critical
systems is accompanied in the time domain by a divergence of
relaxation times known as critical slowing down [7]. While this
is a physical phenomenon connected, for instance, to the effect
of critical opalescence, it is also of direct relevance for the
pseudodynamics in Monte Carlo simulations of near-critical
systems. As this leads to an asymptotic inefficiency of Markov

chain Monte Carlo in producing independent samples, an
improved understanding of spatial correlations was hoped to
translate into suitable nonlocal updating procedures allowing
to precisely study near-critical systems. Initial attempts in this
direction, such as variants of the multigrid approach [8,9], were
based on renormalization group ideas, and turned out to be only
moderately successful. The first Monte Carlo algorithm based
on the concept of physical clusters was suggested by Sweeny
in 1983 [10]. He considered a direct simulation of the bond
variables of Eq. (1), randomly suggesting state switches from
active to inactive and vice versa. As the relevant Boltzmann
weight depends on the number n(G ′) of connected components
resulting from a given bond configuration, calculating the
acceptance probability of the bond moves needs up-to-date
information about cluster connectivity. Hence, a single update
might require the expensive traversal of large (possibly
spanning) clusters, potentially destroying the computational
advantage of an accelerated decorrelation of configurations
through computational critical slowing down [11].

An alternative suggestion made by Swendsen and Wang
[12] works directly on the spin configuration, freezing bonds
between like spins with probability p = 1 − exp(−J/kBT)
and independently flipping the resulting spin clusters. Instead
of working in the graph language alone, this series of
alternating updates of spin and bond variables corresponds to a
Markov chain in an augmented state space [13]. The resulting
algorithm (with its many variants including, for instance,
the single-cluster version [14]) is rather straightforward to
implement and turns out to be very efficient in beating critical
slowing down, reducing the dynamical critical exponent,
e.g., of the two-dimensional (2D) Ising model from z ≈ 2
for local spin flips to z ≈ 0.2 [15]. Owing to this success
of the Swendsen-Wang algorithm and related techniques as
well as the delicacies of maintaining up-to-date connectivity
information, Sweeny’s approach was not used by many
researchers. Also, its reduction of critical slowing down was
not precisely investigated until about 20 years after the original
work, it was claimed that a variant of the single-bond algorithm
was completely free of critical slowing down [16]. Although
this was later shown to be incorrect [17], it was not until
recently that its dynamical critical behavior was investigated in
more detail [18,19], revealing the surprising feature of critical

033303-11539-3755/2013/88(3)/033303(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.033303

EREN METIN ELÇI AND MARTIN WEIGEL PHYSICAL REVIEW E 88, 033303 (2013)

speeding up, i.e., z < 0, for certain ranges of q alongside
generally smaller dynamical critical exponents than those
found for the Swendsen-Wang dynamics.

Besides it being a very elegant and direct sampling
procedure for the weights of Eq. (1), another favorable
feature of Sweeny’s approach is its general applicability to
arbitrary values of q: while the Potts model is only defined
for integer q = 1, 2, 3, . . . , the random cluster model of
Eq. (1) is meaningful for any real value q � 0, serving as
an analytic continuation of the Potts model to real q [20].
The Swendsen-Wang algorithm, originally working with a
joint spin and bond representation meaningful only for integer
q, can be generalized to noninteger q � 1 [21]. The bond
algorithm, however, is the only approach for 0 < q < 1. This
fact has prompted a number of researchers to use Sweeny’s
approach to probe the q < 1 regime, for instance, to study the
fractal properties of the cluster structure [22–24]. The main
obstacle to a more widespread adoption, however, has been
the problem of expensive connectivity checks: inserting an
edge might join two previously unconnected clusters, deleting
a bond can lead to cluster fragmentation. A naive approach
without additional data structures appears to require the tracing
out of one (or two) randomly chosen cluster(s) to check for
connectivity. As the average cluster size scales proportional to
Lγ/ν [25] and γ /ν � 1.75 for the random-cluster model, the
cost of a full lattice sweep is almost squared as compared to
single spin flips or Swendsen-Wang. In his paper, Sweeny had
suggested a specific solution for the case of two-dimensional
lattices, replacing the traversal of clusters with a tracking of
boundary loops on the medial lattice [10,11]. Irrespective of
space dimension, a pair of interleaved breadth-first searches
starting from both ends of the bond currently examined can
also dramatically improve the situation [11,26]. While these
connectivity algorithms still exhibit power-law scaling with
the size of the system, fully dynamic connectivity algorithms,
where edge insertions and removals can be performed in
amortized times at most (poly)logarithmic in the system size,
are known in computer science [27,28]. Here, we compare a
number of different implementations of Sweeny’s algorithm
for simulations of the random-cluster model to each other
as well as to the Chayes-Machta-Swendsen-Wang dynamics
[12,21]. The combination of a polylogarithmic dynamic
connectivity algorithm and Sweeny’s single-bond approach is
shown to be the more efficient way, asymptotically, to simulate
the random-cluster model at criticality.

The rest of the paper is organized as follows. In Sec. II, we
introduce Sweeny’s algorithm in more detail and describe the
three different variants of connectivity checks implemented
here: breadth-first search, union-and-find, and dynamic con-
nectivities. Section III contains an in-depth comparison of
the scaling of properties of these approaches as compared
to the Chayes-Machta-Swendsen-Wang dynamics in terms of
simulation as well as computer time for the case of simulations
on the square lattice. Finally, Sec. IV contains our conclusions.

II. MODEL AND ALGORITHMS

The random-cluster model (RCM) assigns weights to (span-
ning) subgraph configurations G ′, i.e., subsets of activated
edges and the complete set of vertices, of the underlying graph

G according to [20]

wRC(G ′) = qn(G ′)vb(G ′), (2)

leading to the partition sum of Eq. (1). For integer values of
the cluster weight q, the partition function (1) is identical [3]
to that of the q-state Potts model with Hamiltonian

H = −J
∑
b∈G

δσi ,σj
, (3)

where b = (i,j) is an edge in the graph G, and σi ∈ {1, . . . ,q}.
For the purposes of this study, we will restrict ourselves to
graphs in two dimensions, namely compact L × L regions of
the square lattice, applying periodic boundary conditions. For
this case, the ordering transition of the Potts model occurs
at the coupling J/kBT = ln(1 + √

q), corresponding to the
critical bond weight vc = √

q in Eq. (1). This transition is
continuous for q � 4 and first order for q > 4 [4].

A. Sweeny’s algorithm

Starting from the results of Fortuin and Kasteleyn [3],
Sweeny suggested to directly sample bond configurations
of the RCM according to the weight (2). For any subgraph
G ′, the basic update operation is then given by the deletion
of an occupied edge or the insertion of an unoccupied
edge. According to Eq. (2), the corresponding transition
probabilities depend on the changes �b of the number of
active edges and �n of the number of connected components
or clusters. While �b is trivially determined to equal +1
for edge insertion and −1 for edge removal, respectively,
the change in cluster number depends on whether a chosen
inactive edge is internal to one cluster (�n = 0) or, instead,
it is external and hence amalgamates two existing clusters if
activated (�n = −1). Likewise, removing an edge might lead
to �n = 0 or �n = +1, depending on whether an alternative
path exists connecting the end points of the removed edge. The
construction and implementation of data structures supporting
the efficient calculation of �n constitutes the intricacy of
Sweeny’s algorithm and the focus of the present work.

Importance sampling for the weight (2) can be constructed
along well-known lines, the most common choices being the
heat-bath and Metropolis schemes [29]. In both cases, a bond
is randomly and uniformly selected from the graph and a “flip”
of its occupation state from inactive to active or vice versa is
proposed. The heat-bath acceptance ratio, used in the original
approach of Sweeny [10], is then given by

pHB
acc (�b,�n) = q�nv�b

1 + q�nv�b
. (4)

For Metropolis-Hastings, on the other hand, we have

pMH
acc (�b,�n) = min(1,q�nv�b). (5)

It is easily seen that

1

2
� pHB

acc

pMH
acc

= max(1,q�nv�b)

1 + q�nv�b
< 1.

Depending on q and v, we hence expect up to two times
larger acceptance rates for the Metropolis variant. At criticality,
v = √

q, the minimal ratio pHB
acc/p

MH
acc = 1/2 is reached in the

033303-2

EFFICIENT SIMULATION OF THE RANDOM-CLUSTER MODEL PHYSICAL REVIEW E 88, 033303 (2013)

percolation limit q = 1. In contrast to Ref. [10], our numerical
experiments concentrate on Metropolis acceptance.

As, depending on the data structures used, the determination
of the change �n in cluster number is the most expensive
operation, it is economic to only determine �n if it is actually
required for the update. In an update attempt, one draws a
random number uniformly in [0,1[; if r � pacc the move is
accepted, otherwise it is rejected. Given that

r � min
�n

pacc(�b,�n),

where �n ∈ {0, − 1} for insertion and �n ∈ {0, + 1} for
deletion, respectively, the move can be unconditionally ac-
cepted [16]. Conversely, for

r > max
�n

pacc(�b,�n)

unconditional rejection occurs. At criticality, v = √
q, this

results in a fraction

min(
√

q,1/
√

q)

of moves which can be unconditionally accepted or rejected
under the Metropolis dynamics.1 Likewise, for the heat-bath
rate (4), a fraction

2

1 + √
q

min(1,
√

q)

of move attempts can be decided without actually working out
�n. Note that, in both cases, these fractions tend to unity as
q → 1 which is a result of the cluster weight (2) becoming
independent of cluster number in the uncorrelated percolation
limit. Connectivity checks are hence never required there.

B. Connectivity algorithms

The main complication for an efficient implementation
of the bond algorithm is to maintain the full connectivity
information of the current subgraph. Consider a flip attempt
on a random edge; it can be currently in the active or inactive
(inserted or deleted) state. For each of these cases, one needs to
distinguish internal from external edges, such that independent
paths connecting the two end points either exist (internal edge)
or are absent (external edge). This leads to the four cases of
insertions or deletions of internal or external edges, each of
which can exhibit rather different runtime scaling behavior
depending on the chosen implementation.

1. Breadth-first search

The simplest approach to the connectivity problem is to not
maintain any state information about clusters and determine
the value of �n for each individual bond move from direct
searches in the graph structure around the current edge
e = (i,j). Such traversals are most naturally implemented
as breadth-first search (BFS) [30] starting from one of the
endpoints, say i, while not being allowed to cross the edge e.
In the case of an external edge, the cluster attached to i needs

1Note that in the Metropolis dynamics there are no unconditional
rejections, while unconditional acceptance and rejection occur at
equal rates for heat-bath rates.

to be fully traversed. For an internal edge, on the other hand,
the search starting at i terminates once it arrives at j , having
found an alternative path connecting i and j . Instead of the
BFS one could also use a depth-first search (DFS) to achieve
the same result [30]. We found essentially no differences in
the run-time behavior of both variants, however, and hence did
not consider this possibility in more detail. To determine the
asymptotic runtime at criticality of these operations, we note
that the average number of clusters with mass s per lattice site
is [25]

ns ∼ s−τ e−cs , (6)

where τ is the cluster-size or Fisher exponent. A randomly
picked site will therefore, on average, belong to a cluster of
size

M2 =
∑

s

s2ns ∼
∫

s2−τ e−cs ∝ cτ−3 ∼ L(τ−3)/σν,

where the last identity follows from c ∼ |p − pc|1/σ and
the standard finite-size scaling ansatz |p − pc| ∼ L1/ν . Since
(3 − τ)/σ = γ , we arrive at a typical cluster size M2 ∼ Lγ/ν

[25]. For operations on external edges, we therefore expect
an asymptotic scaling of runtimes ∼Lγ/ν . For internal edges,
on the other hand, the relevant effort corresponds to the total
number of visited sites of a BFS starting from site i until it
reaches j . In this case, the number of shells � in the BFS at
termination is just the shortest path between i and j . As shown
by Grassberger [31,32], for bond percolation, the probability
of two nearby points on the lattice to be connected by a shortest
path of length � is p(�) ∼ l−ψ�L(�/Ldmin), where

ψ� = 1 + 2β

νdmin
+ g1

dmin
.

Here, dmin is the shortest-path fractal dimension [33] and g1 is
the scaling exponent related to the density of growth sites [32].
Ziff [34] demonstrated that g1 = x2 − 2β/ν, where x2 is the
two-arm scaling exponent [35,36]. Hence ψ� = 1 + x2/dmin.
As a result, the average length of the shortest path between
nearby points exhibits system-size scaling according to

〈�〉 ∼ Ldmin−x2 . (7)

The number of sites touched by a BFS from i to j separated
by a shortest path of length � is expected to be �d̂ , where
d̂ = dF /dmin is known as the spreading dimension [33]. Here,
dF = d − β/ν denotes the fractal dimension of the percolating
cluster. Hence, the average number of sites touched by the BFS
for an internal edge is

〈�d̂〉 ∼ LdF −x2 . (8)

Note that, while dF and x2 are exactly known [25,37], this is
not the case for dmin [11,38].

The asymptotic runtime scaling of the Sweeny update using
sequential BFS (SBFS) hence depends on the fractions of
internal and external edges encountered. These are found to
be asymptotically L independent numbers 0 < rint, rext < 1
which, however, vary with q [39,40]. Comparing the scaling
exponents for the operations on internal and external edges, it is
found that γ /ν > dF − x2 for the whole range 0 � q � 4, cf.
the data compiled in Table III. As a consequence, the stronger

033303-3

EREN METIN ELÇI AND MARTIN WEIGEL PHYSICAL REVIEW E 88, 033303 (2013)

TABLE I. Asymptotic run-time scaling at criticality of the
elementary operations of insertion or deletion of internal or external
edges, respectively, using sequential breadth-first search (SBFS),
interleaved BFS (IBFS), union-and-find (UF), or the fully dynamic
connectivity algorithm (DC) as a function of the linear system
size L.

Move SBFS IBFS UF DC

Internal insertion LdF −x2 LdF −x2 const log2 L

External insertion Lγ/ν LdF −x2 const log2 L

Internal deletion LdF −x2 LdF −x2 LdF −x2 log2 L

External deletion Lγ/ν LdF −x2 Lγ/ν log2 L

Dominant Lγ/ν LdF −x2 Lγ/ν log2 L

scaling ∼Lγ/ν of the operations on external edges will always
dominate the running time in the limit of large system sizes.

An improvement suggested by the authors of
Refs. [11,26,41] concerns the quasisimultaneous execution
of both BFSs. In practice, no hardware-level parallelism
is needed here and, instead, sites are removed from the
BFS queues of the two searches in an alternating fashion,
effectively leading to an interleaved structure of the cluster
traversals. To understand the benefit of this modification,
consider the insertion of an edge e. If it is external, i and
j belong to separate clusters C1 and C2 after the deletion
of e. In this case, the searches terminate as soon as the
smaller of the two clusters has been exhausted, i.e., after
C2,min ≡ min(|C1|,|C2|) steps. Deng et al. [11] have shown
that, at criticality, this minimum scales as LdF −x2 , i.e., with the
exponent already found above for operations on internal edges
in SBFS. For the case of an internal edge, the interleaved
searches terminate as soon as they meet each other. As
argued by the authors of Ref. [11] this time again exhibits the
same runtime scaling ∼LdF −x2 which is hence the relevant
asymptotic behavior of the critical bond algorithm using
interleaved BFS (IBFS). In Table I we compare the runtime
scaling of the elementary operations between the different
implementations of connectivity checks considered here.

2. Union-and-find

Sequential amalgamations of clusters through the addition
of bonds can be handled efficiently using tree-based data
structures under a paradigm known as union-and-find. This is
traditionally applied to set partitioning [30], but has also been
used in lattice models for highly efficient simulations of the
bond percolation problem [42]. Each cluster is represented as
a directed tree of nodes with pointers to their parent nodes; the
root corresponds to a designated site representing the cluster
as a whole. In this data structure, connectivity queries are
answered by path traversal to the root sites, such that two sites
are connected if and only if they have the same root. Using path
compression [30], where (most of) the node pointers directly
link to the cluster root, as well as a balancing heuristic that
attaches the smaller cluster to the root of the bigger in case
of cluster fusion, allows to perform the connectivity check
with a worst-time scaling practically indistinguishable from a
constant [43].

Using this data structure for an implementation of the
bond algorithm for the RCM [44], edge insertion requires
a connectivity check. If the edge is identified as internal, the
cluster structure remains unchanged on its insertion which
hence can be performed in constant time. For an external
edge, insertion is realized through the attachment of the cluster
root of the smaller cluster to the bigger which is, again, a
constant-time operation. For the deletion of an edge e = (i,j),
the information about alternate paths between i and j is
not directly contained in the data structure. We hence use
interleaved BFS to detect such paths, with a computational
effort asymptotically proportional to LdF −x2 . For an internal
edge, this completes the deletion. For the case of an external
edge, leading to the fragmentation of the original cluster, a
complete relabeling of both new clusters is required, however,
resulting in a total scaling of ∼Lγ/ν for this step, cf. Table I.

The total effective runtime of a bond simulation with
union-and-find data structure depends on the frequency of
the individual operation types. The average number of active
bonds at criticality can be worked out from results for the
square-lattice Potts model, where the critical internal energy
density is found to be uc = 1 + 1/

√
q [4]. Since 〈b/N〉 = pu

(see, e.g., Ref. [45]), one finds 〈b/2N〉 = 1/2 for critical 0 �
q � 4. Here, N denotes the total number of vertices. Thus, the
bond occupation probability of the critical RCM corresponds
to the pure bond percolation threshold, irrespective of q. For
random bond selection, this results in constant and equal
fractions of insertions and deletions. As mentioned above in
the context of the BFS technique, the fractions of internal
versus external edges are different from zero for all values of
q. Hence, it is the most expensive operation which dominates
the asymptotic scaling behavior, and we hence expect ∼Lγ/ν

scaling for the union-and-find implementation, although all
insertion moves are performed in constant time.

3. Dynamic connectivity algorithm

While union-and-find uses data structures that allow for
insertions and connectivity checks in constant time, there exist
modified data structures for which also edge deletions are
supported without the need of an expensive ∼Lγ/ν rebuild
operation in the case of an external edge. A number of such
“fully dynamic” graph algorithms has been discussed in the
computer-science literature [27,28]. In the following, we refer
to such approaches as dynamic connectivity (DC) algorithms.
The advantage in runtime for the deletion of edges is paid
for in terms of increased efforts for edge insertion. We use
the approach suggested by the authors of Ref. [28] which is
deterministic and features amortized runtimes of O(log N) for
connectivity queries andO(log2 N) for deletions and insertions
on graphs of N nodes. The time complexity for connectivity
queries depends on the underlying binary search tree used to
encode the graphs. In our case we used splay trees [46] which
result in the amortized bound. An identical worst-case bound
holds for balanced binary search trees [28].

The algorithm of Holm et al. [28] is based on a reduction
of the set of edges to be considered by focusing on a spanning
forest F (G) of a given graph G, which encodes the same
connectivity equivalence relation but has less edges as no
cycles occur [47]. This separates the set of edges into “tree”

033303-4

EFFICIENT SIMULATION OF THE RANDOM-CLUSTER MODEL PHYSICAL REVIEW E 88, 033303 (2013)

FIG. 1. (Color online) Equilibrium bond configurations for a
L = 8 system at criticality vc = √

q. The left (right) column shows
a configuration for q = 0.0005 (q = 2). The first (second) row
corresponds to the level 0 (1) graph. Here, tree edges are indicated in
red solid lines, while nontree edges are drawn with blue dotted lines.

edges e ∈ F (G) and “nontree” edges e /∈ F (G). Given this
separation, one then stores the spanning trees of all components
and augments them with information about incident nontree
edges. This edge separation already reduces the number
of expensive operations, as any edge e /∈ F (G) must be
an internal edge, such that �n = 0. The only potentially
expensive cases remaining are the deletion of e ∈ F (G) and
the insertion of an external edge into F (G). For the first case,
one notes that the fact that the spanning tree is fragmented by
the removal of e ∈ F (G) does not imply that also the cluster
on the original graph is split by this operation as there might
be nontree edges still connecting the parts. The concept of tree
and nontree edges is visualized in Fig. 1.

To efficiently search for a replacement edge in the set of
all nontree edges, another edge separation is introduced. This
is achieved by associating a level in the range 0,1, . . . ,lmax ≡
log N� to every edge (both tree and nontree). Given the levels
of all edges, one then maintains a spanning forest Fi for
i = 0,1, . . . ,lmax of all edges with l(e) � i, thus F = F0 ⊇
F1 · · · ⊇ Flmax , cf. the illustration in Fig. 1. An important part
of the algorithm is that the levels are not fixed but they are
partially changed after every tree-edge deletion to ensure the
following two properties [28].

(1) The maximum cluster size at level i is N/2i�. This
implies lmax ≡ log N�.

(2) If an edge at level i is deleted, then a possible
replacement edge can only be found in levels l � i.

To efficiently save and manipulate spanning trees we
represent each tree edge (i,j) by two directed edges (≡arcs)
(i → j) and (j → i) and every vertex i by a loop (i → i).
Given all directed edges we construct one of possibly many

Euler tours of this directed graph, i.e., a cycle that traverses
every edge exactly once. We split the tour at one arbitrary
point to save it as a sequence of traversed arcs and loops [48].
The fact that we now linearized the tree by mapping it to a
list or sequence allows to efficiently store it in a balanced
binary search tree. Edge insertions and deletions then translate
into manipulations using cuts and links on Euler tours. By
using a form of self-adjusting binary search trees named
“splay trees” [46] we were able to do all the operations
on trees in amortized runtime of O(log N). Other types of
trees might be used alternatively, see, e.g., Refs. [30,49,50].
Intuitively speaking, we hence have O(log N) levels of edges
with a runtime of O(log N) per level, resulting in the quoted
O(log2 N) amortized runtime for deletions and insertions. A
detailed comparison and runtime analysis of different DC
algorithms can be found in Ref. [51]. For simulations of
the RCM, we can therefore perform each operation in a
runtime asymptotically proportional to log2 L, hence clearly
outperforming the other approaches at criticality, cf. Table I.

4. Behavior off criticality

The runtime bounds summarized in Table I apply to
simulations of the RCM at criticality. In the high-temperature,
nonpercolating regime p < pc all clusters are finite. Hence,
the implementations based on BFS and UF allow to perform
insertions and deletions in asymptotically constant time there.
For temperatures below the transition, equivalent to p > pc,
the behavior is a bit more complicated. In this case clusters
become compact, so cluster masses scale proportional to L2.
For SBFS, operations on external edges require complete
cluster traversal, leading to L2 runtime scaling there. Through
the dense nature of clusters, a reconnecting path replacing an
internal edge will, with probability 1, be only of finite length
independent of L. Similarly, if an external edge connects two
distinct clusters, at least one of them will be small, i.e., of
L independent size. Hence, a constant runtime per operation
is expected for IBFS and p > pc. In the UF implementation
again complete cluster traversal is necessary in some cases,
giving an L2 bound. The asymptotic scaling of DC equals
log2 L, independent of p, although the absolute runtimes will
of course depend on temperature.

III. SIMULATIONS AND RESULTS

To gauge the efficiency of the connectivity implementations
and confirm the validity of the asymptotic analysis presented
above, we implemented Sweeny simulation codes based on
these different approaches and subjected them to a careful
analysis of runtimes as a function of system size and q.

A. Autocorrelation times and efficiency

Besides the runtime for individual bond operations dis-
cussed above in Sec. II, the efficiency of the bond algorithm
is ultimately determined by the speed of decorrelation of the
Markov chain, i.e., the autocorrelation times. Consider the
autocorrelation function of the measurements Os at time lag t ,

�O(t) = 〈OsOs+t 〉 − 〈O〉2, (9)

033303-5

EREN METIN ELÇI AND MARTIN WEIGEL PHYSICAL REVIEW E 88, 033303 (2013)

which, in equilibrium, is expected to be independent of the
initial time s due to stationarity. From the theory of Markov
chains, �O(t) is expected to decay exponentially for large
time lags, �O(t) ∼ e−|t |/τexp,O , and one defines the exponential
autocorrelation time [52]

τexp,O = lim sup
t→±∞

|t |
− log |ρO(t)| , (10)

where ρO(t) = �O(t)/�O(0) is the normalized autocorrelation
function. Unless the considered observable is “orthogonal” to
the slowest mode, one expects a result independent of O, i.e.,
τexp ≈ τexp,O.

The efficiency of sampling, on the other hand, is determined
by the integrated autocorrelation time

τint,O = 1

2
+

M∑
t=1

ρO(t), (11)

where M is the length of the time series. This is seen by
considering the variance of the average Ō = (

∑
i Oi)/M used

as an estimator for 〈O〉,

σ 2
Ō ≈ σ 2

O
M/2τint,O

. (12)

Comparing this to the case of uncorrelated measurements,
where σ 2

Ō = σ 2
O/M , it is seen that the effective number of

independent measurements is reduced by a factor of 1/2τint,O
by the presence of autocorrelations. In contrast to τexp, the
integrated autocorrelation time generically depends on the
observable considered.

Close to criticality, dynamical scaling implies autocorre-
lation times diverging according to τexp ∼ ξzexp and τint,O ∼
ξzint,O . For finite systems, ξ eventually becomes limited by L,
resulting in the scaling form

τ ∼ Lz. (13)

For a purely exponential decay, exponential and integrated
autocorrelation times coincide. More generally, however, one
has τint,O � τexp and hence zint,O � zexp. Cases of a true
inequality have been observed [53].

A number of different techniques for the practical esti-
mation of autocorrelation times have been discussed in the
literature. We use a direct summation of the autocorrelation
function according to Eq. (11). Since, for any time lag, the
estimated autocorrelation function adds a constant amount
of noise per term, a cutoff � needs to be introduced to
ensure a finite variance of the estimator for the autocorrelation
time [54]. A technique with an adaptive summation window
was originally suggested by the authors of Ref. [53]. We use
a modification of this approach discussed more recently in
Ref. [55]. Determining � involves a tradeoff between the bias
for small cutoffs and the exploding variance as � → M . This
balance is struck here by numerically minimizing the quantity

exp (−�/τ) + 2
√

�/M, (14)

which is proportional to the sum of the relative statistical and
systematic errors. We find this procedure to yield stable results
throughout. In particular, the estimates of τint are consistent
with those found from an alternative jackknifing technique
[58,59].

To achieve an appropriate judgment of Sweeny’s algorithm
in the different implementations against other approaches of
simulating the RCM, we need to combine the information con-
tained in the autocorrelation times with those of the runtimes
for the different operations involved. We hence compare the
effective runtime to create a statistically independent sample
of a given observable, where independence is understood in
the sense of Eq. (12). To this end, we consider the effective
runtime per edge,

TO ≡ τint,O t̄ , (15)

where τint,O is measured in sweeps and t̄ is the runtime per
edge operation, averaged over a sufficiently long simulation.
Obviously, this quantity is hardware specific, yet by looking
at the ratio of two different implementations we expect the
specific hardware dependence to be small.2

B. Observables and implementation

As τint,O depends on O, any conclusions about the rel-
ative efficiency of the Sweeny and Swendsen-Wang-Chayes-
Machta dynamics for the RCM might depend on the observable
under consideration. It is therefore important to study a number
of different quantities covering the energetic and magnetic
sectors of the model. For the energetic sector, we studied the
number N ≡ b of active bonds. In the magnetic sector, we
considered the sum of squares of cluster sizesS2 ≡ ∑n

i=1 |Ci |2,
and the size of the largest component C1 ≡ maxn

i=1 |Ci |,
where Ci denotes the ith cluster resulting from the set of
active bonds. These observables of the RCM are related to
standard observables of the Potts model [15,45], namely the
internal energy per spin u = 〈N 〉/(Ldp), the susceptibility
χ = 〈S2〉/Ld , and the order parameter m = 〈C1〉/Ld .

We implemented a code for the Sweeny update using the
four variants of connectivity algorithms discussed above in
Sec. II, i.e., sequential breadth-first search (SBFS), interleaved
BFS (IBFS), union-and-find (UF), as well as dynamic con-
nectivities (DC). Our program was implemented in C and
compiled with the GNU Compiler Collection (GCC) 4.5.0 at
−O2 optimization level on an Intel Xeon E4530 2.66 GHz.
The available memory was 16 GB. These specifications
resulted in speedups through caching effects (mainly for the
DC implementation, see the discussion below) for system
sizes L � 48, which approximately corresponds to a memory
footprint of the size of the L2 cache of 6 MB for the DC
implementation.

The implementations based on BFS and union-and-find
both require memory scaling as O(L2). The DC code, on the
other hand, requires to maintain O(log L) separate forests,
leading to a total memory requirement of O(L2 log L) [51]. In
practice for a system of size L = 1024 and q = 2 at criticality,
the BFS and UF implementations required around 10–15
MByte, whereas the DC code used approximately 3.5 GByte.

The random number stream was generated by a GSL imple-
mentation3 of the Mersenne twister or MT19937 generator [60]

2Caching effects might lead to unexpected behavior in some range
of system sizes, but asymptotically these effects should be irrelevant.

3GNU Scientific Library, http://www.gnu.org/software/gsl.

033303-6

EFFICIENT SIMULATION OF THE RANDOM-CLUSTER MODEL PHYSICAL REVIEW E 88, 033303 (2013)

which has a very large period of 219937 ≈ 106000 and, more
importantly, was shown to be equidistributed in less than
623 dimensions.

C. Simulation results

To test the predicted asymptotic runtime behavior and de-
termine the dynamic critical behavior of Sweeny’s algorithm,
we performed a series of simulations of the RCM on the
square lattice. To cover the complete range of systems with
continuous phase transitions, we chose q = 0.0005, 0.005,
0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1, 1.5, 2, 3, and 4. Simulations
were performed for a series of 14 system sizes ranging from
L = 4 up to L = 1024. All simulations were done at the exact
critical coupling vc = √

q [4]. While, typically, observable
measurements in Markov chain Monte Carlo are taken after
every lattice sweep of updates [29], for the case of the bond
algorithm and relatively small values of q, it turned out that the
fast decorrelation leads to autocorrelation times way below a
single sweep. To resolve these effects, we hence changed the
measurement interval to multiples of L, which turned out to
be a good compromise between the visibility of correlations
and the resulting lengths of time series. This setup resulted in
at least 220 and up to 223 measurements for some system sizes.
As a result, our simulations were at least 103, and at best 105

times the relevant time scale τexp. Consistent with Sweeny’s
original observation, we were able to equilibrate all runs in
less than 200 sweeps.

1. Dynamical critical behavior

We first considered the behavior of the energy-like ob-
servable N , determining (integrated) autocorrelation times
according to Ref. [55] with resulting cutoff parameter �N
(see the discussion in Sec. III A above). To extract the
corresponding dynamical critical exponents we fitted a power
law of the form τint ∼ Lzint to the data, omitting some of the
smallest system sizes to account for scaling corrections. The
quoted errors on fit parameters correspond to an interval of one
standard deviation. The resulting estimates of zint,N are shown
in Fig. 2 and the numerical values are summarized in Table II.
Note that zint,N ≈ 0 for q � 2. This is in agreement with a key
result due to Li and Sokal, providing a lower bound for the

0 1 2 3 4
q

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

z i
n
t

α/ν

N
S2

C1

FIG. 2. (Color online) Estimates of the 2D dynamical critical
exponents zint,O for O = N , S2, and C1, respectively, as a function
of q. The line corresponds to the Li-Sokal bound zint > α/ν [57].

autocorrelation times of N and its corresponding dynamical
exponents [15,57]

τexp,N � τint,N � Cv ⇒ zexp,N � zint,N � α/ν, (16)

where Cv is the specific heat and α/ν the associated finite-size
scaling exponent. While this result was originally derived for
the Swendsen-Wang dynamics, it was also shown to hold for
the Sweeny algorithm [19,57]. As α/ν � 0 for q � 2 [4], our
data are consistent with this bound and indicate that it is close
to being tight for the Sweeny dynamics on the square lattice
for q � 2, cf. Fig. 2. The values for q = 4 appear to violate
this bound, but we attribute these deviations to the logarithmic
corrections expected for this particular value of q, preventing
us from seeing the truly asymptotic behavior in the regime of
system sizes considered here.

We next turned to the magnetic observables S2 and
C1. Deng et al. [19] first showed that under the Sweeny
dynamics the susceptibility S2 exhibits a surprisingly fast
decorrelation on short time scales and, in particular, the
corresponding integrated autocorrelation time τint,S2 decreases
with increasing system size, indicating a negative value of
the corresponding dynamical critical exponent zint,S2 . This
phenomenon of critical speeding up is also clearly seen in
our data as is illustrated in the plot of the L dependence of the

TABLE II. Estimated dynamical critical exponents zint,O for the two-dimensional RCM at criticality and O = S2 as well as O = N for a
range of q values as compared to the results reported in Refs. [15,19,56]. The values shown for zSW

int,S2
for the Swendsen-Wang-Chayes-Machta

algorithm are actually related to another observable E , but it was reported by the authors of Refs. [15,56] that the observables E ′, N , and S2

share the same dynamical critical exponent for this algorithm.

q zint,S2 zint,S2 [19] zSW
int,S2

[15,56] zint,N α/ν zint,N [19] zSW
int,S2

− zint,S2

0.0005 −1.12(1) −1.23 – 0.01(1) −1.958 0 –
0.005 −1.09(1) −1.21 – 0.01(1) −1.868 0 –
0.05 −1.04(1) −1.12 – 0.01(1) −1.601 0 –
0.2 −0.86(1) −1.01 – -0.01(1) −1.247 0 –
0.5 −0.63(1) −0.71 – 0.00(1) −0.878 0 –
1.0 −0.33(1) −0.32 – 0.00(1) −0.500 0 –
1.5 −0.11(2) −0.16 0 0.06(2) −0.227 0
2.0 0.03(3) −0.08 0.143(3) 0.13(2) 0 0 (log) 0.11
3.0 0.44(4) 0.41 0.497(3) 0.45(4) 0.400 0.45(1) 0.06
4.0 0.75(6) – 0.910(5) 0.73(6) 1 – 0.16

033303-7

EREN METIN ELÇI AND MARTIN WEIGEL PHYSICAL REVIEW E 88, 033303 (2013)

101 102 103

L

10−4

10−3

10−2

10−1

100

101

102

103

104

105

τ i
n
t,
S 2

q = 0.0005
q = 0.5

q = 1
q = 2

q = 3
q = 4

FIG. 3. (Color online) Integrated autocorrelation times as a
function of system size for the susceptibility S2 for q ranging from
0.0005 up to q = 4. The lines show fits of the functional form (13) to
the data.

autocorrelation times of S2 in Fig. 3. A rather similar behavior
is found for the order parameter C1. The initial fast decay of
correlations is illustrated in Fig. 4, where it is clearly seen that
C1 is completely decorrelated in less than a single sweep for
q � 2. Note that the measurements along the Markov chain are
still correlated, but with a system size scaling weaker than L2

such that the impression of a complete decorrelation appears
on the scale of sweeps.

The values of zint,S2 resulting from power-law fits to the
autocorrelation times are compiled in Table II. As is clearly
seen from the plot of the data in Fig. 3, we find zint,S2 � 0
for q � 2. Regarding the dynamical critical exponents in the
magnetic sector, we find zint,C1 = zint,S2 within our error bars.
The authors of Ref. [19] suggested to determine zint,S2 from
a data collapsing procedure using a two-time scaling ansatz
combining the fast initial decay with a slower exponential
mode for longer times. In our studies, however, we found
this approach to yield rather unstable results and thus chose,
instead, to perform more conventional fits to a power law.

We note that, in line with Ref. [15], we used the summation
cutoff �N of the observable N for all observables because
the magnetic observables S2 and C1 with their fast initial
decay would lead to very small, subasymptotic cutoffs if the

0 20 40 60 80 100
t

10−3

10−2

10−1

100

ρ
C

1
(t

)

q = 0.005

q = 0.05

q = 0.5

q = 2.0

FIG. 4. (Color online) Normalized critical autocorrelation func-
tion for the order parameter C1 and several values of q. The linear
system size is L = 64. Time is counted in units of L single bond
moves here, such that L = 64 time steps correspond to a lattice sweep.

rule of Ref. [55] would be directly applied. We also checked
that the estimators for τint,S2 and τint,C1 were on a plateau so
that a change in the summation window mainly influences the
variance of the estimator, which is monotonically increasing
with �.

Comparing our results for the Sweeny dynamics to the
Swendsen-Wang algorithm, we note that, apart from the
slightly smaller dynamical critical exponent for the former,
we also find somewhat smaller amplitudes in the τint = ALzint

scaling for the bond algorithm. Hence for L = 256 we find,
e.g., τint,S2 ≈ 0.1 (q = 1) and ≈ 10 (q = 3) for the Sweeny
update, while values of τint,S2 ≈ 0.5 (q = 1) and ≈ 36 (q = 3)
are found for the Swendsen-Wang update.

2. Runtime scaling

As discussed above, the relevant time scales for a compari-
son of the bond algorithm against other approaches depend on
both the statistical decorrelation as well as the runtime scaling
of the elementary operations. We therefore analyzed average
runtimes for bond updates in the Sweeny algorithm with the
different implementations of connectivity updates discussed
in Sec. II B.

For the techniques based on BFS, we studied the number
of steps required to complete a connectivity check for the
case of operations on internal and external edges, respectively,
for the SBFS and SBFS implementations. For internal edges,
this corresponds to the number of vertices touched by the
BFSs until a reconnecting path is found. For external edges
such a path is not found and the search hence terminates after
a number of steps corresponding to the mass of either the
first cluster (SBFS) or the smaller cluster (IBFS). Checking
the number of steps for operations on internal and external
edges for SBFS and IBFS, respectively, we used power-law fits
according to ∼Ly to extract estimates of the four exponents
y

(i)
SBFS, y

(e)
SBFS, y

(i)
IBFS, and y

(e)
IBFS. The fit results are collected in

Table III. The data and corresponding fits for the case of the
number of steps C2,min relevant for the operation on an external
edge with IBFS are shown in Fig. 5. The exponents y follow
the asymptotic values γ /ν and dF − x2, respectively, derived
above in Sec. II B1 and also listed in Table III for comparison.

101 102

L

101

102

103

C
m

in
,2

(L
)

q = 0.0005 : y
(e)
IBFS = 1.24(1)

q = 1 : y
(e)
IBFS = 0.67(1)

q = 2 : y
(e)
IBFS = 0.47(2)

FIG. 5. (Color online) Number of vertices Cmin,2 of the smaller
of two adjacent clusters as visited in a 2D simulation using IBFS
following (preceding) the deletion (insertion) of an external edge.

The lines show fits of the power-law form Cmin,2 = ALy
(e)
IBFS to the

data.

033303-8

EFFICIENT SIMULATION OF THE RANDOM-CLUSTER MODEL PHYSICAL REVIEW E 88, 033303 (2013)

TABLE III. Runtime scaling exponents in two dimensions according to Eq. (17) for the SBFS, IBFS, and the UF implementation. The
scaling exponents γ /ν and dF − x2 are shown for reference and comparison. The y exponents correspond to scaling ∼Ly of the number of
vertices touched in a sequential (SBFS) and interleaved (IBFS) breadth-first cluster traversal for internal (i) and external (e) edges, respectively.

q κSBFS κIBFS κUF y
(i)
IBFS y

(e)
IBFS y

(i)
SBFS y

(e)
SBFS dF − x2 γ /ν

0.0005 1.81(1) 1.18(3) 1.54(6) 1.25(1) 1.24(1) 1.25(1) 1.99(1) 1.23407 1.99296
0.005 1.80(2) 1.14(2) 1.70(6) 1.22(1) 1.21(1) 1.22(1) 1.98(1) 1.20021 1.97823
0.05 1.74(1) 1.02(3) 1.77(4) 1.10(1) 1.11(1) 1.11(1) 1.93(1) 1.09783 1.93580
0.1 1.72(1) 0.97(2) 1.78(3) 1.05(1) 1.05(1) 1.06(1) 1.91(1) 1.03881 1.91284
0.5 1.65(2) 0.71(3) 1.77(2) 0.82(1) 0.82(1) 0.82(1) 1.83(1) 0.80768 1.83449
0.7 1.63(2) 0.69(4) 1.77(4) 0.75(2) 0.76(1) 0.76(2) 1.81(1) 0.73541 1.81407
1 0 0 1.74(2) 0.66(1) 0.67(1) 0.67(1) 1.79(1) 0.64583 1.79167
1.5 1.56(2) 0.43(2) 1.71(3) 0.55(2) 0.56(1) 0.57(2) 1.75(1) 0.52298 1.76644
2 1.57(2) 0.35(3) 1.68(3) 0.46(2) 0.47(2) 0.48(3) 1.73(1) 0.41667 1.75000
3 1.52(4) 0.19(1) 1.67(2) 0.32(3) 0.30(4) 0.35(3) 1.69(2) 0.21667 1.73333
4 1.42(4) 0.13(2) 1.64(7) 0.22(11) 0.23(1) 0.26(1) 1.68(1) −0.12500 1.75000

For the total average runtime per bond operation, we
asymptotically expect power-law behavior as well

t̄ ∼ Lκ. (17)

This assumption in general describes well our data (with only
minor deviations for smaller system sizes due to caching
effects). For SBFS, we expect the different asymptotic scal-
ing behavior for operations on internal and external edges,
respectively, to result in an effective runtime exponent κ

somewhere in between the exponents dF − x2 and γ /ν relevant
to operations on internal and external edges, respectively
(recall that internal and external edges occur in constant
fractions). Our estimates of κSBFS listed in Table III are in
line with these expectations. We have no doubt, however, that
the asymptotically expected κSBFS = γ /ν ultimately holds for
sufficiently large systems. For the interleaved case, on the
other hand, all four operation types exhibit y = dF − x2, and
we hence find κIBFS consistent with dF − x2 already for the
system sizes considered here, cf. Table III.

The analysis of the runtime behavior for the union-and-find
approach is more subtle as the insertion of edges is performed
in constant time, whereas the deletion of edges incurs an effort
proportional to LdF −x2 and Lγ/ν for internal and external edges,
respectively, cf. Table I. As a consequence of the different
scaling of individual operations, the effective runtime scaling
exponent κUF according to Eq. (17) is again found to be smaller
than the expected limiting value γ /ν, see the values compiled
in Table III.

The scaling of runtimes per step for our implementation
of the dynamic connectivity algorithm and a representative
selection of q values is shown in Fig. 6. We find a subalgebraic
growth and, according to the asymptotic runtime bounds
derived in Ref. [28], we fitted the functional form

t̄(L) = a log2 L + b log L + c (18)

to the data. The fits resulted in c ≈ 0 such that we fixed c = 0
in the following. Somewhat surprisingly, our fits yield b < 0;
we interpret this as a result of the presence of correction terms
and the amortized nature of the runtime bounds leading to the
asymptotic scaling only being visible for very large system
sizes. Similar observations have been reported for general
sets of inputs in Ref. [51]. Considering the ratio a/b, we

find that its modulus increases with q, yielding a value of
≈0.3 for q = 0.0005 and ≈0.71 for q = 2. This corresponds
to the increasing fraction of nontree edges for increasing q,
resulting in an increase of traversals of the edge level hierarchy
with the associated O(log2 L) complexity. Irrespective of that,
as a consequence of the larger number of cluster-splitting
operations the total runtime is found to be largest for small
q, cf. Fig. 6.

We also investigated the effect of the unconditional ac-
ceptance of proposed updates for the Metropolis rule as
discussed in Sec. II A above. This adds another q-dependent,
but system-size-independent, element to the run-time scaling.
Such unconditional moves can save significant computational
effort in case no data structures have to be updated after move
acceptance. This is the case for the algorithms based on BFS
which are “stateless” in the sense that no explicit record of
connectivity is kept. Unconditional insertion or removal of
edges in this case does not entail any further computational
effort. On the contrary, unconditional insertion or removal
lead to data-structure updates for the union-and-find and
DC implementations. As a consequence, we find a constant
speed-up for the BFS based implementations proportional
to 1/[1 − min(

√
q,1/

√
q)]. In the singular case q = 1, BFS

0 500 1000 1500 2000
L

0

10

20

30

40

50

60

70

80

t̄
in

μ
s

q = 0.0005
q = 2
q = 4

FIG. 6. (Color online) Average runtime t̄ for several values of
q and L for the Sweeny update using a dynamic connectivity (DC)
algorithm based on splay trees. The lines correspond to least-squares
fits of the model (18) to the data.

033303-9

EREN METIN ELÇI AND MARTIN WEIGEL PHYSICAL REVIEW E 88, 033303 (2013)

101 102 103

L

10−1

100

101

102

103

104

T
/
T
SW

q = 1.0DC
IBFS
UF

101 102 103

L

100

101

102

103

T
/
T
SW

q = 2.0DC
IBFS
UF

101 102 103

L

100

101

102

103

T
/
T
SW

q = 3.0DC
IBFS
UF

101 102 103

L

100

101

102

103

T
/
T
SW

q = 4.0DC
IBFS
UF

FIG. 7. (Color online) Effective runtimes T according to Eq. (15) for the different implementations relative to the time TSW of the
Swendsen-Wang algorithm [12]. Dashed lines correspond to the runtime to generate an independent sample of the observable N and dotted
lines to samples of S2.

performs all edge updates in constant time as all insertions and
deletions can be performed unconditionally such that no cluster
traversals are necessary. On the contrary, no performance
improvement from unconditional moves is observed for the
more elaborate UF and DC implementations.

We note that, for all implementations, the average runtime
per bond operation depends quite strongly on q. This is,
on the one hand, due to the q dependence of the fraction
rext of external edges reaching from rext = 1 for q → 0
down to rext = 0.33 for q = 4. For the case of the BFS
implementations, an additional q dependence is introduced
through the unconditional moves as discussed above.

3. Overall efficiency

As discussed above in Sec. III A, the relevant measure
for the overall efficiency of various implementations of
cluster algorithms is the total runtime for the generation of
a statistically independent sample according to Eq. (15). We
compared the effective runtimes of all three implementa-
tions of the bond algorithm with a reference code for the
Swendsen-Wang dynamics. As the dynamical critical expo-
nents zint for the Sweeny update are found to be smaller than
those of the Swendsen-Wang-Chayes-Machta dynamics, see
Refs. [15,19,56] and Table II, we can expect asymptotically
more efficient simulations for cases where the runtime expo-
nent κ < zSW

int,O − zint,O. Since any polylogarithm is dominated
by Lε with ε > 0, this is clearly the case, asymptotically, for
the DC algorithm. From the data for zSW

int,O − zint,O in Table II
and those for κ in Table III, it is seen that for 1 < q � 4

this condition is not met for the implementation based on
union-and-find. For the technique based on (interleaved)
breadth-first-search, on the other hand, such a case arises (for
integer values q) only for q = 4, where zSW

int,O − zint,O ≈ 0.16
and κIBFS = 0.13(2). These observations are corroborated by
the plots of the relative efficiencies shown in Fig. 7. For
comparison, we here show the results for the two observables
N andS2 with significantly different behavior for q � 2. From
the plots for the integer values q = 2, 3, and 4, it is clear that
in absolute runtimes IBFS is most efficient for the range of
system sizes L � 1024 considered here. Hence, the asymptotic
advantage of the DC algorithm only shows for system sizes
beyond this range. The downturn of the ratio T/TSW for the
largest system sizes and q = 4 observed for the BFS and
DC codes might be an indication of the asymptotic runtime
advantage of Sweeny’s algorithm over Swendsen-Wang with
these connectivity algorithms as discussed above. The results
for the percolation case q = 1 using IBFS, on the other hand,
are of exceptional nature as there the cost of bond operations
is completely independent of system size due to the effect of
unconditional acceptance. For the case of S2, one even finds
a decrease of the relative cost of generating a statistically
independent sample as this observable profits from the initial
fast decorrelation or critical speeding up.

For the most relevant case q � 1, where Sweeny’s al-
gorithm provides the only means of simulation, we cannot
compare to another algorithm. Instead, we present in Fig. 8
a comparison of runtimes for the SBFS, IBFS, UF, and DC
implementations for q = 0.005. As here κIBFS is relatively
unfavorable, we observe a clear advantage for the DC

033303-10

EFFICIENT SIMULATION OF THE RANDOM-CLUSTER MODEL PHYSICAL REVIEW E 88, 033303 (2013)

101 102 103

L

100

101

102

103

t̄
in

μ
s

q = 0.005
UF
SBFS
IBFS
DC

FIG. 8. (Color online) Runtime per edge operation of simulations
of the q = 0.005 square-lattice RCM and the bond algorithm em-
ploying the SBFS, IBFS, UF, and DC connectivity implementations,
respectively.

algorithm which is significantly more efficient than the other
options in the full range of studied system sizes 4 � L � 1024.
UF is found to be even less efficient than SBFS here which
might be considered surprising in view of the fact that all
insertions are performed at constant cost and deletions have
the same asymptotic runtime bounds as SBFS, see Table I.
This is easily understood, however, noting that the factor
of 2 gained for UF from the 50% of operations performed
in constant time is spent again in having to traverse both
clusters fully in case of external edge deletions. Taking
into account overheads for data-structure updates for UF,
this explains the slight disadvantage of UF over SBFS seen
in Fig. 8.

IV. CONCLUSION

We have shown that it is possible to implement Sweeny’s
algorithm efficiently and in a lattice and dimensionality
independent way, using a DC algorithm, in the sense that the
runtime dependence on the system size is polylogarithmic and
only contributes a correction to the statistical Lzint contribution
of the runtime to create an effectively uncorrelated sample.
Compared to the Swendsen-Wang-Chayes-Machta algorithm,
we also find somewhat smaller dynamical critical exponents,
leading to an overall asymptotically more efficient simulation
of the random-cluster or Potts model with Sweeny’s approach.
In addition, the bond algorithm is the only known approach for
simulations in the regime q < 1 including interesting q → 0
limits such as the maximally connected spanning subgraphs of
Ref. [61].

We analyze in detail four implementations based on
(sequential and interleaved) breadth-first searches, on union-
and-find data structures, and on the fully dynamic connec-
tivity algorithm suggested in Ref. [28], respectively. For
each implementation, we derive average runtime bounds for
insertions and deletions of internal and external edges, respec-
tively, and deduce the overall asymptotic runtime behavior.
It is found that interleaved breadth-first searches, although
relatively unfavorable as compared to union-and-find and
dynamic connectivities at first sight, perform rather well
due to the lack of an underlying data structure encoding

the connectivity of the clusters, in particular if connectivity
queries are omitted whenever possible due to accepting moves
for which the drawn random number indicates acceptance
irrespective of the result of the connectivity query. The
union-and-find-based implementation, on the other hand,
although superior in asymptotic runtime in three out of four
cases of internal and external insertions and deletions, shows
ultimately inferior performance due to the runtime scaling for
deletions of external edges that require full traversals of the
involved clusters. The dynamic connectivity algorithm, while
asymptotically most efficient with a polylogarithmic scaling
of runtimes per operation, has rather large constants leading to
somewhat weaker performance than breadth-first search for the
considered lattice sizes L � 1024 and q � 1. For q � 1, on
the other hand, where runtimes are dominated by operations
on external edges, it outperforms the other implementations
already for small systems. We see significant room for further
runtime improvements for the dynamic connectivity algorithm,
however, for instance by optimizations of the underlying tree
data structure or the implementation of additional heuristics as
indicated in the comparative study [51]. We note that due to the
lack of explicit connectivity information for the breadth-first
search approach it becomes more expensive than for the other
techniques to perform measurements of quantities such as
cluster numbers or correlation functions depending on the
connectivity. As measurements are typically taken at most
once per sweep, however, any cost of at most L2 operations
for measurements results in only O(1) amortized effort per
bond operation.

The observed fast initial decorrelation for q � 2 and
quantities such as S2 and C1 depending on cluster connectivity
as illustrated in Figs. 2–4 suggests that there is an additional
dynamical mechanism at play for such observables. As argued
in Ref. [19], this is due to a larger number of operations on
external edges for smaller values of q which can lead to
a large-scale change in the connectivity structure through a
single bond operation. The concentration of external edges,
bridges, or fragmenting bonds drastically increases as q is
decreased from 4 down to the tree limit q → 0 [40] which
is also clearly expressed in a corresponding increase in the
fractal dimension of “red” bonds [62]. It is currently not clear,
however, why this effect only leads to a change in dynamical
critical behavior for q � 2.

While we have restricted our attention to simulations on
the square lattice, all implementations discussed here are
essentially independent of the underlying graph or lattice,
requiring only minimal adaptations for different situations.
This makes our approach significantly more general than the
implementation originally suggested by Sweeny [10] which is
based on tracing loops on the medial lattice in two dimensions.
Additionally, the latter technique in two dimensions still
suffers from polynomial scaling of the runtime per edge
operation [11], such that a polylogarithmic implementation
is asymptotically faster.

Until now we have only used the DC implementation
for canonical simulations but as proposed in Ref. [26] an
interesting application are generalized-ensemble simulations
of the random cluster model where one directly estimates
the number of possible graphs g(k,b) with k clusters and
b edges which then allows for the calculation of canonical

033303-11

EREN METIN ELÇI AND MARTIN WEIGEL PHYSICAL REVIEW E 88, 033303 (2013)

ensemble averages as continuous functions of temperature and
the parameter q.

The source code of the implementations discussed here,
in particular including the dynamic connectivity algorithm, is
available on GitHub under a permissive license [63].

ACKNOWLEDGMENTS

E. M. E. would like to thank T. Platini and N. Fytas for fruit-
ful discussions and U. Wolff for providing an implementation
of his automatic windowing method.

[1] M. E. Fisher, Physics 3, 255 (1967).
[2] A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).
[3] C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972);

C. M. Fortuin, ibid. 58, 393 (1972); 59, 545 (1972).
[4] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[5] C. K. Hu, Phys. Rev. B 29, 5103 (1984).
[6] M. D. De Meo, D. W. Heermann, and K. Binder, J. Stat. Phys.

60, 585 (1990).
[7] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).
[8] K. E. Schmidt, Phys. Rev. Lett. 51, 2175 (1983).
[9] J. Goodman and A. D. Sokal, Phys. Rev. Lett. 56, 1015 (1986).

[10] M. Sweeny, Phys. Rev. B 27, 4445 (1983).
[11] Y. Deng, W. Zhang, T. M. Garoni, A. D. Sokal, and A. Sportiello,

Phys. Rev. E 81, 020102 (2010).
[12] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
[13] R. G. Edwards and A. D. Sokal, Phys. Rev. D 38, 2009 (1988).
[14] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[15] T. M. Garoni, G. Ossola, M. Polin, and A. Sokal, J. Stat. Phys.

144, 459 (2011).
[16] F. Gliozzi, Phys. Rev. E 66, 016115 (2002).
[17] J. S. Wang, O. Kozan, and R. H. Swendsen, Phys. Rev. E 66,

057101 (2002).
[18] X. Qian, Y. Deng, and H. W. J. Blöte, Phys. Rev. E 71, 016709

(2005).
[19] Y. Deng, T. M. Garoni, and A. D. Sokal, Phys. Rev. Lett. 98,

230602 (2007).
[20] G. Grimmett, The Random-Cluster Model (Springer, Berlin,

2006).
[21] L. Chayes and J. Machta, Physica A 254, 477 (1998).
[22] X. Qian, Y. Deng, and H. W. J. Blöte, Phys. Rev. E 72, 056132

(2005).
[23] A. Zatelepin and L. Shchur, arXiv:1008.3573.
[24] F. Gliozzi and M. A. Rajabpour, J. Stat. Mech. (2010) L05004.
[25] D. Stauffer and A. Aharony, Introduction to Percolation Theory,

2nd ed. (Taylor & Francis, London, 1994).
[26] M. Weigel, Physics Procedia 3, 1499 (2010).
[27] M. R. Henzinger and V. King, J. ACM 46, 502 (1999).
[28] J. Holm, K. de Lichtenberg, and M. Thorup, J. ACM 48, 723

(2001).
[29] K. Binder and D. P. Landau, A Guide to Monte Carlo Simulations

in Statistical Physics, 3rd ed. (Cambridge University Press,
Cambridge, England, 2009).

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. (MIT Press, Cambridge, MA,
2009).

[31] P. Grassberger, J. Phys. A 25, 5867 (1992).
[32] P. Grassberger, J. Phys. A 32, 6233 (1999).
[33] P. Grassberger, J. Phys. A 25, 5475 (1992).

[34] R. M. Ziff, J. Phys. A 32, L457 (1999).
[35] J. Cardy, J. Phys. A 31, L105 (1998).
[36] S. Smirnov and W. Werner, Math. Res. Lett. 8, 729 (2001).
[37] B. Nienhuis, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz, Vol. 11 (Academic,
London, 1987), p. 1.

[38] Z. Zhou, J. Yang, Y. Deng, and R. M. Ziff, Phys. Rev. E 86,
061101 (2012).

[39] M. F. Gyure and B. F. Edwards, Phys. Rev. Lett. 68, 2692 (1992).
[40] E. M. Elçi and M. Weigel (unpublished).
[41] M. Weigel, Ph.D. thesis, University of Leipzig, 2002.
[42] M. E. J. Newman and R. M. Ziff, Phys. Rev. E 64, 016706

(2001).
[43] R. E. Tarjan, J. ACM 22, 215 (1975).
[44] E. M. Elçi, B.Sc. thesis, Johannes Gutenberg-Universität Mainz,

2011.
[45] M. Weigel, W. Janke, and C. K. Hu, Phys. Rev. E 65, 036109

(2002).
[46] D. D. Sleator and R. E. Tarjan, J. ACM 32, 652 (1985).
[47] A. Gibbons, Algorithmic Graph Theory (Cambridge University

Press, Cambridge, England, 1985).
[48] R. E. Tarjan, Math. Program. 78, 169 (1997).
[49] D. E. Knuth, The Art of Computer Programming, Volume 3:

Sorting and Searching, 2nd ed. (Addison Wesley, New York,
1998).

[50] C. Martı́nez and S. Roura, J. ACM 45, 288 (1998).
[51] R. Iyer, D. Karger, H. Rahul, and M. Thorup, J. Exp.

Algorithmics 6, 4 (2001).
[52] A. D. Sokal, in Functional Integration: Basics and Applications,

Proceedings of the 1996 NATO Advanced Study Institute in
Cargèse, edited by C. DeWitt-Morette, P. Cartier, and A. Folacci
(Plenum, New York, 1997), pp. 131–192.

[53] N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).
[54] M. B. Priestley, Spectral Analysis and Time Series (Academic,

London, 1996).
[55] U. Wolff, Comput. Phys. Commun. 156, 143 (2006).
[56] Y. Deng, T. M. Garoni, J. Machta, G. Ossola, M. Polin, and

A. D. Sokal, Phys. Rev. Lett. 99, 055701 (2007).
[57] X. J. Li and A. D. Sokal, Phys. Rev. Lett. 63, 827 (1989).
[58] M. Weigel and W. Janke, Phys. Rev. E 81, 066701 (2010).
[59] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap

(Chapman and Hall, Boca Raton, FL, 1994).
[60] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput.

Simul. 8, 3 (1998).
[61] J. Jacobsen, J. Salas, and A. Sokal, J. Stat. Phys. 119, 1153

(2005).
[62] H. E. Stanley, J. Phys. A 10, L211 (1977).
[63] Efficient implementation of Sweeny’s algorithm, https://github.

com/ernmeel/sweeny.

033303-12

http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1016/0031-8914(72)90161-9
http://dx.doi.org/10.1016/0031-8914(72)90087-0
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/PhysRevB.29.5103
http://dx.doi.org/10.1007/BF01025984
http://dx.doi.org/10.1007/BF01025984
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/PhysRevLett.51.2175
http://dx.doi.org/10.1103/PhysRevLett.56.1015
http://dx.doi.org/10.1103/PhysRevB.27.4445
http://dx.doi.org/10.1103/PhysRevE.81.020102
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevD.38.2009
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1007/s10955-011-0267-y
http://dx.doi.org/10.1007/s10955-011-0267-y
http://dx.doi.org/10.1103/PhysRevE.66.016115
http://dx.doi.org/10.1103/PhysRevE.66.057101
http://dx.doi.org/10.1103/PhysRevE.66.057101
http://dx.doi.org/10.1103/PhysRevE.71.016709
http://dx.doi.org/10.1103/PhysRevE.71.016709
http://dx.doi.org/10.1103/PhysRevLett.98.230602
http://dx.doi.org/10.1103/PhysRevLett.98.230602
http://dx.doi.org/10.1016/S0378-4371(97)00637-7
http://dx.doi.org/10.1103/PhysRevE.72.056132
http://dx.doi.org/10.1103/PhysRevE.72.056132
http://arXiv.org/abs/arXiv:1008.3573
http://dx.doi.org/10.1088/1742-5468/2010/05/L05004
http://dx.doi.org/10.1016/j.phpro.2010.01.212
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1088/0305-4470/25/22/015
http://dx.doi.org/10.1088/0305-4470/32/35/301
http://dx.doi.org/10.1088/0305-4470/25/21/009
http://dx.doi.org/10.1088/0305-4470/32/43/101
http://dx.doi.org/10.1088/0305-4470/31/5/003
http://dx.doi.org/10.4310/MRL.2001.v8.n6.a4
http://dx.doi.org/10.1103/PhysRevE.86.061101
http://dx.doi.org/10.1103/PhysRevE.86.061101
http://dx.doi.org/10.1103/PhysRevLett.68.2692
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1103/PhysRevE.65.036109
http://dx.doi.org/10.1103/PhysRevE.65.036109
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1007/BF02614369
http://dx.doi.org/10.1145/274787.274812
http://dx.doi.org/10.1145/945394.945398
http://dx.doi.org/10.1145/945394.945398
http://dx.doi.org/10.1007/BF01022990
http://dx.doi.org/10.1016/S0010-4655(03)00467-3
http://dx.doi.org/10.1103/PhysRevLett.99.055701
http://dx.doi.org/10.1103/PhysRevLett.63.827
http://dx.doi.org/10.1103/PhysRevE.81.066701
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1007/s10955-005-4409-y
http://dx.doi.org/10.1007/s10955-005-4409-y
http://dx.doi.org/10.1088/0305-4470/10/11/008
https://github.com/ernmeel/sweeny
https://github.com/ernmeel/sweeny

	cover3
	PhysRevE.88.033303

