

Development of a Rule Based
Wireless Sensor Network Middleware
Fei, X., & Yu, Z.

Presented version deposited in CURVE April 2013

Original citation & hyperlink:
Fei, X., & Yu, Z. (2010, September). Development of a Rule Based Wireless Sensor
Network Middleware. Paper presented at the 16th International Conference on
Automation and Computing (ICAC’12), University of Birmingham, UK.
http://www.cacsuk.org/CACSUK%20GG/Index.htm

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228144443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cacsuk.org/CACSUK%20GG/Index.htm
http://curve.coventry.ac.uk/open

Development of a Rule Based Wireless Sensor
Network Middleware

Xiang Fei*, Zixi Yu
Department of Computing and Digital Environment

Coventry University
Coventry, UK

*Contact email: x.fei@coventry.ac.uk

Abstract— Recent years have witnessed significant interest
in wireless sensor networking (WSN) due to its profound
effect on the efficiency of many applications, plus the
progress in sensor technology, wireless communications, and
micro-processors. In order to support the development of
these pervasive applications and the management of the
underlying WSNs, middleware is needed to provide a
uniform programming environment. REED (Rule Execution
and Event Distribution) is a middleware solution that allows
sensor networks to be programmed at run time via
prescriptive rules. The contribution of this paper is two-
folded: first, REED is extended to support not only data
services, but also self-organization of WSNs; second, the
prototype of REED is implemented and the test results show
that REED is flexible enough to support WSN application
development.

Keywords- wireless sensor network, middleware, rules,
self-organization

I. INTRODUCTION

Advances in sensor technology, wireless
communications and micro-processors have made
wireless sensor networking (WSN) a hot research topic in
both academic and industrial communities. Generally
speaking, a WSN consists of a collection of
(heterogeneous) sensor nodes and a sink node connected
through wireless links. As WSNs can be used in
monitoring physical phenomena via data sensing,
processing and distribution, they have found many
applications in both military and civil areas, such as
environmental surveillance, intelligent building, health
monitoring, intelligent transportations, etc (Wang et al.
2008). One example is PROSEN (Networking of
Distributed Sensors for Proactive Condition Monitoring of
Wind Turbines) research project that aimed at developing
a WSN system for proactively monitoring the wind farm
conditions (PROSEN 2010).

The features of WSN systems, such as the distribution
and heterogeneity of sensor nodes, the constrained
resources (processing power, memory, and energy) of
each sensor node, the error-prone wireless links and the
dynamic network topology, make the WSN application
development a challenging task (Wang et al. 2008, Römer,
Kasten, and Mattern 2002, Yick, Mukherjee, and Ghosal
2008). To ease the wireless sensor data collection,
processing and delivery, WSN middleware is introduced
that provides an application programming interface (API)
to shield the application developers from the complexities

arising from the WSN. Some examples of WSN
middleware solutions are: query-based solutions that take
the whole WSN as a database (Madden, Franklin, and
Hellerstein 2005), Turple-space based middleware that
enable the sensed data on one node to be shared by the
rest of the nodes (Murphy, and Picco 2005), mobile agent
based paradigm that tracks mobile target (Fok, Roman,
and Lu 2005), and system level abstraction that abstracts
the whole WSN as a single virtual system (Welsh, and
Mainland 2004). In order to support the
(re)programmability of WSNs, Fei, and Magill (2008)
proposed a middleware solution that supports rule
execution and event distribution (REED). REED supports
both the distribution of rules and the events that trigger
them. REED employs a rule-based paradigm to allow
sensor networks to be programmed at run time. This
provides a flexible environment where applications and
users can program the sensor nodes to allow their
behaviors to be changed at run time. Further more, the
behaviors of the WSN are described using descriptive
rules and thus no knowledge of code programming is
needed for the developers. In the paper authored by Fei,
and Magill (2008), the architecture of REED was
proposed; the rule management that enables run-time rule
update was described, the pub-sub data service was
constructed using rules, and the prototype implementation
structure was provided. The contribution of this paper is
two-folded: first, the REED is extended to be able to
respond to not only data events, but also system events in
order to enable WSN self-organization; second, the
prototype of REED is implemented and tested.

The reminder of this paper is organized as follows: in
Section 2, a rule based clustering algorithm is designed in
order to demonstrate that the REED does not only support
application related data service, such as pub-sub service as
described in Fei, and Magill (2008), but also support
dynamic system self-organization; in Section 3, the REED
prototype implementation is describe in detail and test
results are given; in Section 4 the related work is
discussed; followed by the conclusion in Section 5.

II. RULE BASED PROGRAMMING

A. General architecture and definition
Figure 1 shows the system architecture for PROSEN,

which consists of a Policy Server (PS), a Processing Node
(PN) for each wind-turbine, and sensors to measure
parameters such as temperature, wind-speed, wind-

Sponsored by EPSRC PROSEN project

Proceedings of the 16th International Conference on
Automation & Computing, University of Birmingham,
Birmingham, UK, 11 September 2010

direction, battery-level, and gearbox temperature. The PS
interacts with users and operators to obtain the goals for
the system. Such goals might describe a desirable power
output or responses to poor weather conditions. The PS
converts the goals to a set of rules. These rules describe
the behaviour of individual PNs. Hence the WSN
distributes and executes these rules within each PN. It is
also possible to transfer these rules between PNs.

Policy
Store

User/
Operator

Policy

Policy
Server …

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule Engine

SetEvent/
NtfEvent

Sensor … Sensor Sensor

PN REED
Middware

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule Engine

SetEvent/
NtfEvent

Sensor … Sensor Sensor

PN REED
Middware

SetEvent/
NtfEvent

Processing Node

Processing Node

Figure 1. PROSEN system architecture

In addition to transferring the rules, the REED
middleware also transfers events between the system
components. It is these events that trigger the individual
rules.

Conceptually, a rule takes the form of <event,
condition, action> where:

• an event is received from any other component in
the system. This is often an event carrying data
values, but other events such as a timeout event, a
sleep or wake-up event can also occur.

• a condition is a Boolean expression that will be
evaluated when the event occurs.

• an action is executed if the above condition is true
when the event is received. The action may
manipulate or store data. It may also generate
another event to other components in the system,
such as an event to trigger other rules.

To implement REED, a rule-engine has been designed
and implemented. The functionality of the rule-engine
includes:

• managing a rule-base that stores the rules for the
middleware to allow the adding, removing, and
overriding of rules

• verifying rule consistency, and

• executing the rules in response to received events.

Figure 2 shows the general architecture of the REED
middleware. The middleware must record certain aspects

of the state of the node and the events that have occurred.
These are recorded in the Fact-Base. Here we borrow the
terminology Fact from a separate rule-based WSN
approach (Terfloth, Wittenburg, and Schiller 2006). The
Event-Manager is responsible for receiving events,
passing them to the Rule-Engine, where the engine
executes any matching rules, and/or distributes any
resulting events. The Rule-Base stores all the rules used by
the engine.

Event
Manager

Rule
Engine

Application

Sensor Platform

Fact
Base

Rule
Base

Figure 2. REED general architecture

In order to provide a clear description of the REED
middleware, a formal notation is used. The notation is
explained in Table 4 in Appendix and gives the core
definitions.

B. Rule based pub-sub data service construction
Fei, and Magill (2008) described how to construct a

typical WSN data service: publish-subscribe service:

• Data service subscription can be constructed by
sending to sensor nodes a rule in which the
subscribed data is expressed in event and
condition of the rule; and the action of the rule is
set as sending the data event back to the rule
sender;

• Data publication is the result of executing the
action of above rule in response of the data events
that meet the condition of that rule.

An example of constructing rules for pub-sub over
wind speed data event has been given in (Fei, and Magill
2008) and is described as follows:.

A PS subscribes to a PN REED middleware by
sending a rule to a particular PN as follows:

Rule = < wind_speed; [(wind_speed.value >> 60; send
(PS, WindSpeed))]>

Later on, the REED receives an event from its wind
speed sensor as follows:

WindSpeed = <wind_speed; Value = 67; Time =
23:14:12; Date = 01-02-08>

This event will trigger the execution of the rule above,
and as a consequence, this event will be notified to the PS.

Here we consider another example: PNs are organized
as a clustering structure, as shown in Figure 3. Clustering
(Wokoma et al. 2005) is a useful technique adopted in
sensor networks for aggregating and transmitting sensed
data to a central base station. This approach is energy
efficient due to the fact that the processing nodes are
prevented from consume a lot of energy to transmit their
data over large distances (data transmission and receiving

consume most of the energy on sensor nodes). The
clusters reduce the data dependency on individual nodes
by encouraging collaboration between sensor nodes and
by distributing the work load amongst the members of the
clusters as fairly as possible. To subscribe periodic
average wind speed from cluster heads (the period is
denoted as T_sub), each PN should receive the following
rules as listed in Table 1:

TABLE 1. RULES FOR CLUSTER BASED AVERAGE WIND SPEED
SUBSCRIPTION

< wind_speed; [(self.Identity = = “head”; save (WindSpeed,
self.windSpeedArray))]> //here self is a StateID, and Identity is
its PropertyName.
< wind_speed; [(self.Identity = = “member”; send(self.head,
WindSpeed))]>
<T_sub_timeout; [(self.Identity = = “head”;
average(self.windSpeedArray, Mean), send (PS, Mean))]> //here
average (X, Y) means calculating the average over array X, and
save the result to Y.

The reason why each PN should keep the same
subscription rules is that the cluster structure may be self-
updated periodically (the period is denoted as T_update)
for load balancing and robustness.

Policy
Server

…

Sensors

PN REED
Middware

Sensors

PN REED
Middware

Sensors

PN REED
Middware

Sensors

PN REED
Middware

Sensors

PN REED
Middware

head
head

member member member

Cluster 1 Cluster 2

Figure 3. clustering structure of PNs

C. Rule based clustering construction
REED can not only ease the construction of WSN data

services, but also support self-organisation of the sensor
nodes, such as clustering mentioned above.

TABLE 2 gives the rules for one clustering algorithm that
includes cluster head election, cluster head determination
and cluster member determination. Each cluster member
chooses its cluster head based on the SNR (Signal Noise
Ratio) of its reachable cluster heads.

It can be seen from TABLE 2 that:

• The clustering is fully distributed and self-
organized;

• Rules on each processing node are quite simple,
and the emergent clustering comes from the
interaction among these processing nodes.

TABLE 2: RULES FOR CLUSTERING

1. cluster head election
< power_on; [(true; init, set(self.identy, “pending”), back_off
(T_backoff))]> // here T_backoff is a random number and is
used for cluster head election.
< T_update_timeout; [(true; set(self.identy, “pending”),
back_off (T_backoff))]> //here T_update_timeout is for
cluster self-updating
2.cluster header determination
<T_backoff_timeout; [(self.identy == “pending”; set
(self.identy, “head”), broadcast (Head_Beacon))]> //here
Head_Beacon is an event telling neighbouring nodes it is a
clustering head.
3.cluster member determination
< head_beacon; [(self.identy == “pending”, set (self.identy,
“membet”), set (self.head, Head_Beacon.PN_id),
set(self.SNR, Head_Beacon.SNR))]> //here SNR means signal
noise ratio.
< head_beacon; [((self.identy == “member”) && (self.SNR <
Head_Beacon.SNR); set (self.head, Head_Beacon.PN_id),
set(self.SNR, Head_Beacon.SNR))]> // if a cluster member
received more than one head beacon, it chooses the one with
best SNR as its cluster head.

III. PROTOTYPE IMPLEMENTATION

A. Prototype implementation architecture

VHF

Management
Centre

TCP/IP

Gateway

TCP/IP Comm.
GSM

Comm.

REED
Midware

Gumstix

Sensors
GSM

Figure 4. Prototype implementation architecture

Figure 4 shows the prototype implementation
architecture, where the Management Center and the
Gateway are running on PCs and the REED is running on
a GumstixTM (Gumstix 2010) GS400K-XM. Gumstix is a
miniature full function Linux motherboard based on low
power Intel XScale® technology.

B. Management Centre
In PROSEN, the Policy Server is implemented by

another partner in the project. The messages used for the
interaction between the Policy Server and the Gateway
have been designed, and the Management Centre uses the
same messages for prototype implementation.

The functionality of the Management Centre is to
provide a graphic user interface (GUI) via which:

• Operators can set rules and send them to the PNs;

• Sensor data collected can be displayed.

The Management Centre is implemented using Java as
Java is a general purpose objected oriented programming
language, and especially provides a variety of components
(Swing components) for GUI development.

C. Processing Node

1) REED

The software structure for REED middleware is
illustrated in Figure 5. REED sends and receives external
messages via the interfaces provided by the UCP (Unified
Communication Platform). The Event Constructor
constructs events with the received messages. It classifies
them either as SetEvents (rules), or as NtfEvents (e.g. data
events), and then puts them onto their corresponding
queues. These two queues may have different priorities.
When any event is to be distributed, the Msg Constructor
will transform it to the corresponding message format
before delivering it to the UCP.

REED is implemented using Java. This is because,
first, Java code can be running on any devices that support
JVM (Java Virtual Machine) and thus REED is portable to
other platforms with JVM; second, GS400K-XM has
16MB flash memory and can accommodate JamVM
(JamVM 2010) which is a compact JVM.

UCP

Event
Manager Rule Engine

SetEvent

SetEvent
…

NtfEvent
…

NtfEvent

AnyEvent

AnyEvent
…

Event
Constructor

Msg
Constructor

RcvdMsg SntMsg

Rule
Base

Fact
Base

Figure 5. REED Software Structure

2) UCP

UCP aims to provide REED a unified interface to
exchange messages so that REED doesn’t need to care
about the various communication links (VHF, GSM,
Zigbee, etc) and detailed communication management. As
compared to Java code, c code consumes less memory and
takes less execution time to provide the same functionality
(Horr´e et al. 2000), c is used to develop the UCP on the
resource constrained PNs.

To enable the interaction between REED and UCP,
two techniques are explored. The first one is JNI (Java
Native Interface) (Java Native Interface 2010). JNI is a
programming framework that allows Java code and code
written in other languages, such as c and c++, to interact
with each other. The other technique is using named pipes.
A named pipe (Named pipe 2010), also know as a FIFO,
is an extension to the traditional pipe concept on Unix and
UNIX-like systems, and is one of the methods for inter-
process communication.

Compared to pipes-based inter-process communication
solution which can only be used in UNIX and UNIX-like
environment (pipes in Microsoft Windows have
substantially different semantics), JNI can be used in both
UNIX and Microsoft Windows environment. However,
pipes-based technique is more flexible and straightforward
to implement. Both techniques have been implemented.
The one that are used in our system test, called UCM
(Unified Communications Manager), is the combination
of JNI and pipe-based solution (our Gumstixs provide
Linux environment): using JNI to negotiate system unique
named pipes, and then using these pipes to exchange
messages. The UCM is developed by other partners in the
PROSEN project.

D. Gateway
The introduction of the Gateway is due to the

following reasons:

• The PS has been developed by one of the partners
in the PROSEN project. The communication
interface provided by the PS is TCP/IP while the
interfaces to WSN may be VHF (174 MHz) or
GSM. So the gateway is needed to inter-connect
the WSN and TCP/IP;

• The WSN may be deployed in an area that is not
wirelessly reachable to its PS. So the gateway can
be used as a relay;

• Most importantly, to minimise the energy
consumption caused by communicating, messages
sent and received by each PN should be as concise
as possible by using special coding schemes,
while the messages to and from the PS are
readable plain texts. So the Gateway should take
the role of an interpreter. Table 3 gives two
examples that need interpreting.

TABLE 3. EXAMPLES OF MESSAGES ON MANAGEMENT CANTER AND
THEIR CORRESPONDING MESSAGES ON PNS

Management Centre PN

device_out(set_rule, wind_speed, 2,
,[max_wind_speed, 60.0, alert_ps]) ⇒

9;0; ; [1_0;
60.0; 0]

device_in(above_threshold,
wind_speed, 2, 15:30:00, [65]) ⇐

0;2;15:30:00;
0;1;65

The Gateway is implemented using Java.

E. System test
As shown in Figure 6, Management Center and

Gateway are running on PCs and these two PCs are
connected to the Internet. REED and UCM are running on
a Gumstix. The Gumstix and the Gateway are connected
via two VHF wireless modems. Sensor readings are
simulated via a random number generator.

Figure 7 shows the snapshot on the Management
Centre. Via the Management Centre GUI, operators can
subscribe the wind speed sensor readings that are higher
than the upper threshold (60 kph in this case), and view
the detailed results (sensor reading, sensor ID and
timestamp) published by the PNs.

Figure 6. prototype system for test

Figure 7. snapshot on the Management Center

Figure 8 shows the REED debug information on the
Gumstix, from which it can be seen that the message
received from the Gateway has been transformed to the
concise format understandable by the REED.

Figure 8. debug information on the Gumstix

In addition, the rules can be updated during runtime.
E.g. the upper threshold of the wind speed (condition part

of the rule) can be changed and then sent to PNs, and as a
result, the sensor data notified by PNs will be changed
accordingly.

The test results show that REED is flexible enough to
support WSN application development (e.g. pub-sub data
service). The ability of the REED to support WSN self-
organization will be proved when the rule based clustering
is implemented and tested.

IV. RELATED WORK

Zhang, Li, and Pan (2005) proposed an ECA (Event,
Condition and Action) rules based middleware model for
WSN. However, no prototype implementation was
provided. In the paper authored by Terfloth, Wittenburg,
and Schiller (2006), a rule-based middleware architecture
for WSN, called FACTS, was proposed, and Terfloth,
Wittenburg, and Schiller (2006) described its
programming primitives and implementation using the
Haskell programming language. However, the rule set in
FACTS is static while the rule-base in REED is dynamic
as the rules for REED can be updated at run time.
Furthermore, the REED prototype has been implemented,
which demonstrates not only the functionality but also the
usability of REED.

Keoh et al. (2007) and Keoh et al. (2006) proposed a
policy based middleware architecture for managing body
sensor networks, in which the policies take on the same
form (<event, condition, action>) as used in REED.
Indeed Keoh et al. (2006) conclude that the policy based
middleware provides flexibility to reprogram the sensor
with new adaptation strategies without requiring
installation of new code. However, they did not
demonstrate such reprogramming scenarios.

JESS is a rule-engine written entirely in Sun's Java
language (JESS 2010). It is for general purpose and not
dedicated for a WSN environment. As a consequence, the
memory usage is not optimized (Terfloth, Wittenburg, and
Schiller 2006) for running on sensor nodes. In addition, in
JESS, all the facts are stored in its working memory
before executing the rules while in REED, any received
data event will be filtered by rules first and only those
needing further processing will be saved to the fact-base.
As a result, the overhead for memory consumption is
expected to be lower than using JESS.

Dressler et al. (2009) proposed a rule-based sensor
network (RSN) for sensor and actor networks. The rules
take the form of < if PREDICATE then { ACTION } >.
Each RSN node stores all received messages in a buffer.
The rule interpreter is either started periodically or after
the reception of a new message. Simulation results
showed the feasibility of such an approach. However, no
prototype implementation was provided

V. CONCLUSION

REED is a rule based middleware for WSNs. This
paper extends the REED described in the paper authored
by Fei, and Magill (2008) by supporting not only data
services, such as pub-sub data service, but also self-
organization of WSNs, such as clustering. Rules for

Gumstix

Message received from
the Gateway

VHF wireless modem

clustering algorithm have been constructed. In addition, a
prototype system has been implemented and the test
results show that REED is flexible enough to support
WSN application development.

The rule based clustering is being implemented with
the hope to prove the ability of the REED to support WSN
self-organization.

VI. ACKNOWLEDGEMENTS

The authors would like to thank EPSRC (Engineering
and Physical Sciences Research Council) for funding the
PROSEN project, and the support from PROSEN research
colleagues.

REFERENCES
[1] Wang, M., Cao, J., Li J., and Dasi, S. K. (2008)

‘Middleware for Wireless Sensor Networks: A Survey’,
Journal of Computer Science and Technology 23 (3), 305-
326

[2] PROSEN [online] available from <
http://www.cs.stir.ac.uk/~kjt/research/prosen/ > [8 July
2010]

[3] Fei, X., and Magill, E. (2008) ‘Rule Execution and Event
Distribution Middleware for PROSEN-WSN’, Second
International Conference on Sensor Technologies and
Applications (SENSORCOMM), 580-585

[4] Murphy, A. L.� and Picco�G. P. (2005) ‘TinyLIME:
Bridging Mobile and Sensor Networks through
Middleware’, PERCOM (Proceedings of the Third IEEE
International Conference on Pervasive Computing and
Communications), 61 – 72

[5] Madden, S. R., Franklin, M. J., and Hellerstein, J. M.
(2005) ‘TinyDB: An Acquisitioned Query Processing
System for Sensor Networks’, ACM Trans. Database
Systems 30(1) 122–173

[6] Welsh, M., and Mainland, G. (2004) ‘Programming sensor
networks using abstract regions’, Proceedings of First
Symposium on Networked Systems Design and
Implementation (NSDI ‘04), 29–42

[7] Fok, C., Roman, G., and Lu, C. (2005) ‘Mobile Agent
Middleware for Sensor Networks: An Application Case
Study’, Proc. of the 4th Int’l Conf. Information Processing
in Sensor Networks (IPSN 05), 382–387

[8] Zhang, C. , Li, M. , and Pan, Q. (2005) ‘An ECA Rules
Based Middleware Architecture for Wireless Sensor
Networks’, Proceedings of the Sixth International
Conference on Parallel and Distributed Computing
Applications and Technologies (PDCAT), 586 – 588

[9] Römer, K. , Kasten, O. , and Mattern, F. (2002)
‘Middleware Challenges for Wireless Sensor Networks’,
ACM SIGMOBILE Mobile Computing and
Communications Review 6(4), 59 - 61

[10] Yick, J. , Mukherjee, B. , and Ghosal, D. (2008) ‘Wireless
sensor network survey’, Computer Networks 52(12), 2292-
2330

[11] Terfloth, K. , Wittenburg, G., and Schiller, J. (2006)
‘FACTS - A Rule-Based Middleware Architecture for
Wireless Sensor Networks’, First IEEE International
Conference on Communication System Software and
Middleware (COMSWARE 2006), 1-8

[12] Terfloth, K. , Wittenburg, G. , and Schiller, J. (2006)
‘Rule-oriented Programming for Wireless Sensor
Networks’, International Conference on Distributed
Computing in Sensor Networks (DCOSS) / EAWMS
Workshop

[13] Wokoma I., Shum L., Sacks L., Marshall I.W. (2005) ‘A
Biologically-Inspired Clustering Algorithm Dependent on

Spatial Data in Sensor Networks’, 2nd European
Workshop on Wireless Sensor Networks, Turkey

[14] Gumstix [online] available from < http://gumstix.com > [8
July 2010]

[15] JamVM [online] available from <
http://jamvm.sourceforge.net > [8 July 2010]

[16] Java Native Interface [online] available from <
http://en.wikipedia.org/wiki/Java_Native_Interface > [8
July 2010]

[17] Named pipe [online] available from <
http://en.wikipedia.org/wiki/Named_pipe > [8 July 2010]

[18] Keoh, S. L., Dulay, N., Lupu, E., Twidle, K., Schaeffer-
Filho, A. E., Sloman, M., Heeps, S., Strowes, S., and
Sventek, J. (2007). Self managed cell: A middleware for
managing body sensor networks. In Proceedings of the 4th
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services
(Mobiquitous)

[19] Keoh, S. L., Twidle, K., Pryce, N., Schaeffer-Filho, A. E. ,
Lupu, E., Dulay, N., Sloman, M., Heeps, S. , Strowes, S.,
Sventek, J., and Katsiri, E. (2006) ‘Policy-based
Management for Body-Sensor Networks’, 4th International
Workshop on Wearable and Implantable Body Sensor
Networks (BSN), 26 – 28

[20] Dressler, F., Dietrich, I. , German, R. , and Kruger, B.
(2009) ‘A Rule-based System for Programming Self-
Organized Sensor and Actor Networks’, Computer
Networks 53 (10) 1737-1750

[21] JESS [online] available from < http://www.jessrules.com/
> [9 July 2010]

[22] Horr´e, W. , Matthys, N., Michiels, S. Joosen, W., and
Verbaeten, P (2000) An empirical comparison of C, C++,
Java, Perl, Python, Rexx, and Tcl [online] available from <
http://page.mi.fu-
berlin.de/prechelt/Biblio//jccpprt_computer2000.pdf > [8
July 2010]

APPENDIX
TABLE 4. CORE LANGUAGE DEFINITION FOR REED

Property = <PropertyName “=” PropertyValue>
State = <StateID “;” Property | State “;” Property>
Event = < EventID “;” Property | Event “;” Property >
FactID = < StateID | EventID >
Fact = <State | Event>
ComparisonOperatior = < “>>” | “<<”| “>=”| “<=”| “= =”|
“!=”>
Connector = < “&&”>

ExistOperator = < “∃” >
Condition = <”True” | EsistOperatpor “(” FactID “)”|
FactID “.” PropertyName ComparasionOperator Threshold
| FactID “.” PropertyName ComparasionOperator FactID
“.” PropertyName >
ConditionSet = <Condition | Condition Connector
Condition>
Action = < Set “(”FactID.PropertyName, PropertyValue“)”
| Send “(”Destination “,” Event“)” | FunctionCall “(”Event
“)” | …>
ActionetSet = < Action | Action “,” Action>
EventHandler = < “(” ConditionSet “;” ActionSet “;”
Priority “)” | EventHandler ; “(” ConditionSet “;” ActionSet
“;” Priority “)”>
Rule = <Event_ID “;”“[”EventHandler“]” >

	cover3
	RuleBasedMiddlewareForWSN_ICAC10
	I. Introduction
	II. rule based programming
	A. General architecture and definition
	B. Rule based pub-sub data service construction
	C. Rule based clustering construction

	III. prototype implementation
	A. Prototype implementation architecture
	B. Management Centre
	C. Processing Node
	1) REED
	2) UCP

	D. Gateway
	E. System test

	IV. Related Work
	V. Conclusion
	VI. Acknowledgements
	
	References
	Appendix

