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Abstract.

A unique data-based and physically meaningful nonlinear continuous-time model of heating
element is presented. The model is considered to be of low complexity yet achieving high
simulation performance. The physical meaningfulness of the model provides enhanced insight
into the performance and functionality of the system. In return, this information can be used
during the system simulation and improved model based control designs for tight temperature
regulation. The second contribution presented in this work is the parameter estimation of the
derived nonlinear model in continuous-time domain itself. For this purpose the application of
refined instrumental variable methods has been found to be particularly suitable.

1. Introduction

The paper reports on modelling and data-based identification of a heating element, which
preheats the inlet air used by a testbed for testing and modelling of phase change materials
(PCM) used in passive air conditioning for sustainable housing applications, for more details see
[1]. The main motivation for the work is the actual modelling of the phase change materials itself
where a clear parallel between the air being conditioned by a heating element or the PCM based
heat exchanger can be found. The later heat exchange process additionally includes nonlinear
effects caused by the phase change of the PCM. Therefore the emphasis is given on physical
meaningfulness of the derived heating element model with the view of extending this model for
later modelling of PCM based heat exchangers.

The presented modelling procedure has been motivated by, but not necessarily strictly follow,
the ‘data-based mechanistic’ approach to identification and modelling of systems [2, 3, 4, 5].
In this approach a parsimonious data-based model is inferred first using statistical system
identification tools. Once the model parameters, order and structure are inferred from measured
data the obtained data-based model is interpreted in a physical sense. Furthermore, this system
identification procedure can be re-iterated such that the physical laws can assist in priming the
black-box model structure and vice versa. The search for the system model stops when the
identified model explains the measured data well and also the model must provide meaningful
interpretation of the system in physical terms. In this regard, the final obtained heating element
model is unique in its own right, where up to the best knowledge of authors no alike model has
been reported in the literature up to date.

The system identification in continuous-time domain is essential so that a direct link between
the data-based identified model and physical laws can be established in a straight forward
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manner. For this purpose a simplified refined instrumental variable method for linear continuous-
time transfer function model identification (SRIVC) has been adopted, see [6, 7] and references
therein. The identified heating element model is, however, not linear in structure and resemble a
bilinear system models. Therefore, modified SRIVC algorithm capable of parameter estimation
of such nonlinear models is used instead [8]. Finally, the nonlinear dynamic behaviour of the
identified heating element model throughout the operational envelope is discussed, together with
the implications for parameter estimation and simulation of such model, see Sub-section 3.5.
Motivated by [9], it will be shown that the dynamic behaviour of the considered nonlinear
model at given operating point can be replicated at zero operating point, which has further
applications in system identification and simulation of such system models (which are, however,
not shown here).

2. Heating element details and system identification set-up

The heating element is part of a larger testbed system for testing and numerical modelling
of phase change materials, see [1] for further references. The speed and temperature of air
passing around the tested PCM can be freely regulated to meet the demanded test environmental
conditions. The air is conditioned by means of the considered heating element which is in a down
stream series connection with a cooling unit. Schematic diagram of the heating element installed
in the supply duct is provided in Figure 1.

Heating element

Air flow
Control
volume

Ti To

Figure 1. Schematic description of the heating element.

For the system identification purposes the following system inputs are considered: measured
inlet air temperature, denoted Ti(tk) [K], and the air velocity, denoted v(tk) [m/s]. Both
system inputs are measured in the centre of the cross sectional area of the supply duct. The
outlet air temperature, denoted To(tk) [K], is the assumed system output. The data acquisition
experimental set-up has been designed such that the supplied power, denoted q(tk) [W ], to the
heating element is constant with the average reading of q(tk) = 830 [W ]. The inlet air temperate
has been altered at random intervals by means of up stream cooling unit; simultaneously the air
speed has been stepped up or down by means of altering the supply fan power. The test bed is
installed in a large indoor space with approximately constant ambient air temperature, denoted
Ta(tk) [K]. The time index (tk) is chosen to emphasise that the continuous time signals are
measured at discrete time index k. The chosen sampling interval is τ = 1 [s], where selection of
faster sampling has not been feasible due to the limitations of the data acquisition device.

It is expected to observe that for increasing inlet air temperature the outlet air temperature
will also increase and vice versa. On the other hand, for increasing air speeds the outlet air
temperature should decrease (and the other way around). This can be explained such that for
increasing air speeds the air volumetric flow also increases, hence the need for heating, while the
heating power is kept constant. For example, the regulation of supply air volume is a common
method used in air conditioning of offices and alike spaces [10].
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3. Data-based model identification

Having obtained the measured input and output data, being the inlet and outlet air temperatures
together with the air velocity, a continuous-time model is identified in a data-based mechanistic
manner [3, 4, 5]. The first principles modelling approach, provided in subsequent Section 4, is
used to prime the data-based model structure and vice versa. The data-based model is used to
prime the first principles model, where the suggested model terms are supported by the evidence
based on measured data. In overall this iterative procedure confirms the ‘appropriateness’
of the selected model structure for the data-based identified model and allows a meaningful
interpretation in physical terms.

The main outcome of applying the physical laws to prime the data-based model structure
has been the selection of two model inputs being the product between the inlet air temperature
and air velocity and also the product between the outlet air temperature and air velocity, i.e.
Ti(tk)v(tk) and To(tk)v(tk), respectively. This makes the suggested model nonlinear in structure,
while still being linear in parameters so that least-squares based model parameter estimation
methods can be adopted. However, it should be noted that despite the insight offered by physical
laws a purely black-box modelling approach has been also adopted, where various linear and
nonlinear regression terms and model orders have been tested with no clear advantage gained
in terms of model fit.

3.1. Parameter estimation stage

In order to estimate the model parameters a simplified refined instrumental variable method for
linear continuous-time transfer function model identification, SRIVC, has been adopted. The
SRIVC algorithm is a direct parameter estimation method, which uses sampled (discrete), noisy,
input-output signals and is based on the state variable filter (SVF) approach. The purpose of
the optimally selected SVF is twofold, first, to obtain the filtered unknown time derivatives,
second, to noise prefilter the measured input-output signals. In the case of white, zero mean,
additive measurement noise with Gaussian amplitude distribution the SRIVC algorithm yields
asymptotically unbiased statistically efficient (minimum variance) parameter estimates. Another
feature of the SRIVC algorithm is the use of instrumental variables (IV), which together with the
optimal prefilters form the core of the algorithm. The source of the instrumental variables is the
simulated system output. Additionally, the SRIVC algorithm is known for its rapid convergence
properties and ease of implementation.

It is important to note that the SRIVC algorithm is designed for linear transfer function
model estimation, while the adopted model is nonlinear in structure due to the selection of
input signals, cf. (1). Special attention must be paid to the use of instrumental variables, where
one of the model inputs contains the measured output. The issue of using SRIVC algorithm in a
presence of such a signal product is in detail addressed in [8]. Additionally, the nonlinear model
needs to be estimated at its original point of operation, which then implies that a constant
offset term must be included in the regression vector of the SRIVC algorithm - this method
has been used in this work. Alternatively, in the same manner as in the case of estimation of
linear models, it is advantageous to subtract the initial values of measured input-output signal
so that the model is estimated at zero operating point. This is not an issue in the case of linear
models, however the values of nonlinear model parameters depend on the point of operation. The
procedure of tackling this issue is discussed in [8, 9] for the case of identification of bilinear and
Hammerstein-bilinear models. Due to the close connection of the considered nonlinear model,
cf. (1), with the bilinear model class the same procedure could be adopted.

It should be emphasized, that both system inputs are measurement noise contaminated, i.e.
Ti(tk) and v(tk). This in effect creates an errors-in-variables identification conceptual scenario,
[11], causing a bias in the parameter estimates. However, the SRIVC method uses optimal
prefilters which help to attenuate the influence of this input noise on the parameter estimates,
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Table 1. Estimated model parameters for model with orders (n = 2,m = 2) are provided on
the first two lines, while the parameters for the model (n = 2,m = 1) are provided on the
last two lines. The corresponding estimated standard errors are provided in the brackets. The
offset terms are ô = −279.25 and ô = −122.95 for models (n = 2,m = 2) and (n = 2,m = 1),
respectively.

α̂1 × 10−3 α̂2 × 10−6 β̂0 × 100 β̂1 × 10−2 β̂2 × 10−4 η̂0 × 100 η̂1 × 10−2 η̂2 × 10−4

8.5257 −9.2335 1.1581 3.8449 1.2031 −0.9620 −3.6187 −1.4548
(0.6627) (2.3038) (0.0231) (0.1194) (0.1095) (0.0186) (0.1004) (0.1060)

55.026 −92.835 − 9.9837 7.7661 − −8.5689 −8.3067
(2.0110) (3.3983) − (0.2512) (0.2835) − (0.2070) (0.2984)

see [7], so that the estimated model may suffice for practical purposes.
The final selected model has two integral terms and a feed-through term, i.e. a second order-

like model n = 2 with two zeros m = 2. The estimated pure time delay is null. It is assumed
that any pure time delay has been effectively captured by the dominant dynamics of the model.
The final estimated nonlinear model in transfer function-like form is given by

To(tk) =
β̂0s

2 + β̂1s+ β̂2
s2 + α̂1s+ α̂2

{
Ti(tk)v(tk)

}
+

η̂0s
2 + η̂1s+ η̂2

s2 + α̂1s+ α̂2

{
To(tk)v(tk)

}
+ ô (1)

where s denotes a differential operator defined as spx(t) = dpx(t)
dtp . The hat symbol over the

parameters indicates that these are estimated. The estimated parameters are given in Table 1,
where the estimated corresponding standard errors are provided in the parentheses and the
estimated offset term is in the table’s caption.

3.2. Simulation results and observations

The simulation results are presented in Figure 2. The upper plot shows measured (grey solid
line) and simulated (black solid line) outlet air temperature, denoted by x̂(tk). The middle
plot shows the simulation error e(tk), defined as e(tk) = To(tk) − x̂(tk). The lower plot shows
inputs v(tk) (grey solid line) and Ti(tk) (black solid line). Two model performance criteria
are evaluated, namely, the integral of absolute error, denoted IAE [◦C], and the coefficient of
determination, denoted R2

T [%]. The integral of absolute error is defined as

IAE =
1

N

N∑

k=1

|e(tk)| (2)

where N is the number of data samples. The IAE criterion then provides an average simulation
error in the units of the evaluated output signal (in this case [◦C]). The coefficient of
determination is defined as

R2
T = 100

(
1−

σ2
e

σ2
To

)
(3)

where σ2
e and σ2

To
are variances of simulation error and outlet temperature, respectively. The

R2
T criterion then provides a measure of how much of the measured output variance is explained

(or captured) by the simulated output variance.
Subsequently, the simulation results with R2

T = 99.68 [%] and IAE = 0.1582 [◦C] have been
obtained. The evaluated performance criteria indicate an acceptable predictive performance of
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Figure 2. The upper plot shows measured (grey solid line) and simulated (black solid line)
outlet air temperatures. The middle plot shows the simulation error defined as the difference
between measured and simulated outlet air temperatures. The lower plot shows system inputs,
i.e. air velocity (grey solid line) and inlet air temperature (black solid line). Sampling interval
is one second.

the estimated heating element model. The simulation error (being also the model residuals),
plotted in the middle part of Figure 2, is not a zero mean white noise signal, however that is
to be expected in the case of nonlinear model identification. In overall this indicates that the
model could not capture all of the deterministic processes caused by the system inputs. It is
anticipated that this may have also affected the accuracy of the parameter estimates and that
the reported standard errors are probably too optimistic.

Finally, it is instructive to evaluate the nonlinear model (1) dynamics at distinct point of
operation. It has been found that the speed of the response depends only on air velocity while
the achieved steady-state gain depends on both, the air velocity and the inlet air temperature.
Subsequently, linearising the estimated nonlinear model (1) at two stead-state values of air
velocity, low and high, respectively, yields two distinct time constants. Considering a low air
velocity of v∗ = 0.84 [ms−1] the two time constants are T1 = 55.3 [s] and T2 = 289 [s]. For
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faster air velocity the system response becomes also faster with the two time constants being
T1 = 41.2 [s] and T2 = 242 [s].

3.3. Relation to bilinear system models

It is interesting to note that if the inlet air temperature is constant then the identified nonlinear
model (1) reduces to a so called bilinear model (a special class of nonlinear models). The
characteristic feature of bilinear models is the input dependent dynamic behaviour, see the last
paragraph in Sub-section 3.2.

Bilinear models are defined to be linear in both state and control when considered
independently, with the bilinearity (or nonlinearity) arising from coupled terms involving
products of the system state and control input. It is this close connection to linear systems,
which makes the bilinear models particularly appealing so that many techniques developed for
linear systems can be extended and applied to the bilinear case [12]. This has been also one
of the reasons why it has been possible to use the SRIVC algorithm which has been originally
developed for linear transfer function model estimation, see [8] for more details.

3.4. Reduced order model

The identified second best model in terms of IAE criterion is of the same form as model (1),
however without the feed-through terms. The estimated model parameters are provided in
Table 1. In order words the two feed-through parameters are β0 = 0 and η0 = 0 and the
model order is (n = 2,m = 1). The obtained performance criteria are IAE = 0.2269 [◦C] and
RT 2 = 99.47 [%], which indicates only a slight performance deterioration.

There are two main reasons why the reduced order model might be the preferred option
for more practical considerations. The first reason is the reduced computational burden such
that the feed-through terms of the original nonlinear model (1) have been inevitably causing an
algebraic loop during the model simulation. Secondly, for model based control design purposes
it is commonly required that at least one lag (or sample delay) exists between the control input
and process output.

Physically meaningful interpretation of the originally estimated nonlinear model (1) is
provided in next Section 4. Such interpretation is not provided for the considered reduced
order model due to the space limitations. Nevertheless, the first principles model (7), which
relates to the originally estimated data-based model (1), can be easily re-arranged to conform to
the reduced order model instead. This could be done by combining the energy balance equations
(7a) and (7b), hence

C
dTo(t)

dt
= q(t)− v(t)ρaAaca [To(t)− Ti(t)]− (UA)int [To(t)− Tw(t)] (4)

and leaving (7c) intact. The model parameters in (4) are introduced in the next Section 4 as
well as the meaning of (4).

3.5. Non-linear model operation: Simulation at zero operating point

In general, the dynamic and steady-state behaviour of nonlinear models differ throughout the
operation envelope. Therefore, if the nonlinear model, such as the identified model (1), is
simulated at different operating points a distinct dynamical response will be obtained. This
imposes interesting issues in the area of nonlinear system identification. For example, it is not
possible to pre-process the measured input-output signals by means of subtracting mean values
or initial values prior to parameter estimation and then attempt to estimate the nonlinear model
parameters. Of course, this is a common practice when estimating linear transfer function model
parameters, however identification of nonlinear models is, in general, not possible in this way
(with some exceptions, see [9]).
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It is going to be shown, however, that it is possible to simulate the identified nonlinear
model (1) at zero operating point while the obtained dynamical response is identical to the one
which would be obtained at the original point of operation. This has naturally implications for
system identification but also for simulation of nonlinear systems, where the issue of computer
simulation initialisation is elevated (initialisitaion of integral terms in particular).

To start with, the input-output signals adopted in the identified model (1) are re-defined
or rather substituted with To(t) := To(t) + T̄o, Ti(t) := Ti(t) + T̄i and v(t) := v(t) + v̄. The
input-output signals then comprise the time varying component (deviations) and the steady-
state, base-line, component which is denoted by a bar. In the present context the adopted input
signals start initially as constant signals and the modelled system is allowed to settle to reach
the steady-state. Therefore, the initial values (first sample) of input-output signals are also the
base-line components (denoted by the bar). To simplify the following discussion the reduced
order model is assumed instead, i.e. β0 = 0 and η0 = 0 c.f. Section 3.4. Subsequently, if the
base-line components are removed (subtracted) from the the input-output signals of model (1)
then also the offset term o is effectively removed, see [9], and the following nonlinear, base-line
adjusted, model can be derived

To(t) =
B(s)

A(s|v̄)

{
Ti(t)v(t)

}
+

E(s)

A(s|v̄)

{
To(t)v(t)

}
+

B(s|v̄)

A(s|v̄)
Ti(t) +

B(s|T̄i, T̄o)

A(s|v̄)
v(t) (5)

where the constant coefficient polynomials are defined as

A(s|v̄) = s2 + (α1 − η1v̄) s+ (α2 − η2v̄) (6a)

B(s) = β1s+ β2 (6b)

E(s) = η1s+ η2 (6c)

B(s|v̄) = (β1v̄) s+ (β2v̄) (6d)

B(s|T̄i, T̄o) =
(
β1T̄o + η1T̄i

)
s+

(
β2T̄o + η2T̄i

)
(6e)

The obtained model (5) is then able to replicate the dynamic behavior of the original nonlinear
model (1) simulated at the operating point (v̄, T̄i, T̄o). Comparing the base-line adjusted model
(5) with the original model (1) it is noticed that two new transfer function terms have appeared
on the right hand side of (5). These terms compensate for the discrepancy between the response
of the original model simulated at operating point (v̄, T̄i, T̄o) and the response which would be
obtained at zero operating point, i.e. (v̄ = 0, T̄i = 0, T̄o = 0).

3.5.1. Simulation at zero operating point - An example: The originally identified nonlinear
model (1) is simulated using the artificially designed input signals displayed in the lower left
plot of Figure 3. The adopted parameters of the reduced order model are given in the lower part
of Table 1 with the offset term provided in the caption. The obtained corresponding output
is shown in the upper left plot of Figure 3. Consequently, the following base-line values are
inferred from the obtained plots, i.e. (v̄ = 1, T̄i = 20, T̄o = 36.52).

To be able to simulate the nonlinear model at zero operating point the base-line components
of input signals are removed; the base-line compensated input signals are provided in the lower
right plot of Figure 3. The compensated input signals are then used by the originally identified
nonlinear model (1), where the obtained simulated output is shown in the upper right plot of
Figure 3 as a grey solid line. The same compensated inputs are also used by the adjusted model
(5), where the obtained output is shown as solid black line. The parameters of the adjusted
model are calculated using the relations provided in (6) with the previously inferred values of
(v̄, T̄i, T̄o).
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Figure 3. The upper left plot shows simulated outlet air temperature; originally estimated
model is used. The lower left plot shows corresponding input signals, i.e. air velocity (grey solid
line) and inlet air temperature (black solid line). The upper right plot shows simulated outlet
air temperature, where original model (black solid line) and adjusted model (grey solid line) are
used. Both simulated outputs are obtained using the base-line compensated input signals shown
in the lower right plot, i.e. starting at zero value. The sampling interval is one second.

As expected, it is noticed, that the dynamical response of the original nonlinear model
considerably differs at different operating points. It is also observed that the response of the
adjusted model (5) is identical to the response of the original nonlinear model obtained at the
original point of operation, i.e. (v̄ = 1, T̄i = 20, T̄o = 36.52), while the adjusted model is
simulated at zero operating point, i.e. (v̄ = 0, T̄i = 0, T̄o = 0). Similarly to [9], it is possible
to operate the base-line adjusted model at any operating point (not just zero base-line), while
preserving the dynamical response of the nonlinear model from any other point of operation,
but this is beyond the scope of the current article.

4. First principles considerations: Mechanistic model interpretation

From the system details provided in Section 2 it is known that the modelled system compose
of three main elements, that is the heating element itself, the air control volume and the duct
walls. Additionally, the supplied constant heat gain q(t) causes a temperature rise over the
heating element. The data-based model (1) indicates, however, that only two dynamical modes
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are present (fast and slow mode) and also a feed-through term is clearly present. Therefore, one
of the main system components must have negligible thermal capacity.

The air surrounding the heating element is assumed to be perfectly mixed, where the
schematic diagram of the system is shown in Figure 1, so that a lumped parameter modelling
approach is considered. Under this assumption the outlet air temperature, To(t), is assumed
to be equal to the mean temperature of the whole control volume. Consequently, the energy
balance equations for the heating element, the control volume of air surrounding the heating
element and adjacent duct walls, are, respectively, given by

Ch

dTh(t)

dt
=q(t)− (UA)h [Th(t)− To(t)] (7a)

0 =(UA)h [Th(t)− To(t)]− v(t)ρaAaca [To(t)− Ti(t)]− (UA)int [To(t)− Tw(t)] (7b)

Cw

dTw(t)

dt
=(UA)int [To(t)− Tw(t)]− (UA)ext [Tw(t)− Ta(t)] (7c)

where Ch [J/K] is the thermal capacity of the heating element, Cw [J/K] thermal wall capacity
(insulated plywood), ca [J/kgK] is the air specific heat capacity, Aa [m2] denotes the cross
sectional area of the duct, ρa [kg/m3] is the air density. The heat transfer coefficient is denoted
by U [J/m2K] while the product of the heat transfer coefficient and the efficient surface area,
A [m2], through which the heat is transmitted is denoted by (UA)h [J/K] (heating element),
(UA)int [J/K] (inner duct wall) and (UA)ext [J/K] (outer duct wall). The mean temperature
of the heating element and wall temperature are denoted, respectively, by Th(t) [K] and Tw(t)
[K]. The time index (t) is chosen, emphasising that the signals are not measured but generated
by a physical laws based model.

4.1. Remarks on model derivation

The heating element system is represented by three governing nonlinear differential equations
(7). The first equation (7a) relates to the energy balance of the heating element itself. It assumed
that the inner temperature and the surface temperature of the element are the same and are
equal to Th(t). This is surely simplifying assumption, however considering the small volume of
the heating spiral and high temperatures involved, not so unrealistic. It is further assumed that
the hating element can be represented as a lumped heat source dissipating all power q(t) into
the passing air.

It is assumed that the passing air has negligible thermal capacity so that the heat exchange
between the heating element and the air is instantaneous, hence the left hand side of (7b) equals
to zero, see e.g. [13]. It is this assumption which supports (implies) the presence of the feed-
through terms in data-based model (1). Furthermore, the presence of feed-through terms in (1)
can be also interpreted as if not all inlet air is in direct contact with the heating element and
that the air just passes around, which surely does occur in practice. Subsequently, the heat
transmitted into the passing air must be allowed to dissipate otherwise a first type integrating
model would be derived - which is not supported by measured data. It is assumed that the heat
loss solely occurs through the walls of the duct, which is expressed by the last energy balance
equation (7c).

It should be emphasised that the derived (relatively simple) first principles model (7) is not
the only physically feasible interpretation of the data-based model (1), however the model, and
the mechanistic interpretation it provides, is considered to be sufficient for the given application.
For example, the identified data-based model (1) has two dynamical modes, fast and slow mode,
respectively. Based on the first principles model (7) the following mechanistic interpretation can
be provided: It can be assumed that the slow mode (time constant is T ≈ 289 [s]) corresponds
to the heat loss through the insulated walls of the duct. Similarly, it can be assumed that the
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fast dynamical mode (time constant is T ≈ 55.3 [s]) relates to the thermal mass of the heating
element itself.

4.2. Nonlinear transfer function-like form

For the system identification purposes it is convenient to visualise the set of nonlinear differential
equations (7) in a transfer function-like form, from which the interaction between the system
inputs and outputs will be clearly visible. In return, this supports the model structure selection
of the data-based model.

Using the differential operator s the energy balance equation for the heating element (7a)
can be conveniently expressed as follows

[
s+

(UA)h
Ch

]
Th(t) = q(t) +

(UA)h
Ch

To(t) (8)

Similarly the energy balance equation for the wall (7c) can be arranged as

[
s+

(UA)int
Cw

+
(UA)ext

Cw

]
Tw(t) =

(UA)int
Cw

To(t) +
(UA)ext

Cw

Ta(t) (9)

Subsequently, the set of differential equations (7) is combined by substituting (8) for the unknown
heating element temperature Th(t) in the energy balance equation for air (7b), also the expression
(9) is substituted for the unknown wall temperature Tw(t) in (7b). Rewriting and rearranging
the resulting expression in a transfer function-like form gives

To(t) =
β0s

2 + β1s+ β2
s2 + α1s+ α2

{
Ti(t)v(t)

}
+

η0s
2 + η1s+ η2

s2 + α1s+ α2

{
To(t)v(t)

}

+
γ1s+ γ2

s2 + α1s+ α2
q(t) +

δ1s+ δ2
s2 + α1s+ α2

Ta(t)

(10)

where the individual model parameters are defined as

α1 =
Ch[(UA)h(UA)int + (UA)h(UA)ext + (UA)int(UA)ext] + Cw(UA)h(UA)int

[(UA)h + (UA)int]ChCw

α2 =
(UA)h(UA)int(UA)ext
[(UA)h + (UA)int]ChCw

β0 = −η0 =
ChCwρaAaca

[(UA)h + (UA)int]ChCw

β1 = −η1 =
[Ch(UA)int + Ch(UA)ext + Cw(UA)h]ρaAaca

[(UA)h + (UA)int]ChCw

β2 = −η2 =
(UA)h[(UA)int + (UA)ext]ρaAaca

[(UA)h + (UA)int]ChCw

(11)

and

δ1 =
Ch(UA)int(UA)ext

[(UA)h + (UA)int]ChCw

δ2 =
(UA)h(UA)int(UA)ext
[(UA)h + (UA)int]ChCw

γ1 =
Cw(UA)h

[(UA)h + (UA)int]ChCw

γ2 =
(UA)h[(UA)int + (UA)ext]

[(UA)h + (UA)int]ChCw

(12)

It is interesting to note that the obtained nonlinear transfer function (10) clearly indicates that
the signal products Ti(t)v(t) and To(t)v(t) should be considered as system inputs during the
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data-based identification stage. Indeed, it has been found in Section 3 that this is the case. The
first system input, Ti(t)v(t), directly relates to the amount of heat carried by the inlet air, while
the second input, To(t)v(t), can be viewed as an internal feedback which assures that as the inlet
air speed goes to plus infinity the outlet air temperature converges to the inlet air temperature.
Furthermore, considering the model parameters βi and ηi, i = 0, 1 and 2, provided in (11), it can
be noticed that assumed physical laws indicate that ηi parameters are equal to βi parameters
however being negative. The estimated β̂i and η̂i parameters provided in Table 1 do clearly
confirm this (taking into account the standard error bounds provided by the estimated standard
errors).

4.2.1. Mechanistic interpretation of the data-based model - An example: The first principles
model (10) does not just provide the information on feasible model structure but also gives us
an insight into the estimated data-based model (1). The first principles model suggests that the
steady-state gains of the four transfer functions in (10) are related to each other as follows

SSGvTi
=

[(UA)int + (UA)ext]ρaAaca
(UA)int(UA)ext

SSGvTo
= −SSGvTi

, SSGq =
SSGvTi

ρaAaca
, SSGTa

= 1

(13)

where SSG denotes the steady-state gain, which has been obtained by setting the differential
operator to zero, i.e. s → 0. Considering the identified data-based model (1) it is then possible
to infer the value of the steady-state gains (13) as follows

ŜSGvTi
=

β̂2
α̂2

, ŜSGvTo
= −ŜSGvTi

, ŜSGq =
ŜSGvTi

ρaAaca
, ŜSGTa

= 1 (14)

Subsequently, recalling that the heating element power has been assumed to be constant as well
as the ambient air temperature, i.e. Ta(t) ≈ Ta and q(t) ≈ q, the following must hold

ô = ŜSGqq + ŜSGTa
Ta (15)

For example, it can be now hypothesised that it is desirable to estimate the heating power
q, which is not measured under standard circumstances. Rearranging (15) with respect to

‘unknown’ q and using the definitions of ŜSGq and ŜSGTa
from (14), then

q =
ô− ŜSGTa

Ta

ŜSGq

=
α̂2 (ô− Ta) (ρaAaca)

β̂2
(16)

The average measured ambient air temperature was Ta = 20.48 [◦C]; from the technical sheets
the cross section area is Aa = 0.17 [m2], air density ρa = 1.3 [kg/m3] and air specific heat
capacity ca = 1005 [J/kgK]. Subsequently, the estimated heater power is q̂ = 868.5 [W ], which
is well in alignment with the measured value of q = 830 [W ], see system details in Section 2.

5. Conclusions and further work

A unique physically meaningful nonlinear model of heating element has been identified in
continuous-time time domain. A relatively high predictive performance of the estimated model
has been observed despite its simplicity. Additionally a reduced order model has been introduced
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which finds its application in model based control designs. Interestingly, the identified nonlinear
model reduces to a so called bilinear model class for constant inlet air temperatures, where
such models have been found particularly useful in modelling of heating, ventilation and air
conditioning (HVAC) systems by the authors.

The further work will follow two separate but related research streams. Firstly, it is intended
to extend the obtained model to include the heating element power as another input. It is then
anticipated that such a model will become more universal and will find its application in the
area of simulation and control design of HVAC systems. The second work stream will follow
modelling and data-based identification of phase change materials (PCM) for air conditioning
applications. In these applications the air passes around a heat exchanger filled with PCM.
The main difference between such heat exchanger and the considered heating element is that no
constant heat power is provided into the heat exchanger. The PCM acts as a heat storage and
depending on the air state the heat is either released into the passing air or the air is cooled
down. It is assumed that the heat exchange process between the PCM and the passing air can
be modeled by the same model as the one obtained in this work, while the inclusion of varying
heating power (heat storage) will be required.

References
[1] M. Iten and S. Liu. A work procedure of utilising PCMs as thermal storage systems based on air-TES

systems. Energy conversion and management, 77:608–627, 2014.
[2] P.C. Young. Data-based mechanistic modelling of environmental, ecological, economic and engineering

systems. Environmental Modelling and Software, 13:105–122, 1998.
[3] P. C. Young. Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis.

Computer Physics Communications, 117:113–129, 1999.
[4] L. Price, P. Young, D. Berckmans, K. Janssens, and J. Taylor. Data-based mechanistic modelling (DBM)

and control of mass and energy transfer in agricultural buildings. Annual reviews in Control, 23:71–82,
1999.
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