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Energy profiling in practical sensor networks:
Identifying hidden consumers

James Brusey John Kemp Elena Gaura Ross Wilkins Mike Allen

Abstract—Reducing energy consumption of wireless
sensor nodes extends battery life and / or enables the
use of energy harvesting and thus makes feasible many
applications that might otherwise be impossible, too costly
or require constant maintenance. However, theoretical ap-
proaches proposed to date that minimise WSN energy
needs generally lead to less than expected savings in
practice. We examine experiences of tuning the energy
profile for two near-production wireless sensor systems and
demonstrate the need for (a) microbenchmark-based energy
consumption profiling, (b) examining start-up costs, and
(c) monitoring the nodes during long-term deployments.
The tuning exercise resulted in reductions in energy con-
sumption of a) 93% for a multihop Telos-based system
(average power 0.029 mW) b) 94.7% for a single hop Ti-
8051-based system during startup, and c) 39% for a Ti-
8051 system post start-up. The work reported shows that
reducing the energy consumption of a node requires a whole
system view, not just measurement of a “typical” sensing
cycle. We give both generic lessons and specific application
examples that provide guidance for practical WSN design
and deployment.

I. INTRODUCTION

Practical wireless sensor nodes must use minimal
power since:

• batteries, when provided, impose a restricted energy
budget

• energy harvesting, when provided, imposes a re-
stricted power budget.

A variety of low-power approaches exist (see Anastasi
et al. [1], for a summary), addressing different aspects
of WSN energy efficiency. Commonly, such approaches
have only been validated in terms of simulation or a
mathematical model. In practice, energy efficiency ap-
proaches can be thwarted by real-world implementation
factors not considered in their design:

• an algorithm or approach that reduces cost in one
area might increase it in another [2],

• the true energy cost of a component might be
a small proportion of the total and thus a large
percentage improvement in that component’s cost
will have a much lower percentage impact on the
overall energy consumption [3],

• a behaviour that occurs rarely may, despite its
rarity, consume much of the available energy, thus
significantly increasing the average consumption.

Table I
RESEARCH-BASED WSN DEPLOYMENTS ORDERED BY

PUBLICATION YEAR (UPDATED TABLE BASED ON KUORILEHTO ET
AL., [4]). N/S = NOT STATED.

System/Location Year Nodes Duration
ZebraNet [5] 2004 4 10 days
PicoRadio [6] 2004 25 1–2 months
GDI [7] 2004 150 4 months
Vineyard [8] 2004 65 6 months
Oil tanker (starboard) [9] 2005 16 19 weeks
ExScal [10] 2005 1000+ 2 weeks
Macroscope [11] 2005 33 44 days
Oil tanker (centre) [9] 2005 10 6 weeks
Heathland [12] 2006 24 16 days
Volcano [13] 2006 16 3 weeks
Golden Gate Bridge [14] 2008 64 2 months
Torre Aquila [15] 2009 16 4 months
GlacsWeb [16] 2009 8 2 years
Jindo Bridge [17] 2010 70 4 months
SensorScope [18] 2010 97 180 days
Flying foxes [19] 2015 N/S 12 months

Based on two case study applications, which are presen-
ted in Section II, this paper demonstrates the need for:

1) measurement-based energy profiling (described in
Section III) to identify and reduce both the normal
operating cycle costs (Section IV) and the start-up
cost (Section V), and,

2) examining long-term system behaviour (Sec-
tion VI) through longer term measurement of en-
ergy use while in-situ.

Section VII concludes the paper.

II. CASE STUDY APPLICATIONS

Although energy efficiency is core to WSNs, low-
energy techniques are rarely tested in practice. Even
those few research systems that have been deployed, as
Table I shows (also see Gaura et al. [20]), are typically
only tested for a relatively short period of time and
their energy performance is rarely analysed in detail in
the literature. Large deployments exist but are rare and
usually short-lived.

For the above reasons, we believe that it is timely
to examine the energy use results for a home monitor-
ing application (based on our Cogent-House PassivHaus
(CH-PH) deployment [21], which involved more than
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176 nodes deployed over more than 3 years). To ensure
generality, we also investigate energy use for another
application, Gas Turbine Engine Monitoring (GTEM),
that we developed and deployed a system for and which
has different parameters and requirements compared to
CH-PH. These two case study applications are repres-
entative of two common WSN application classes (one
being a long-term in-situ low data rate application, the
other being a shorter term, deploy-on-demand, high data
rate application). The case studies provided insight into
issues that can occur during the operation of many types
of WSN and that might not be discovered without the
three types of analysis (measurement-based profiling, ex-
amining start-up costs, and long-term energy monitoring)
and accurate energy exploration that forms the focus of
this paper. All three analyses are equally important and
demonstrate the need to take a whole system view when
characterising the performance of an in-situ WSN.

Observing systems over a longer-term, in particu-
lar, has benefits beyond identifying hidden energy con-
sumers. In our long-term deployments, we uncovered
issues, such as:

• an increased rate of corrupt packets that pass CRC-
16 checks in large, active networks,

• network energy holes that isolate parts of the net-
work due to early/sudden battery depletion,

• disruption in USB communication between root
node and gateway due to gateway kernel software
problems,

• the need to address potential, temporary server
outages (e.g., using on-node buffering) at design
stage.

For the two case study applications, we examine the
energy consumption profile for each along with the effect
of actions taken to reduce energy use.

A. Cogent-House PassivHaus Deployment (CH-PH)
The first case study discussed here is based on Cogent-

House1, a wireless home environment and energy monit-
oring system. Cogent-House gathers sensor data (such as
temperature, humidity, electricity usage, gas usage, heat
metering, CO2, and VOCs) from inhabited residential
buildings at 5 minute intervals and transmits that data to
a remote database where the energy and environmental
performance of the building can be evaluated. The system
is built on the TelosB platform (with an MSP430 F1611
CPU, a 2.4 GHz CC2420 802.15.4 radio, and integrated
Sensirion SHT11 temperature and humidity sensor). A
packaged sensor node is shown in Figure 2. The example
deployment, referred to here as CH-PH, involved a mix
of 23 flats and houses built to PassivHaus standard (see

1Cogent House is an open-source project available for download
from https://github.com/jbrusey/cogent-house

176 Nodes
3 Servers
23 Homes 
3 Communal Areas
Total Deployment Area 
1414m2

Server

Node

Figure 1. Site overview for CH-PH deployment

Figure 1). For this deployment, the system’s base config-
uration is multi-hop, sense-and-send. Part way through
the CH-PH deployment, we reprogrammed nodes in 3
houses to use a transmission reduction algorithm (L-
SIP [22], [23]) and this helped us understand the long-
term performance characteristics of this approach.

Versions of our Cogent-House system have been de-
ployed in over a dozen independent housing stock mon-
itoring projects over hundreds of homes. Although we
mainly refer to CH-PH, we draw from our wider exper-
ience from the multitude of Cogent-House deployments.

The sensor node software is based on TinyOS, which
provides a network stack with a low power MAC
(BoX-MAC-2, also referred to as Low Power Listening
(LPL)) [24] and multi-hop tree formation/data collection
protocol (CTP) [25].

B. Gas Turbine Engine Monitoring (GTEM)

The second case study, referred to here as GTEM, is a
prototype wireless sensing system for gas turbine engine
monitoring (see Figure 3). In this application, power
harvesting is preferred (to avoid the use of batteries) and
is feasible due to the large amount of vibration and high
temperature gradients caused by an operating engine. Our
system is aimed at monitoring gas path temperatures in-
side the engine (peak values of 1000 °C) and is based on
the CC2530 hardware platform with the Z-Stack network
stack [26], a certified ZigBee compliant stack. The nodes
are built from CC2530 evaluation modules combined
with our own carrier boards for sensor interfacing and
power. The base station uses the same CC2530 evalu-
ation module combined with a SmartRF05EB board. The
nodes form a single-hop ZigBee-compatible 802.15.4
network, i.e., one coordinator (or sink) and several end
devices but no routers. A single-hop network was desir-



1530-437X (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2016.2570420, IEEE Sensors
Journal

3

Figure 2. Packaged TelosB sensor node for CH-PH in a basic
configuration above and with additional air quality sensors below.

Figure 3. Gas Turbine Engine Monitoring (GTEM) wireless nodes
installed on test engine (above) and internals (below).

able since: a) the network structure is simplified, b) end-
to-end packet delivery time is small with low variance,
and c) packet forwarding is not needed, thus reducing the
node energy requirement. Sampling rate for this system
was 1 Hz. We performed multiple deployments with
durations of 20–50 minutes.

III. NODE ENERGY PROFILING

We propose that profiling the energy use of nodes is
an important step in reducing their energy requirements
as it allows one to determine the main consumers and
therefore make informed choices about what action to
take to reduce the overall, system-level energy consump-
tion. Furthermore, such profiling needs to be performed
before and after individual interventions to ensure they
have had the desired effect.

Energy profiling is based on identifying the node’s
overall and component power consumption. Correctly
and accurately identifying average power consumption
is difficult due to two factors:

1) load to be measured is a mix of small (⇡ 1 µA)
and large (⇡ 100 mA) currents,

2) under normal operation, power use varies rapidly
over time.

Klues et al., [27] proposed a microbenchmarking ap-
proach that establishes operation time and current use
for individual components by repeatedly iterating that
component to establish the time per operation, while
simultaneously using a precision ammeter (possibly with
an analog low-pass filter) to measure average current. A
less accurate, oscilloscope-based approach can also be
used. In this case, the oscilloscope measures the voltage
drop over a precision shunt resistor that is in series
with the load. In either approach, the voltage V is fixed
and the resulting measurement, per component i, is the
average current Ii and per operation time ⌧i.

For CH-PH, we used microbenchmarking and an am-
meter, whereas for GTEM, we used oscilloscope-based
measurements, mainly due to the difficulty of iterating
over components within the Z-Stack software.

These measurements are then aggregated to identify
the average power consumption as follows. Considering
a node’s total energy use to be composed of a set of
components C (e.g., CPU operations, radio transmission,
sensor reading, sleeping), energy per use of component
i 2 C is given by average power by elapsed time.

Ei = V Ii⌧i

where it is assumed that the voltage V is constant
allowing one to measure just the average current Ii and
time per iteration ⌧i. For a chosen fixed period T , each
component executes, on average, wi 2 <+ times. We
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Figure 4. Hardware related components that contribute to energy use
within a wireless node (e.g., energy used for sensing) and the cross-
cutting temporal aspect of when that energy is used (e.g., during start-
up).

assume that the zeroth component is sleeping (or idling)
and is executed once. The idle time is thus

⌧0 = T �
X

i6=0

wi⌧i where T �
X

i6=0

wi⌧i (1)

One can consider just the non-idle portion of each energy
component, thus removing the need to explicitly calculate
the idle time,

E0
i = Ei � V I0⌧i = V (Ii � I0) ⌧i (2)

for i 6= 0. The average power consumption is then

P = V/T
X

i

Iiwi⌧i

= V

0

@I0 +
1

T

X

i6=0

wi (Ii � I0) ⌧i

1

A

= V I0 +
1

T

X

i6=0

wiE
0
i (3)

This formulation makes it easy to see the effect of chan-
ging the weights wi (or duty cycling) some component
i. It also allows for other options to reduce power to be
explored and evaluated, including: reducing idle current
I0, extending the period T , and lowering the energy per
operation E0

i of component i. Performing this analysis
provides a solid basis to identify hidden consumers and
tune your system for minimal power consumption. We
note the recent work by Martinez et al., [28] that also
provides a power model for IoT devices in the context
of energy harvesters.

Overall, the above analysis provides a framework for
dividing the energy use of an individual wireless node
within a WSN into components but leaves open the ques-
tion of how components should be identified. Generally
components can be classified according to where (which
hardware component is involved) and when the energy

0.0
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0.4

Base L−SIP CTP L−SIP B−CTP BN B−CTP

Av
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 (m

W
)

Processing Sense Idle Transmit Listen

Figure 5. Average power consumption per node for CH-PH with the
original profile (Base) and with various other configurations. Note that
processing and sensing form only a small fraction of the total energy
costs for all configurations here.

use occurs, as shown in Figure 4. Broadly speaking, the
three main hardware-related categories are:

• CPU (including run-time processing cost of al-
gorithms such as L-SIP);

• radio (including listening, retrying); and
• sensors, including any warm-up needed and the as-

sociated signal processing (such as the built-in tem-
perature humidity sensor on the TelosB or external
cold-junction compensation for a thermocouple).

Cutting across these hardware categories are temporal
categories—energy might be used at start-up (when the
node initially receives power), during normal operation,
or only appear during a longer trial. We begin by
examining the normal operation of CH-PH and GTEM.
Remark 1. Although profile components will tend to
be named according to the most significant operation
occurring (such as radio transmission), other parts of
the electronic circuitry may be active concurrently and
thus contribute to the current measured. Given the aim
of profiling, which is to guide the process of reducing
power consumption, it is not necessary to separate such
concurrent usage and all such concurrent consumption is
lumped together under the nominal component.

IV. NORMAL OPERATION

Normal operation involves the normal operating cycle
(usually sense-process-send-sleep) of a wireless node
after the node has been started for a while and not with-
standing exceptional behaviour (such as responding to
low battery conditions). Three power reduction measures
were applied with CH-PH (all of which are to do with
radio aspects):

1) use of L-SIP to compress data into 95% fewer
transmissions (Section IV-C),

2) use of B-CTP [21] to turn off the radio for leaf
nodes unless actively transmitting (Section IV-B),
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Figure 6. Average power consumption per node for GTEM. Note that
L-SIP introduced a need for acknowledgement, which then became a
major energy user. This was subsequently reduced by using a more
efficient acknowledgement method.

3) implementation of an Edge Mining approach
(BN [29], [23]) to further reduce required trans-
missions (Section IV-C).

The results are summarised in Figure 5. Applying L-
SIP instead of sense and send (SS) reduced the energy
for transmissions dramatically but the overall impact
was slight. B-CTP was designed to address this by
eliminating multi-hop forwarding for some nodes. It
can be seen from the graph that the added benefit of
further transmission reduction (BN B-CTP) was slight
in comparison to L-SIP B-CTP.

With GTEM, three measures were also applied (but a
slightly different set than for CH-PH):

1) (sensor) duty cycling the MAX31855 thermo-
couple Cold Junction Compensation (CJC) inter-
face (Section IV-A),

2) (radio) using L-SIP to reduce transmissions (Sec-
tion IV-C),

3) (radio) changing the acknowledgement scheme to
use polling (Section IV-D).

The results are summarised in Figure 6. The main
improvement is made in this case by duty cycling the
thermocouple interface. Introduction of L-SIP reduced
power in some areas but initially introduced a large cost
due to acknowledgements. This was subsequently re-
duced by changing the way acknowledgement messages
were transmitted.

Note that in comparison to CH-PH, GTEM uses much
more power. This is largely due to smaller period T
for sampling and transmission (1 second rather than 5
minutes). Also note that the idle power is not shown in
the graph for GTEM (Figure 6) as it is much smaller
than the other energy consumers.

A. Duty cycling sensor interfaces
Duty cycling of hardware devices that form part of

wireless sensor nodes is common practice in reducing

their energy consumption. In particular, sensor interfaces
are common targets for this. When sensor sampling is
infrequent, it makes sense to turn off sensors and their
associated signal conditioning circuitry between samples
and only turn them on during sensing.

In terms of our model, duty cycling changes the idle
current I0 ! Ī0 since the sensor interface is not active
for the whole cycle. (In this analysis, values after duty
cycling are denoted with a bar.) When duty cycling, a
warm-up period ⌧̄u with current Īu is often required
to allow the sensor reading to stabilise. The warm-up
current may not be equal to the change in idle current
(I0 � Ī0). For example, sensors that have a heating
element tend to require more current to heat-up than
to maintain a target temperature. The sampling current
Is ! Īs may also change since it incorporates concurrent
activity (as per remark 1) and part of this activity is
continuing to warm-up the sensor. It is assumed that the
sampling time is unchanged.

The per sample contribution of the sensor after duty
cycling is

�
⌧̄uĪu + ⌧sĪs � (⌧̄u + ⌧s) Ī0

�
/T . Before duty

cycling it was, per sample, ⌧s (Is � I0) /T plus the effect
on the idle current I0 � Ī0. Assuming a single sample
per cycle, the reduction is therefore,

P � P̄ = V (I0 � Ī0

+
1

T
(⌧s (Is � I0)

� ⌧̄uĪu � ⌧sĪs + (⌧̄u + ⌧s) Ī0)) (4)

In the case of GTEM, prior to duty cycling, the
MAX31855 Cold Junction Compensation (CJC) is a
major contributor to the total idle current of I0 =
1.2 mA. During each T = 1 s period, sampling draws
Is = 15.5 mA for ⌧s = 2.2 ms. With duty cycling
implemented, the idle current drops to Ī0 = 2 mA but
there is the addition of a warm-up Īu = 1.86 mA for
⌧̄u = 0.2 s and the sample current also increases slightly
to Īs = 16.16 mA. Thus, duty cycling the CJC reduces
the power consumption by P � P̄ = 2.44 mW (42% of
Base).

⌧u (Iu � I0) + ⌧s (Is + Iu � I0)

T (Iu0 � I0) + ⌧s (Is � I0)

V (Iu0T � Iu (⌧u + ⌧s)� I0 (T � ⌧u)) .

Remark 2. Power savings are expressed throughout in
terms of the difference between power with all previous
adjustments applied and power with all previous plus the
currently discussed adjustment. Percentage of the Base
power consumption represented by this difference is also
given. A summary of power savings is given in Table III.
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Figure 7. GTEM example of power consumption spikes due to the
cold-junction compensation (CJC) chip (based on oscilloscope current
measurements). The CPU activity causes higher power use but is only
for 3 ms per 1 s cycle whereas the CJC (in this configuration) is
constantly active and thus uses more power on average.
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Figure 8. Oscilloscope-based power measured for a sense-transmit-poll
cycle after duty cycling the GTEM CJC chip. Note that the CJC needs
to be started 200 ms prior to sampling to ensure a reliable measurement
is made.

The sensor idle activity is shown in Figure 7 and con-
sists of frequent (⇡1 kHz) spikes in power consumption
(CJC chip active) that are independent of requests for
a sample (CPU active in the figure). After duty cycling,
the CJC consumption is much reduced and is only active
200 ms prior to sampling (see Figure 8).

B. Reducing listening

Radio listening is a key energy user in multi-hop
wireless sensor networks and several approaches exist
(termed generically, interval listening) that can reduce
this energy cost. Two common approaches are: low-
power listening (LPL), where the transmitter repeatedly
transmits over a longer period so that the listener, who
only listens occasionally can hear; and time-division
multi-access (TDMA), where the listener knows the time
slot when the transmitter might transmit and only listens
then. LPL is simpler to implement since it does not
require synchronised clocks. More efficient variants stop
the transmission when the receiver indicates they have
heard.

We developed an alternative approach to LPL to at-
tempt to further reduce the listening cost, called Back-
bone CTP (B-CTP) [21]. B-CTP is an variant of the Col-
lection Tree Protocol (CTP) [25] that can be used when
a backbone of mains powered nodes exists and all other
nodes can turn off listening. B-CTP operates without
LPL—backbone nodes listen constantly while all other
nodes only listen when expecting acknowledgement. In
comparison with the base CH-PH system (which used
LPL with a 1 s interval), B-CTP reduced the average
power consumption of the CH-PH nodes by 0.28 mW or
71% of the Base consumption of 0.40 mW.

However, B-CTP causes inflexibility in the network
since beacon messages used to configure the routing
tables are also not listened to. Other approaches, such as
TSMP [30], might be used to maintain network flexibility
and are more efficient than LPL.

C. Reducing transmissions

Transmission reduction algorithms, such as L-
SIP [22], make use of application-level redundancy in
the data being sensed to reduce the number of packets
being transmitted. We refer to such on-node processing
as edge mining [23], in the sense that data mining
is being performed on the edge of the network. L-
SIP uses a simple linear model to predict the signal
(e.g., temperature being measured) and only transmits
when the signal varies from prediction. A typical packet
reduction ratio is 20:1 for residential temperature data
(and assuming a threshold of 0.5 °C). For this packet
reduction ratio, the power consumption for CH-PH is
reduced by 0.084 mW (21% of the Base).

BN [29] is an alternative edge mining approach that
further reduces transmissions by summarising the data
according to some scheme (e.g., percentage time for each
of n non-overlapping temperature ranges). BN typically
produces a packet reduction ratio of 7000:1 compared
with sense-and-send for residential temperature data.
Based on the CH-PH nodes, BN produces a reduction
of 0.089 mW (22% of Base). For this application and
given the minimal improvement in comparison to L-SIP
and loss of the ability to reconstruct the original signal,
BN seems like a step too far.

When applying L-SIP to GTEM, we found a smaller
typical packet reduction ratio of around 5:1 due to the
large temperature range and rapid variations in temper-
ature that occur for a gas turbine engine. To support
L-SIP, application-level (APS) acknowledgements were
used however under the Z-Stack system and these cause
additional power consumption. Thus the improvement for
GTEM is only 0.32 mW (5.5% of Base).

The next section will discuss a further improvement to
tune the energy use associated with acknowledgement.
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Figure 9. GTEM node with APS acknowledgement showing the
elevated power use while waiting for acknowledgement.
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Figure 10. Oscilloscope-based power measurement of GTEM node
using data polling to provide acknowledgement showing reduced power
use while waiting for the acknowledgement.

D. Alternative acknowledgement schemes
For the GTEM system, acknowledgements are costly

but needed for L-SIP to be used [23]. To obtain the best
benefit from L-SIP, we needed to tune the acknowledge-
ment approach. Instead of using the standard ZStack APS
acknowledgement mechanism, we instead use ZigBee
polling after each transmit.

In ZigBee polling, an end device polls or requests a
message from the coordinator. As shown in Figure 9,
ordinary APS acknowledgements cause the processor
stay active while waiting. In comparison, with polling,
as shown in Figure 10, the node sleeps (and thus is idle)
while waiting for the receipt of the acknowledgement.

The resulting reduction in energy is 0.98 mW (17%
of Base), which is significant.

V. START-UP ENERGY

The energy required to start-up each wireless node is
an important consideration for:

• episodic systems (ones which are turned on for a
period and then turned off again), since start-up is
a regular occurrence, and,

• power harvesting systems (where the main source
of energy is acquired gradually) since the system
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Figure 11. Power consumption for GTEM node during node startup
with network discovery beacons shaded.

Table II
GTEM NODE STARTUP WITH AND WITHOUT NETWORK

INITIALISATION. WHEN NOT INITIALISING, ROUTING TABLES ARE
RESTORED FROM NON-VOLATILE MEMORY.

Start-up
time (s)

Avg.
power
(mW)

Energy
(mJ)

With network creation 3.00 54.6 164
Without network creation 0.85 10.2 8.7

may not be able to start at all until sufficient power
has been harvested.

GTEM is both episodic and ultimately aimed to be used
with power harvesters rather than batteries.

Experience with early trials of GTEM showed that
start-up energy costs were too high for the vibration-
based power harvester being developed for the gas tur-
bine engine. Observation of start-up revealed that most of
the start-up energy was being used by network creation
beaconing, as shown in Figure 11.

ZStack provides the option to restore the previous net-
work configuration, rather than initialise it from scratch,
by using the NV_RESTORE flag at compile time. The
resulting improvement provided by making this change
is summarised in Table II. Note that while the power
consumption has only improved by a factor of 5, the
energy consumption during start-up has reduced by a
factor of 19. This latter figure is more important because
energy rather than power is the limiting factor in these
types of systems, particularly during start-up.

Although this facility is specific to ZStack, it is likely
that other networking stacks will have an equivalent
mechanism. The negative aspect of using such a facility
is that it means that no network configuration occurs at
start-up and that if a network change occurs, the nodes
might stop communicating. This might be resolved by
detecting communication failure and triggering network
reconfiguration to occur.
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VI. LONG-TERM MEASUREMENT

Long-term deployments can help identify problems
that were not discovered by analysing energy consump-
tion in normal operation regime for individual nodes or
the node / network start-up phase.

While energy profiling of normal operation provides
an estimate of battery life, the true lifetime may be
considerably different and this might only be discovered
through long-term trials. Unfortunately, long-term results
may take years to emerge and thus it is commonplace
to also capture a log of battery voltage, as a proxy
for residual charge, during deployment. Battery voltage
provides a predictor of residual charge, although the
relationship between the two is non-linear and some
hysteresis effects may occur [31], [32]. A detailed battery
voltage log will also allow for causes of unexpected
voltage drops to be identified early. Moreover, continuous
logging of voltage allows for maintenance and battery
changes to be scheduled in a timely manner to avoid
network down time and data loss.

Note that different batteries may have dramatically dif-
ferent lifetimes depending on the load that is applied and
the chemistry of the battery. Using a consistent battery
type from the same manufacturer across a deployment
thus simplifies any comparison of the lifetime results.
However it should be noted that even using the same
battery brand and type will not necessarily guarantee
consistent lifetime results.

We logged voltage in CH-PH and GTEM and this
allowed us to observe some long-term effects that might
otherwise have remained unexplained. Figure 12 shows
battery voltage for a number of nodes during one of
our long term Cogent-House deployments that employs
L-SIP. Normally, the gradient of this curve is a gentle
negative trend with the expected battery life being around
4 years for 2 ordinary AA batteries. However, if the
server is turned off (or fails in some other way), battery
depletion becomes much more rapid (the lifetime for a
fully charged set of batteries reduces to 140 days). In the
figure, the longest outage (of 39 days) caused a drop of
0.21 V corresponding to roughly 1/3 of the total battery
charge.

The reasons for the increased power consumption
during server (or sink) failure include:

• increased transmission retries (up to 20 for CTP),
• longer time spent listening for acknowledgement,
• no transmission reduction with L-SIP (due to the

lack of acknowledgement).

We believe that an efficient solution to server / sink
failure has not yet been found and the fact that the impact
of sink failure is identified by long-term monitoring
emphasises the importance of this analysis.
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Figure 12. Typical battery voltage for a set of Cogent-House sensor
nodes. The large drops in voltage that occur for many nodes simul-
taneously are due to server outage, which causes each node to try to
transmit more often and perform the maximum retries for each transmit,
thus expending more power than usual. This effect occurs several times
in this graph. Note that this graph is from a more recent deployment
of Cogent-House than CH-PH.

CH-PH GTEM
Energy % of Energy % of

reduction base reduction base
Reduce 0.28 mW 71% — —Listening

Duty cycle — — 2.44 mW 42%sensors
Reduce 0.084 mW 21% 0.32 mW 5.50%Transmissions

Alternative — — 0.98 mW 17%Acknowledgements
Table III

SUMMARY OF ACHIEVED POWER SAVINGS FOR THE CH-PH AND
GTEM SYSTEMS.

VII. CONCLUSIONS

While energy conservation is a common theme for
wireless sensor research, energy saving schemes are
rarely evaluated through measurement in a practical
setting. This paper addresses that gap.

When profiling a WSN node, per cycle energy is gen-
erally the primary consideration, however start-up energy
may also be critical in an energy harvesting system and
long-term practical issues may also be important. Natur-
ally, it is impossible to fully tune all aspects of a system
in a research setting and results may compare poorly with
off-the-shelf systems. However, we have shown that the
energy consumption of wireless sensing nodes can be
significantly reduced by analysing the node behaviour
through a combination of short-term measurements and
long-term instrumented deployments. We have described
the measurement and analysis techniques we used and
the results obtained when targeting specific aspects of
node operation. Our aim is to guide Wireless Sensor
Network (WSN) researchers towards the typical problem
areas found and the types of approach that can be used
to reduce node energy consumption in these areas. The
areas of a) startup, b) sensing, c) processing, d) trans-
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mitting data, and e) routing are generally applicable to
all wireless node designs and it is likely that, generally,
savings can be made in at least one area, particularly
in transmitting and routing. It is important that the node
energy consumption be profiled before, during, and after
modifications are made in order to correctly identify
problem areas, confirm that the modifications have been
effective, and find side-effects that may result in lower-
than-expected savings.

In the case of the two systems we discussed in this
paper, we have reduced the power consumption of the
nodes in a home environment monitoring system (CH-
PH) by 93% and the power consumption of a gas turbine
engine monitoring system (GTEM) by 65%. We have
also reduced the startup costs of the latter nodes by
95%, an important achievement when targeting the use
of power harvesters, and identified long-term issues that
may not be apparent from short-term analysis.
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