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Abstract

We redesign and apply a scheme originally proposed by G. Wei [Physica A 222,

152 (1995); Physica A 222, 155 (1995)] to produce numerical shape parameters with

high precision for arbitrary tree-branched polymers based on their Kirchho� matrix

eigenvalue spectrum. This algorithm and a Monte Carlo growth method on square and

triangular lattices are employed to investigate the shapes of ideal three and four junction

two dimensional comb polymers. We �nd that the extrapolated values obtained by all of

these methods are in excellent agreement with each other and the available theory. We

con�rm that polymers with a complete set of interior branches display a more circular

shape.
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Introduction

In a previous publication von Ferber et al
1
investigated the shapes of three and four junc-

tion comb polymers by redesigning a scheme originally proposed by G. Wei
2,3

to produce

numerical shape parameters of arbitrary tree-branched polymers based on the Kirchho� ma-

trix eigenvalue spectrum. The predictions of this method and the simulation results of two

di�erent Monte Carlo (MC) techniques (pivot and growth) were compared for 5, 7, 8, 9 and

11 branch combs. See Figure 1 which illustrates the connectivity of the branches. In all

of these uniform comb structures, if m is the number of monomers ("beads") in a branch

and b is the number of branches, there are a total of N = bm + 1 units. It was found that

the extrapolated property values obtained by all the methods were in excellent agreement

with each other and the available theory in the ideal regime. This paper further tests the

redesigned scheme by examining corresponding two dimensional systems.

An overall polymer size can be measured by the mean-square radius of gyration, 〈S2〉,

where 〈 〉 denotes an average over the polymer con�gurations. It is well-known
4
that for

large polymers, with or without branches, 〈S2〉 follows a scaling law:

〈S2〉 = C(N − 1)2ν (1)

The coe�cient, C, is a model dependent amplitude but the exponent, 2ν, is universal and

equal to 1.0 for all ideal polymers in two dimensions.

If 〈S2〉b and 〈S2〉l are the mean-square radii of gyration of a branched and linear structure

with an identical number of monomers then the g-ratio, a useful parameter for comparing

the compactness of linear and branched polymers, is de�ned as

g =
〈S2〉b
〈S2〉l

(2)

Casassa and Berry
5
obtained a general equation for the g-ratio of uniform, ideal comb
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polymers with f three-functional junctions regularly spaced along the backbone:

g = 1− r − r2(1− r)
(f + 1)

+
2r(1− r)2

f
+

(3f − 2)(1− r)3

f 2
(3)

Here, r is the ratio of the number of units in the comb backbone to the total number of

units in the polymer. In the case of �ve branch combs, r = 3/5 and f = 2, so g = 89/125

(0.7120). In the seven branch case r = 4/7, f = 3 and g = 229/343 (0.6676) whereas for

nine branches r = 5/9, f = 4 and g = 155/243 (0.6379). The g-gratios of ideal eight and

eleven branch polymers were determined by von Ferber et al
6
from the form factor. These

values are 37/64 (0.5781) and 683/1331 (0.5131) for eight and eleven branches, respectively.

Note that all of these results are independent of the spatial dimension.

The shape of any polymer composed of N units can be determined from the matrix

representation of the radius of gyration tensor,
↔
T . If Xα

j denotes the α component of the two

dimensional position vector of the j− th polymer bead, then the center of mass coordinates,

X
(α)
CM , of a given con�guration are given by

X
(α)
CM =

1

N

N∑

j=1

X
(α)
j , whereα = 1 or 2 (4)

and the matrix components of
↔
T may be written in the form

Tαβ =
1

N

N∑

j=1

(X
(α)
j −X(α)

CM)(X
(β)
j −X(β)

CM) (5)

This tensor has eigenvalues e1 and e2, which are the principal moments of gyration along

the principal orthogonal axes
7
. The average trace of this tensor, e1 + e2, is equal to 〈S2〉.

The eigenvalues of each con�guration are ordered by magnitude, e1 ≥ e2. Rudnick and

Gaspari
8,9

have de�ned the average asphericity, 〈A〉, of polymers in two dimensions as

〈A〉 = 〈(e1 − e2)
2

(e1 + e2)2
〉 (6)
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These averages are over all sets of eigenvalues determined from the simulated con�guration.

Note that in these equations 〈A〉 involves the average of a ratio and not the ratio of an

average.

The shape of a two dimensional linear polymer can vary from a fully extended rod in

which e2 essentially vanishes so that 〈A〉 has unit value, to a circle for which e2 = e1. In

the latter case 〈A〉 is zero. More complex polymer structures such as those studied here

can obtain a fully extended rod shape in the ideal regime because the units can overlap

each other. In between the extremes of a rod and a circle, a polymer con�guration can be

imagined
10
as approximately enclosed inside an ellipse with semi-major axis equal to e1 and

semi-minor axis equal to e2.

In this article we compute a variety of two dimensional ideal branched comb properties

by both theoretical and MC approaches and �nd excellent agreement between the values

obtained.

Methods

Redesigned Wei Scheme

Various universal ratios for Gaussian (ideal) tree-branched macromolecules may be computed

by a method originally developed by Wei
2,3
. This approach is exact in two dimensions. In

general, Wei's method can be applied to any structure for which the Kirchho� matrix and

its corresponding eigenvalues are known. Here, this method is employed to predict universal

ratios of two dimensional branched combs. A speci�c feature of the present implementation

is that universal ratios are determined by extrapolating to in�nite size branches.

von Ferber et al
1
found that the asphericity, 〈A〉, in two dimensions is given by

〈A〉 = 4

∫ ∞

0

dy
N−1∑

j=1

y3

(λj + y2)2

[
N−1∏

k=1

λk
λk + y2

]
. (7)
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where λ1, . . . , λN−1 are the N - 1 non-zero eigenvalues of the N × N Kirchho� matrix of a

Gaussian structure with N beads.

Independent of the dimension, the g-ratio of the radius of gyration of the branched

structure with respect to that of a linear chain with the same number of beads is given by

g =
N−1∑

j=1

λ−1
j /

N−1∑

k=1

λ̂−1
k . (8)

Here, the λ̂k are the non-zero eigenvalues of the Kirchho� matrix of a linear chain with N

beads.

Wei's method is applied to determine the shape parameters of the given structures as

a function of N . The extrapolated value for a shape parameter is determined in the limit

of 1/N → 0. The results scale perfectly with 1/N and thus extrapolated results may be

extracted from these series. This procedure is illustrated in Fig. 2 for the g-ratio, in Fig. 3

for the asphericity, and in Fig. 4 for the shape factor δ1 which is calculated as the ratio of

two averages,

δ1 =
〈e1〉
〈S2〉 . (9)

The �nal results concerning the combs discussed in this paper are given in Table III for the

g-ratio, in Table IV for the average asphericity, 〈A〉, and in Table V for the shape factor, δ1.

Estimated errors given for the Wei method in the tables are based on the statistical error

taken from the extrapolation.

Monte Carlo Growth Algorithms

Two dimensional polymers are constructed on an integer coordinate system. Given the

numbers N and M , the simulation is performed by creating M independent samples each

containing N units. Two kinds of lattices were studied: a square lattice and a triangular

lattice. In both lattices polymer samples are obtained by starting the �rst bead at the origin

(0, 0). In the case of the square lattice, subsequent beads are placed by randomly selecting

5



one of four possible directions: North, South, East, or West, whereas in the case of the

triangular lattice, one of the following six possible directions is chosen: Northeast, East,

Southeast, Southwest, West and Northwest. In the linear case, each bead is placed one unit

apart from the previously placed bead. In this study of ideal polymers, a location that has

already been used by another bead is allowed to be chosen so that beads can overlap.

Each growth algorithm for the 5, 7, 8, 9, and 11 branch ideal combs utilizes the above

linear polymer growth algorithm, with slight modi�cations. At the start of all the growth

algorithms a three-branched star is grown by placing the �rst polymer unit at the origin (0,

0). The �rst branch is grown to include a pre-speci�ed number of polymer units, N . Then,

the second branch is started once again at the origin, and grown to include N additional

units. The same method is employed for the third branch. In the case of the 5 branch comb,

a three-branched star is grown as described. However, this time, a new origin is moved to

the end of the third branch of the star and then two more branches are grown from this new

origin. For the 7 branch comb, �rst a 5 branch comb is grown. Then, a new origin is moved

to the end of the �fth branch, where two more branches are grown. The 8, 9, and 11 branch

combs are grown in a similar manner.

After each polymer is completely constructed, a number of properties are calculated for

that con�guration. The simulated systems have values of N ranging from 1001 to 5501.

The set of computed properties was then further averaged over the total number of saved

samples, M = 160,000, to determine the mean and the standard deviation from the mean

employing the usual equations for independent samples.

Results

All the MC simulation results are contained in Tables IA-E and IIA-E. In the results reported

in the tables, the number in parenthesis denotes one standard deviation in the last displayed

digits. In all cases, non-linear �ts
11

of 〈S2〉 vs (N − 1)2ν gave 2ν = 1.00± 0.01, in excellent

6



agreement with the well-known result of 1.00 for random walks.

The MC g-ratios in Table III have been calculated from the radius of gyration data and

the errors in these quantities have been computed from the standard equation relating the

error in a ratio to the error in the numerator and the error in the denominator. However,

these computer results are for �nite N whereas the theories are for in�nite N . In�nite

N g-ratio values have been obtained by �tting a scaling law as explained in Zweier and

Bishop
12,13

.

These extrapolated g-ratios for ideal systems are compared to other �ndings in Table III.

The error bars on the Wei method indicate the root mean-square (RMS) of the residuals

corresponding to the errors of the �tted data. Both Wei's method and the MC simulations

are in excellent agreement with each other and the theoretical predictions. The g-ratios of

the eight and eleven branch combs, which have a complete set of interior branches, have a

relatively lower value than that found for the �ve, seven and eleven branch combs.

The growth MC simulation results for 〈A〉 contained in the tables display only a weak

dependence on N . As was the case for the g-ratio, the data have been extrapolated to

predict values for an in�nite polymer. Table IV lists these extrapolated values. As expected,

the results indicate that the polymers become more circular in their shape as the structure

changes to higher branching and a complete set of interior branches.

The shape factor, δ1, data have been examined in the same manner as the other properties

and the extrapolated values are contained in Table V. The values for both lattices are

in excellent agreement with each other and with the predictions of the Wei method. As

expected, the results again indicate that the polymers become more circular in their shape

(less stretched out) as the structure changes to higher branching and a complete set of interior

branches.

Two dimensional ideal �ve branch combs were also investigated by Perrelli and Bishop
14

and Gorry and Bishop
15
. Perrelli and Bishop

14
also employed a MC growth algorithm on a

square lattice but for a smaller range of N (100 to 800) and for a much smaller value of M
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(10,000). They found that g = 0.704± 0.005, 〈A〉 = 0.311± 0.002, and δ1 = 0.785± 0.005.

These values are well within two standard deviations of the mean or in the 95% con�dence

interval compared to the results reported in this paper.

Gorry and Bishop
15
used a pivot MC algorithm. In the pivot MC method the initial poly-

mer con�guration is constructed by linking together tangent circular units with a diameter

of one. The polymer is not restricted to a �xed lattice. A random number is used to select

one of the beads as a pivot and a second random number is employed to generate a random

angle between 0◦ and 360◦. All the beads further along the branch containing the pivot

bead are rotated by this angle. In this MC method successive samples are not independent

and it is necessary to both discard the beginning phase of the simulation and to collect data

at su�ciently large intervals so as to avoid correlation e�ects. Gorry and Bishop
15

found

that the g-ratio = 0.713 ± 0.002 and 〈A〉 = 0.310 ± 0.001, in excellent agreement with the

current results.

Results and discussion

Wei's method and Monte Carlo growth algorithms on both a square and triangular lattice

have been used to investigate two dimensional branched comb polymers in the ideal regime.

The g-ratios, the asphericities, the shape factors and their respective error bars have been de-

termined for a wide range of N . It is found that the extrapolated values of all the techniques

are in excellent agreement with each other and the available theory.

The branching of the two dimensional ideal polymer strands does not a�ect the universal

two-dimensional ideal (non interacting) scaling behaviour. Thus e.g. the end-end distances

within strands as well as for the branched structure as a whole will scale with the scaling

exponent ν = 1/2.

For the ideal scaling behaviour of three dimensional branched structures one will again

�nd the same ν = 1/2 exponent.
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This behaviour will break however, if we take into account an environment with correlated

disorder. Under the in�uence of such a correlated (disordered) environment the polymer

strands even if they display no self-interaction will change their conformation due to the

disordered background.16
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Table IA E�ect of the Number of Beads, N , for 5-branch combs and linear chains on a

square lattice.

Property 1001 1501 2001 2501

〈e1〉 92.83(15) 139.14(22) 185.58(29) 232.37(36)

〈e2〉 25.48(3) 38.26(5) 51.03(7) 63.84(8)

〈S2〉 118.31(16) 177.39(23) 236.61(31) 296.20(39)

〈A〉 0.310(1) 0.310(1) 0.310(1) 0.310(1)

〈S2〉linear 166.71(27) 249.39(40) 333.72(53) 416.95(66)

Table IB E�ect of the Number of Beads, N , for 7-branch combs and linear chains on a

square lattice.

Property 1401 2101 2801 3501

〈e1〉 121.91(19) 182.69(29) 244.15(38) 305.17(48)

〈e2〉 33.53(4) 50.33(6) 67.19(8) 84.08(10)

〈S2〉 155.44(21) 233.02(31) 311.34(41) 389.26(51)

〈A〉 0.306(1) 0.305(1) 0.306(1) 0.306(1)

〈S2〉linear 233.37(37) 349.77(56) 466.76(74) 584.39(93)
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Table IC E�ect of the Number of Beads, N , for 8-branch combs and linear chains on a

square lattice.

Property 1601 2401 3201 4001

〈e1〉 117.76(17) 176.49(26) 235.72(34) 294.43(43)

〈e2〉 36.13(4) 54.21(6) 72.26(8) 90.55(11)

〈S2〉 153.89(19) 230.71(28) 307.98(37) 384.99(46)

〈A〉 0.274(1) 0.274(1) 0.275(1) 0.274(1)

〈S2〉linear 266.39(42) 400.36(64) 534.05(85) 667.03(106)

Table ID E�ect of the Number of Beads, N , for 9-branch combs and linear chains on a

square lattice.

Property 1801 2701 3601 4501

〈e1〉 150.23(24) 224.80(36) 300.54(48) 375.90(60)

〈e2〉 40.97(5) 61.45(7) 82.27(10) 102.83(12)

〈S2〉 191.20(26) 286.25(38) 382.81(51) 478.72(64)

〈A〉 0.305(1) 0.305(1) 0.304(1) 0.305(1)

〈S2〉linear 299.81(48) 450.31(71) 600.03(95) 750.46(119)

12



Table IE E�ect of the Number of Beads, N , for 11-branch combs and linear chains on a

square lattice.

Property 2201 3301 4401 5501

〈e1〉 143.30(21) 214.72(32) 287.01(42) 358.52(52)

〈e2〉 44.68(5) 67.05(7) 89.52(10) 112.02(12)

〈S2〉 187.98(23) 281.77(34) 376.53(45) 470.54(57)

〈A〉 0.265(1) 0.265(1) 0.265(1) 0.265(1)

〈S2〉linear 366.87(58) 550.73(87) 733.82(117) 918.03(146)

Table IIA E�ect of the Number of Beads, N , for 5-branch combs and linear chains on a

triangular lattice.

Property 1001 1501 2001 2501

〈e1〉 92.85(14) 139.65(22) 186.13(29) 233.04(36)

〈e2〉 25.58(3) 38.40(5) 51.21(7) 64.03(8)

〈S2〉 118.43(15) 178.05(23) 237.34(31) 297.07(39)

〈A〉 0.310(1) 0.310(1) 0.310(1) 0.310(1)

〈S2〉linear 166.81(26) 250.13(40) 334.29(53) 418.45(66)
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Table IIB E�ect of the Number of Beads, N , for 7-branch combs and linear chains on a

triangular lattice.

Property 1401 2101 2801 3501

〈e1〉 122.05(19) 183.14(29) 244.04(38) 305.42(48)

〈e2〉 33.71(4) 50.52(6) 67.45(8) 84.18(10)

〈S2〉 155.75(21) 233.66(31) 311.49(41) 389.60(51)

〈A〉 0.304(1) 0.305(1) 0.305(1) 0.305(1)

〈S2〉linear 233.96(37) 351.00(56) 468.44(74) 584.08(93)

Table IIC E�ect of the Number of Beads, N , for 8-branch combs and linear chains on a

triangular lattice.

Property 1601 2401 3201 4001

〈e1〉 117.74(17) 177.07(26) 235.70(34) 295.05(43)

〈e2〉 36.19(4) 54.41(6) 72.64(9) 90.61(11)

〈S2〉 153.93(18) 231.48(28) 308.34(37) 385.65(46)

〈A〉 0.274(1) 0.274(1) 0.273(1) 0.274(1)

〈S2〉linear 267.04(42) 401.71(64) 534.70(85) 667.85(106)
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Table IID E�ect of the Number of Beads, N , for 9-branch combs and linear chains on a

triangular lattice.

Property 1801 2701 3601 4501

〈e1〉 150.16(24) 225.68(36) 300.95(48) 375.78(60)

〈e2〉 41.06(5) 61.71(7) 82.29(10) 102.77(12)

〈S2〉 191.22(25) 287.39(38) 383.24(51) 478.55(63)

〈A〉 0.304(1) 0.305(1) 0.305(1) 0.305(1)

〈S2〉linear 300.33(48) 451.13(72) 601.47(96) 752.39(120)

Table IIE E�ect of the Number of Beads, N , for 11-branch combs and linear chains on

a triangular lattice.

Property 2201 3301 4401 5501

〈e1〉 143.45(21) 214.80(31) 287.14(42) 358.85(53)

〈e2〉 44.83(5) 67.13(7) 89.67(10) 112.24(12)

〈S2〉 188.28(23) 281.93(34) 376.81(45) 471.09(57)

〈A〉 0.265(1) 0.265(1) 0.265(1) 0.264(1)

〈S2〉linear 367.58(58) 550.83(88) 734.66(117) 918.83(146)
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Table III Comparison of g-ratios for extrapolated Square Lattice MC, Triangular Lattice

MC, and Wei method to the theoretical in�nite bead values reported in the literature.

Square Lattice MC Triangular Lattice MC Wei Theory

5 branch 0.710(2) 0.712(2) 0.7120(11) 0.7120a

7 branch 0.666(2) 0.666(2) 0.6676(2) 0.6676a

8 branch 0.576(2) 0.577(2) 0.5781(7) 0.5781b

9 branch 0.638(2) 0.636(2) 0.6379(4) 0.6379a

11 branch 0.514(2) 0.514(2) 0.5131(5) 0.5131b

See reference a 5 b 6

Table IV Comparison of 〈A〉 for extrapolated Square Lattice MC, Triangular Lattice MC

and Wei method.

Square Lattice MC Triangular Lattice MC Wei

5 branch 0.310(2) 0.310(2) 0.3095(5)

7 branch 0.306(1) 0.306(2) 0.3047(4)

8 branch 0.275(1) 0.274(2) 0.2736(3)

9 branch 0.304(2) 0.306(2) 0.3042(2)

11 branch 0.265(2) 0.265(2) 0.2640(2)
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Table V Comparison of δ1 for extrapolated Square Lattice MC, Triangular Lattice MC

and Wei method.

Square Lattice MC Triangular Lattice MC Wei

5 branch 0.783(1) 0.784(2) 0.7838(2)

7 branch 0.784(1) 0.783(2) 0.7835(1)

8 branch 0.765(1) 0.764(2) 0.7645(1)

9 branch 0.784(2) 0.785(2) 0.7850(1)

11 branch 0.762(2) 0.762(2) 0.7615(1)
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Figures:

Figure 1: Sketches of the 5, 7, 8, 9, and 11 branched comb polymers discussed in this paper.
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Figure 2: Extrapolation for the two dimensional g-ratio of the comb polymers discussed.

Note that in order to show all the extrapolated results in a single graph the target g-ratio is

normalized to 1 for all �ve combs.
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Figure 3: Extrapolation for the two dimensional asphericities of the comb polymers dis-

cussed. Note that in order to show all the extrapolated results in a single graph the target

asphericity is normalized to 1 for all �ve combs.
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Figure 4: Extrapolation for the two dimensional δ1 shape factors of the comb polymers dis-

cussed. Note that in order to show all the extrapolated results in a single graph the target

shape factor is normalized to 1 for all �ve combs.
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