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Lee-Yang Zeroes and Logarithmic Corrections in the ®} Theory*

R. Kenna and C.B. Lang

Institut fiir Theoretische Physik,
Universitat Graz, A-8010 Graz, AUSTRIA

The leading mean-field critical behaviour of ¢3-theory is modified by multiplicative logarithmic corrections. We
analyse these corrections both analytically and numerically. In particular we present a finite-size scaling theory
for the Lee-Yang zeroes and temperature zeroes, both of which exhibit logarithmic corrections. On lattices from
size 8* to 24*, Monte-Carlo cluster methods and multi-histogram techniques are used to determine the partition
function zeroes closest to the critical point. Finite-size scaling behaviour is verified and the logarithmic corrections
are found to be in good agreement with our analytical predictions.

1. INTRODUCTION

The single component version of ¢* theory in
the d-dimensional Euclidean space-time contin-
uum is defined by the Hamiltonian density

2
M= (VP + 062 Dyt~ H@poa) (L)

where H(z) is the source for the fields ¢(x). The
lattice parameterization of the theory (in the ab-
sence of a source field) is given by the action

Y Gaboput P 2N (62— 1)%.(1.2)
€T, x T

Here the hopping parameter x and the quartic
coefficient A correspond to the bare mass mgy and
bare quartic coupling go respectively. The limit
A — oo gives the Ising model.

Above one dimension the discretized theory ex-
hibits a phase transition (of second order) near
which the continuum theory can be recovered. To
remove the cutoff, it turns out that the quartic
coupling has to be taken to the infra-red fixed
point (IR FP) g},. The theory is believed to be
trivial in d = 4 — although this has never been
rigorously proved. This means that it is in the
universality class of the theory of free bosonic
fields. The leading (mean field) scaling behaviour
is modified by logarithmic corrections, which are

*Presented by R. Kenna. Supported by Fonds zur For-
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linked to the triviality of the theory [I]. Their
identification provides the primary motivation for
this work.

Logarithmic corrections to scaling in the infi-
nite volume system have been studied in [E] and
H]. Here we report on results for finite-size scal-
ing (FSS) M of the ¢* theory which we have
extended to four dimensions. Such finite size the-
ories can be tested using non-perturbative (i.e.,
numerical) techniques.

The usual statement of FSS is the following [f:
For any thermodynamic quantity Pr(k), mea-
sured on a system of linear extent L and near
criticality,

ooy =4 (&) (13)

where £ (k) is the correlation length of the in-
finite volume system. The usual justification
for this formula is that L and £, are the only
length scales involved and hence their ratio, z =
L/&wo(k), is the scaling variable. Until 1982 this
statement had the status of a hypothesis. Then,
Brézin [ff] succeeded in proving (L3) from the
renormalization group (RG). An essential ingre-
dient in this proof is that the running quartic cou-
pling be approximated by its IR FP value g3 in
the scaling region. Now, in d = 4 (in the per-
turbative formulation at least), the IR FP of the
Callan-Symanzik beta function is at the origin.
The approximation above then leads to the mean
field theory which predicts a phase transition even
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for a finite system. For this reason FSS in the
form ([L.9) breaks down in d = 4. The intuitive
justification given above is however a dimension
independent argument. It is not clear, then, why
it should fail in d = 4 while being valid for d < 4.

We claim that the usual statement ([L.3) is, in
fact, flawed and propose a modified FSS formula,
valid in any dimension including four.

2. THE PERTURBATIVE RENORMA-
LIZATION GROUP

At some critical value, mgc, of the bare mass,
the renormalized theory is massless. Writing m?
as mg_ +t, t becomes a measure of the deviation
away from the massless theory. In the Ising ver-
sion of the model, it is proportional to kK — k¢, K¢
being the critical hopping parameter. The gener-
ating functional W[H, ] is defined by

WIH. 1] _ C/Hd(b(z)e_fddﬂi, (2.4)

C being a normalization constant. The function
conjugate to H(x) is

SWIH, 1]

M(z,t) = SH()

= (0(2) - (2.5)
If H is independent of x, (which we henceforth
assume), then W is a function of its arguments.

The generating functional T'[M,¢t] of the one
particle irreducible vertex functions is defined
through the Legendre transformation

T[M, ] + W[H, 1] = /dxH(z)M(:c), (2.6)
with
HGwt) = e, (2.1

After isolating the divergences occurring in the
Schwinger functions, one can write down the rela-
tionship between the bare and renormalized the-
ories. In order to be able to study the onset of
criticality, in both the symmetric and the bro-
ken phases, one first considers the massless renor-
malized theory — renormalized at some arbitrary
mass-scale parameter . Expanding in the re-
duced mass ¢t and in the conjugate function M,

gives the renormalization group equation (RGE)
for the massive theory in the critical region. Be-
cause of the local nature of the renormalization
group, the renormalization constants of the infi-
nite volume theory render the finite volume the-
ory finite too [H].

For a system of finite volume L%, with reduced
temperature ¢ and magnetization M, the above
generating functional becomes the function

I'(t,M,gr,p, L)

in which gp represents the renormalized quartic
coupling. The RGE expresses the invariance of
the physics under a rescaling of u. Ie., when
the mass-scale y is varied, t,M and ggr respond
in a way which is governed by the flow equations
[E,E] In four dimensions these flow equations can
be solved perturbatively in gr. Rescaling p to
/L, and using dimensional analysis, gives the
followmg solution of the RGE [E

T(t,M,gg,1,L) ~

2
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To determine how the running coupling on the
right hand side of (2.§) couples to the remaining
terms, perturbation theory must be applied to T’
itself. This gives [B,f]

wl—=

(2.8)

T (t,M,gr,1,L) = c;tM?(InL)"3
+eM*(InL)™! + ¢st?>(In L)3 (2.9)
where ¢y, ..., c3 are constants. Applying (@) to
this yields for the external field
H((t,M,gr,1,L) ~
catM(InL)™3 4 esM3(In L), (2.10)
where, again, c4 and c5 are constants.

These give for the free energy per unit volume
in the presence of an external field

Wi (t,H) = ¢, tM*(In L)~3
+,M*(InL) ! + est?(In L), (2.11)



¢, and ¢, being constants and M given by (2.10).
If H vanishes, then (2.1() and (.11 give

Wr(t,0) o 2 (In L) . (2.12)

One could proceed directly from (R.11)) or
(R.19) to find the FSS formulae for thermody-
namic observables. But it is more complete to
study the partition function itself. This is entirely
equivalent to the study of its zeroes. For fixed real
t the zeroes in the complex h plane are called Lee—
Yang zeroes [, and in the absence of an external
field, the zeroes in ¢ are called Fisher zeroes [f.
Their FSS properties below four dimensions was
studied in [E] In this section, the corresponding
FSS theory is presented for four dimensions where
logarithmic corrections are manifest.

The total free energy at the critical temper-
ature in four dimensions in the presence of an

external field is given by (R.11) as
LY(InL)S HS. (2.13)
The partition function is therefore
Zu(t=0,H)=Q (L4(1n L)%H%) . (2.14)

When the partition function is zero, solving for
H gives

H; o L™3(In L)~ % (2.15)

where the constant of proportionality depends on
the index j of the zero. This is the FSS formula
for Lee—Yang zeroes in four dimensions.

If H vanishes, (R.12) can be used in a similar
way to show that the Fisher zeroes scale as

tjoc L72(InL)"% . (2.16)

Once the FSS behaviour of the partition func-
tion zeroes has been found one can easily find
the corresponding behaviour for thermodynamic
functions by expressing them in terms of the ze-
roes. These considerations give for the zero field
magnetic susceptibility and specific heat

Xz (t=0,H =0)x L?(InL)? (2.17)
and
CpL(t=0H=0) o (InL)¥. (2.18)

3. NON-PERTURBATIVE ANALYSIS
OF FINITE SIZE SCALING

The Swendsen—Wang cluster algorithm [[L(] was
applied to the Ising version of the theory on lat-
tices of sizes 8% to 24%.

In an external field h (= xH), the partition
function can be written as

N AN
Z(s,h)= > > p(S, M)esSTRM - (3.1)

M=—N S=—4N

where

4
S = Z Z ¢m¢z+u , M= Z¢z; (32)

z p=1

and the spectral density p(S, M) is the relative
weight of configurations having given values of S
and M. The ‘multihistogram’ method [L] was
used to combine histograms determined at vari-
ous values of k. This provides an optimal esti-
mator for the spectral density and allows one to
construct Z(k, h) in the complex neighbourhood
of the critical point. A Newton—Raphson algo-
rithm was used to determine nearby zeroes.

The leading (power law) FSS behaviour of the
Lee—Yang and Fisher zeroes was found to be
slightly deviant from the mean field predictions.
These deviations find their explanation in the
presence of logarithmic corrections. To isolate
these corrections, in the case of Fisher zeroes, we
plot in fig.1a In (L?Imk;) versus In(InL). The
negative slope is in good agreement with the scal-
ing prediction of —%. In fact, a fit to all five
points gives a slope —0.217(12). Excluding the
point corresponding to L = 8 gives a slope of
—0.21(4). The solid line is the best fit to the re-
maining points assuming the theoretical predic-
tion —% from ()

We may now determine k. from |k; — ke|
1=2(In1)"*/®. Using the first Fisher zeroes, we
find k. ~ 0.149703(15) in good agreement with
the value 0.149668(30) from high temperature ex-
pansions [[F).

To identify the logarithmic corrections for the
Lee-Yang zeroes, we plot in fig.1b In (L3Imh,)
against In (In L). A best fit to all five points gives
a slope of —0.204(9) which compares well with



the theoretical prediction of —1 from (R.19). Ex-
cluding the smallest lattice, a fit to the remaining
four points gives a slope —0.22(3). The solid line
in fig.1b is the best fit to the last four points with

. 1
given slope — ;.

Figure 1. Logarithmic corrections to FSS of (a)
Fisher zeroes and (b) Lee—Yang zeroes.

4. CONCLUSIONS

A finite size scaling theory has been developed
for the single component ¢* theory in d = 4
dimensions. Emphasis has been placed on log-
arithmic corrections to the mean field predic-
tions. This has been checked non-perturbatively
using high precision numerical methods, and good
agreement is found.

FSS formulae for other thermodynamic func-
tions are also given. These exhibit logarithmic
corrections too. The FSS formula for the correla-
tion length of a four dimensional system also in-
volves logarithmic corrections. This was derived

by Brézin [E] for a system of extent L in all direc-
tions. At the infinite volume critical point x = k.,

€1(ke) x L(In L)7. (4.1)
This suggests that the F'SS variable should be

Ep(re) _ L(nL)7
foo(R)  t73| Int| s

(4.2)

in four dimensions. Indeed, replacing the scal-
ing variable, z. of the right hand side of ([L.3) by
the ratio &1, (ke)/€xo (k) is sufficient to recover all
the FSS formulae presented here while still being
correct in d < 4 dimensions. We suggest that this
modified FSS hypothesis is the more appropriate
one.
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