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Abstract

This paper reports on numerical investigations of preferential diffusion effects in Large

Eddy Simulation (LES) of turbulent lifted CH4/H2 flames. For this purpose, a combined

LES and Flamelet Generated Manifolds (FGM) model is developed to simulate the Delft

Jet-in-Hot Coflow (DJHC) burner. A novel type of flamelets, entitled “IML Flamelets”,

has been used to tabulate the chemistry. IML flamelets are capable to incorporate pref-

erential diffusion effects in autoigniting flames. The IML technique is coupled with LES

to simulate the DJHC burner with CH4/H2 fuels where CH4 has been enriched with H2

ranging from 0% to 25% of the fuel volume. The significance of this study is to illustrate

complex interactions of molecular diffusion, chemistry and turbulent transport. A good

agreement has been found between LES and measurements for the velocity and OH fields.

It turns out that preferential diffusion has a significant influence on the lift-off height and

stabilization mechanism of the lifted H2-enriched turbulent flames. Predictions of the 0%

H2 case indicate that inclusion of preferential diffusion in the combustion model mod-

estly affects lift-off heights. However, for 5% H2, 10% H2 and 25% H2 cases, inclusion of

preferential diffusion in the model affects strongly lift-off heights yielding much improved
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predictions compared to the unity Lewis number model. Predictions of lift-off heights and

formation of ignition kernels agree very well with the measured instantaneous snapshots of

OH chemiluminescence. It turns out that the combined FGM-IML approach can success-

fully capture main features of turbulent lifted flames such as formation of ignition kernels

and stabilization mechanisms.

Keywords: Turbulent combustion, Large Eddy Simulation, Flamelet Generated

Manifolds, Autoignition, Preferential diffusion, Mild combustion

1. Introduction

Combustion devices are often optimized in order to increase thermal efficiency and

reduce pollutant emissions such as carbon monoxide (CO) and nitrogen oxides (NOx).

For these purposes, strategies have been developed that deploy autoignition of a fuel jet

emerging in a preheated and diluted oxidizer stream. This is a type combustion often

called Mild combustion or flameless oxidation [1, 2]. Stabilization of Mild combustion

under intense dilution is highly sensitive to variations in fuel composition and operating

conditions. Recently, addition of hydrogen to methane based fuels has been introduced in

order to improve the stabilization [3, 4] and studied in some DNS studies [5, 6]. The addition

of hydrogen opens a new technical challenge for numerical modeling of Mild combustion

due to the complexity of autoignition under large preferential diffusion effects [7].

Experimental studies on Mild combustion have been mainly focused on a vitiated com-

bustion regime in laboratory scale Jet-in-Hot-Coflow (JHC) burners [4, 8–10]. In the

conditions of the JHC burner, a turbulent lifted flame has been observed as a result of au-

toignition of a fuel jet in the hot environment of burned gas. Numerical studies of the JHC

burner have been mainly devoted to the development and validation of models for simula-

tions of the lifted turbulent flames. An important issue in the numerical modeling of Mild

combustion is flame stabilization which is mainly governed by autoignition. Although there

are many Reynolds-Averaged Navier-Stokes (RANS) studies in this field [11–13], these un-
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steady ignition events are strongly intermittent for which Large Eddy Simulation (LES) is

known to provide more accurate results.

Among different approaches for LES of JHC burners, two of them have been widely

and successfully used. They are either based on transported PDF methods with reduced

chemistry [14, 15] or based on flamelet-based reduction techniques such as FGM (Flamelet

Generated Manifold) [16], FPI (Flame prolongation of ILDM) [17] and FPV (Flamelet

Progress Variable) [18]. Accuracy of predictions by transported PDF methods depends

strongly on the micro-mixing model. In spite of a higher accuracy of this approach com-

pared to presumed PDF approaches, a large set of differential equations has to be solved

for an accurate description of the probability of occurrences, which results in a very large

computational time. Moreover, inclusion of preferential diffusion effects in the framework

of transported PDF methods is an open research question [19, 20].

Application of flamelet-based reduction techniques within LES has been reported by a

number of studies for non-premixed flames assuming a unity Lewis number approximation

for the combustion model [21–26]. In the context of JHC burners, Ihme et al. [23] employed

the Unsteady Flamelet Progress Variable (UFPV) model for LES of the Cabra burner with

CH4/air fuel [8]. It is believed that for methane base fuels, the application of unity Lewis

approximation yields accurate results. They predicted lifted turbulent flames in a good

agreement with measurements. In a later study, Ihme et al. [24] simulated the HM3 case

of the Adelaide burner [4] with a similar methodology but with the addition of an extra

conserved scalar to account for the third surrounding air stream. Within their methodology,

they used a mean scalar for temperature of the coflow and they found a good agreement

with measurements of temperature, mixture fraction and concentrations of species. Due

to a considerable amount of hydrogen in the HM3 case, the flame is almost attached to

the burner with a structure similar to piloted flames, e.g. [27]. Application of unity Lewis

number in the combustion model for such CH4/H2 mixtures may lead to inaccurate results.

This point is investigated thoroughly in this paper.
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The Delft Jet-in-Hot Coflow (DJHC) burner has been devised by Oldenhof et al. [9]

with some minor differences from the Adelaide burner. They performed measurements

of lifted methane flames for temperature and velocity using Coherent Anti-Stokes Raman

Spectroscopy (CARS) and Laser Doppler Anemometry (LDA), respectively. Recently sim-

ulations of these lifted flames have been reported in [28–31]. In both experiments and

simulations, it has been reported that the lifted flames are stabilized by autoignition in

which ignition kernels form, grow and convect downstream. Later on, these experiments

were extended for hydrogen containing methane mixtures by Arteaga et al. [3]. In these

experiments, the methane based fuel (Dutch natural gas) has been enriched with various

amounts of hydrogen ranging from 0% to 25% of fuel volume. They performed measure-

ments of Particle Image Velocimetry (PIV) and OH chemiluminescence which revealed

that addition of only a small amount of hydrogen to methane affects the flame’s lift-off

height and stabilization mechanism significantly. Some of these hydrogen enriched tur-

bulent flames were lifted and others were attached to the burner. In fact, autoignition

of these flames is initiated at very small mixture fractions (ζ < 0.02), very close to the

oxidizer stream where turbulence intensities are low [7]. In these locations, molecular diffu-

sion becomes as important as turbulent transport in the ignition events. In this situation,

prediction of autoignition might depend strongly on molecular diffusion modeling, which

has to be considered carefully in the development of a numerical model. In this paper, we

develop a LES model based on a combined FGM and presumed PDF model to simulate tur-

bulent lifted flames of the DJHC burner with CH4/H2 fuels. The FGM model is based on

the newly proposed one-dimensional Igniting Mixing Layer flamelets (IML flamelets) [32].

These flamelets have been proposed to include preferential diffusion effects in autoignition

of CH4/H2 flames. Inclusion of heat loss in the model has been neglected in order to

investigate purely preferential diffusion effects without additional modeling uncertainties.

The focus is on the prediction of autoignition in turbulent lifted flames under significant

influence of preferential diffusion. In section 2, the choice of FGM technique based on
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IML flamelets is briefly explained to clarify its ability to incorporate preferential diffusion

effects in autoignition. Section 3 comprises a description of the LES model and numerical

methodology. Computational results are presented in section 4, where LES of the lifted

flames are conducted and compared with measurements to illustrate the effect of molecular

diffusion and preferential diffusion. Finally, a number of conclusions are drawn.

2. Inclusion of preferential diffusion in the Manifold - IML flamelets

The studied cases contain a range of H2 from 0% to 25% of the fuel volume which

are summarized in Table 1. Modeling of combustion is performed using flamelets which

are transient solution of one-dimensional laminar Igniting Mixing Layer flamelets (IML

flamelets) as shown in Fig. 1. A complete description and extensive analysis of IML

flamelets and their capability to predict autoignition of hydrogen enriched mixtures can

be found in [32]. As a brief summary, in IML flamelets, fuel and oxidizer streams are

completely unmixed at t = 0 s, having the shape of a step-function for all thermo-chemical

properties in physical space. In these flamelets, scalar dissipation rate is close to infinity at

t = 0 s because of the steep gradient of mixture fraction. During the time-evolution of the

IML flamelets, scalar dissipation rate decreases (rapidly) due to molecular diffusion of fuel

and oxidizer in which the mixture might ignite at any time. This molecular mixing pro-

cess is governed by generalized Fickian and thermal diffusion without any imposed inflow

momentum.

Figure 1 shows the evolution of temperature profiles in physical space for IML flamelets

using detailed chemistry GRI-mech 3.0 [33] and different transport models. IML flamelets

are computed using unity Lewis numbers (Lei = 1) in Fig. 1a and constant non-unity

Lewis numbers (Lei = ci) in Fig. 1b. Temperature profiles are plotted incrementally in

time in which each time level is plotted with the same color in both graphs. It is observed

that preferential diffusion affects significantly the evolution of temperature. These IML

flamelets incorporate adequately simultaneous evolution of molecular mixing and chemistry
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during autoignition. However, such a transient molecular mixing and chemistry cannot be

accurately captured by assuming a steady-state mixing with frozen chemistry at t = 0 s [32],

as it is a common-practice in igniting counterflow flamelets. Moreover, IML flamelets

incorporate the time history of a decaying scalar dissipation rate χst, which often occurs

in turbulent jet flames.

Time-dependent IML flamelets are tabulated as a function of the chosen controlling

variables; mixture fraction ζ and reaction progress Y. The mixture fraction is based on

a linear combination of the mass fraction of elements H, C and O following Bilger’s for-

mulation [34]. ζ is normalized between zero and one at the oxidizer and fuel boundary,

respectively. The reaction progress Y is selected in such a way that it contains major

species and yields monotonically increasing values of Y with respect to time for each ζ:

Y =
αO2

WO2

YO2
+

αCH4

WCH4

YCH4
+

αCO2

WCO2

YCO2
+

αH2O

WH2O
YH2O +

αC2H6

WC2H6

YC2H6
(1)

where Wi is molar mass of species i. αi is chosen as αO2
= −0.5, αCH4

= −0.5, αCO2
=

−0.8, αH2O = 1 and αC2H6
= −3. Validation of the FGM database is performed in a

one-dimensional configuration in which autoignition time scales of the IML flamelets are

computed and compared with different chemical and transport models in Fig. 2. The

IML flamelets are computed using both detailed chemistry and FGM chemistry. Two

FGM databases are created from IML flamelets using detailed chemistry with either unity

Lewis numbers (FGM.UL) or constant non-unity Lewis numbers (FGM.CL). A temperature

rise ∆T is defined for quantification of the temporal evolution of autoignition: ∆T (t) =

maxζ (T (ζ, t) − T (ζ, 0 )). Accordingly, the ignition delay τig is defined based on the time

it takes to reach the maximum temperature gradient d(∆T )/dt.

From Fig. 2, it is observed that in case of Lei = 1, the difference between predicted

ignition delays computed by detailed chemistry and the FGM.UL is less than 10% for

all cases. This error is mainly due to numerical interpolation and grid resolution of the

flamelet database which are chosen as a linear scheme and 400× 400 in direction of ζ ×Y,

respectively. Comparison of predictions by both FGM.UL and FGM.CL compared to
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those of detailed chemistry with Lei = ci reveals a significant improvement of predictions

by using the FGM.CL compared to the FGM.UL. This demonstrates that using flamelets

with Lei = ci for generation of the FGM table is an essential step for accurate predictions.

Remaining differences between the FGM.CL and detailed chemistry with Lei = ci, in

addition to previously mentioned numerical errors, are related to the fact that preferential

diffusion effects are not included in the transport equations for ζ and Y. However, it was

shown in [32] that the influence of neglecting these effects from transport equations on the

predicted time scales is not significant for the studied cases. In the following section, the

two FGM models, namely the FGM.UL and the FGM.CL, are applied in LES of turbulent

lifted flames.

3. LES formulation and numerical details

The LES formulation of the problem is obtained from the Navier-Stokes equations

which are implicitly filtered with filter width ∆F equal to the mesh size. By application of

tabulated chemistry, a set of filtered governing equations is obtained for mass, momentum,

mixture fraction and reaction progress [21]:

∂ρ̄

∂t
+

∂ρ̄ũj
∂xj

= 0 (2)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũj)

∂xj
=

∂p̄

∂xi
+

∂

∂xj

[
(µL + µT )

(
∂ũi
∂xj

+
∂ũj
∂xi

−
2

3

∂ũk
∂xk

ǫij

)]
(3)

∂(ρ̄ζ̃)

∂t
+

∂(ρ̄ũj ζ̃)

∂xj
=

∂

∂xj

[(
λ

cp
+

µT

ScT

)
∂ζ̃

∂xj

]
(4)

∂(ρ̄Ỹ)

∂t
+

∂(ρ̄ũjỸ)

∂xj
=

∂

∂xj

[(
λ

cp
+

µT

ScT

)
∂Ỹ

∂xj

]
+ ¯̇ωY (5)

Filtered quantities are specified with an over-line φ̄ while density-weighted filtered quan-

tities are specified with a tilde φ̃ = ρφ/ρ̄. Solution of the velocity components, ζ̃ and Ỹ

requires values of ρ̄, ¯̇ωY and cp that are retrieved from the FGM table. It has to be men-

tioned that additional terms associated with non-unity Lewis numbers are neglected from
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this formulation since, as it was shown in Fig. 2 and in [32], their influence on autoignition

time scales is not considerable for the studied cases.

The turbulence/chemistry interaction is modeled through a presumed β−PDF method

to statistically determine thermo-chemical variables. This model has been successfully used

in previous studies of similar flames [21, 35–37]. In this method, a non-resolved filtered

quantity is obtained by φ̃ =
∫ ∫

φ(ζ, c)P (ζ, c)dζdc in which P (ζ, c) refers to the joint-PDF.

In this equation, c refers to the reaction progress Y which is normalized between 0 and 1

at unburned and burned mixture, respectively. Complex PDF-closure techniques involve

the solution of a large set of transport equations for the probability of possible realizations

of the joint-PDF which requires a very large computational time. In this study, since both

controlling variables ζ and c are normalized between 0 and 1, their statistical dependency

is insignificant. Moreover, the high resolution of the grid (minimum cell width is 0.375

mm) used in this study makes the impact of neglecting the covariance on predictions of

mean values smaller. Therefore, in order to keep the computational cost low, the statistical

independence is assumed: P (ζ, c) = P (ζ)P (c). These marginal PDFs are then modeled by

a presumed β-PDF which is fully described by the first two moments: P (ζ) = P (ζ; ζ̃ , ζ̃ ′′2)

and P (c) = P (c; c̃, c̃′′2). This implies that the two-dimensional FGM table is extended with

two additional dimensions to accommodate variances of ζ and c. The grid resolution of

the PDF-integrated tables is (101× 11× 101× 11) in the directions of (ζ̃ × ζ̃ ′′2 × c̃× c̃′′2).

Grid points of the variances are quadratically clustered near zero where the sensitivity

of thermo-chemical variables to changes of variances are significantly larger than at high

variances. To determine c̃′′2 and ζ̃ ′′2 during turbulent flame computations, an algebraic

gradient model is used, similar to that of the viscous sub-grid model:

φ̃′′2 = α∆x2

(
∂φ̃

∂xj

)2

. (6)

The value of α = 1/12 based on the Taylor-expansion of the gradient term in Eq. (6).

Although the chosen sub-grid models are not the most accurate available models in the
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literature, they do not have a large influence on the predictions due to the present high

resolution grid in which the minimum cell width is ∆x = 0.375 mm resolving approximately

90% of the turbulence energy spectrum.

µL and λ in Eqs. (2-5) are calculated based on simplified formulations following [16, 38]

µL = 1.67 × 10−8(T/298)0.51cp (kg m−1 s−1), (7)

λ = 2.58 × 10−5(T/298)0.69cp (W m−1 K−1). (8)

The eddy-viscosity µT is calculated using a model proposed by Vreman [39] to close

nonlinear terms in equations for u, ζ and Y. In this model, µT is determined by an

eddy-viscosity/eddy-diffusivity closure approach in which the eddy-diffusivity µT/ScT is

obtained using a fixed turbulent Schmidt number, ScT = 0.4. Equations (7,8) use the

PDF-averaged temperature in the manifold to compute and store µL and λ in the look-up

table.

The LES model is applied to the DJHC burner, which has been fully described in [3, 9].

In this burner, the fuel jet is ignited by the hot coflow of burned gas with low levels of

oxygen. The injection of the fuel jet takes place through a fuel pipe (D = 4.5 mm) with a

peak velocity of 32 m/s resulting in a jet exit Reynolds number of approximately 4500. The

hot coflow stream enters the domain with a bulk velocity of 3 m/s through an annulus of

82.8 millimeter diameter. The coflow stream consists of the combustion products of a ring

of premixed flames on the secondary burner that are mixed and cooled with the injected

ambient air on both sides of the secondary burner. Because of this cooling mechanism, the

coflow stream has a non-uniform profile of temperature. In this study, a mean value for

temperature and composition of the coflow is used to avoid the need for an extra scalar in

our combustion model. This choice is further discussed in subsection 4.2.

The computational domain is a Cartesian grid of size 86 × 86 × 250 mm with the

largest dimension in the stream-wise direction. The grid resolution is chosen as fine

as our computational resources allow, in order to minimize numerical and modeling er-
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rors (cf. [40]). There are approximately 7.5 million grid cells that are distributed non-

equidistantly, stretching from the fuel injection point in all three directions. The minimum

cell width is 0.375 mm which is less than the laser probe size that has been used to obtain

the experimental data. Velocity components, ζ and normalized mixture fraction c have

homogeneous Neumann boundary conditions at the side planes and at the outflow-plane.

For pressure, a Dirichlet (p = p0) boundary condition is applied at the side planes in x

and y direction while a Neumann boundary condition is applied at the inflow and outflow

plane. To account for the fluctuations in the inflow velocity of the fuel and oxidizer in

experiments, mean and RMS values of inflow are reproduced using a filtered random noise

generator [21]. In this generator, random numbers are applied to each velocity component

at the inflow plane at every time-step. All the velocity components are then spatially

filtered using a box-filter with size ∆F = D/4 and subsequently with a temporal filter of

∆T = ∆t/4 yielding nearly isotropic homogeneous turbulence at the inflow.

The numerical implementation to solve the mathematical model adopts a variable den-

sity approach, similar to low-Mach number methods, which involves the solution of a

Poisson equation for the pressure. A standard finite-volume method is used with second

order central differencing on a staggered Cartesian mesh. Temporal discretization is based

on a third-order Adams-Bashforth for the convective terms and a forward Euler for the

viscous terms and source terms. This hybrid time-stepping method provides more stabil-

ity than pure Adams-Bashforth scheme or pure forward Euler. A constant time step of

∆t = 0.4 µs is used for all simulations in order to keep the CFL-number sufficiently low.

The scalar equations for ζ and c are discretized using third order Van Leer’s MUSCLE

scheme, which is Total Variation Diminishing (TVD), for convective terms while the vis-

cous terms are discretized second order central differencing. Computations are conducted

using an in-house LES solver for which more details can be found in [21]. This code adopts

a multi-grid implementation to solve the Poisson’s equation which has been extensively

described in [21]. Parallelization has been performed using a combined MPI and OpenMP
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protocol on a multi-block platform.

4. Results

4.1. Flow field statistics

Flow field statistics have been calculated using ensemble-averaging of density-weighted

fields for 10 flow-through times of the fuel jet. Comparison of predicted mean stream-wise

velocities {w̃} with measurements at several heights is shown in Fig. 3. It is observed that

{w̃} of the fuel jet in the middle of the domain, is significantly larger than {w̃} of the

coflow which creates velocity fluctuations and turbulence in the shear layer between these

two streams. The computed RMS values of stream-wise and span-wise velocity components,

{w̃′′2}1/2 and {ũ′′2}1/2, are compared with measurements in Fig. 4. The RMS values which

indicates standard deviation are calculated from

{w̃′′2}1/2 =




n∑

i=1

w̃2
i

n
−

(
n∑

i=1

w̃i

n

)2


1/2

(9)

where i and n refer to the number of instant and total number of instants, respectively.

It is observed that there is a good agreement between computations and experiments

for the velocity components and turbulent kinetic energy. There are some discrepancies

for {w̃′′2}1/2 near the peak values (30 mm < Z < 60 mm) which are located in the tran-

sition region of the fuel jet from laminar to turbulence. In such regions, the accuracy of

predictions become highly dependent on Sub-Grid Scale (SGS) modeling and therefore,

Smagorinsky model might not provide excellent accuracy. {ũ′′2}1/2 agrees well at most

radial locations. In particular, the predictions near the shear layer, where ignition kernels

are formed, are promising. It turns out that application of the random noise generator

reproduces successfully the inflow turbulence of the experiments. Overall, the mixing field

is predicted reasonably well for autoignition predictions.
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4.2. Influence of preferential diffusion on the lift-off height

Figure 6 shows instantaneous snapshots of the filtered OH concentration ỸOH which is

obtained from the LES of Case D00H2 with the FGM.CL model. It is observed that at

t = 96 ms, a ỸOH kernel is formed at approximately Z = 200 mm. Subsequently, this kernel

grows and convects downstream at t = 100 ms and t = 104 ms. This mechanism, which

is repeated in subsequent times, governs stabilization of the flame. Further downstream,

these kernels further grow and ignite the surrounding mixture. It is apparent that this

flame is stabilized by autoignition in which ignition kernels are formed, grow and convect

downstream corresponding to experimental observations by Oldenhof et al. [9]. These

ignition events are formed at the lean side (ζ < ζst=0.0178) very close to the oxidizer

stream where molecular diffusion is comparable with turbulence transport (eddy viscosity).

In order to further clarify such a distinct formation of ignition kernels in 3D, iso-surfaces

of ζ̃st = 0.0178 and Ỹ = 2.9 are shown in Fig. 7. These values of ζ̃ and Ỹ correspond

to a temperature rise of 50 K from the manifold which is an indicator of autoignition.

Considering this, it is seen from Fig. 7 that an ignition kernel is formed at a specific axial

distance from the jet exit at t = 137.6 ms. Afterwards, this kernel grows and ignites the

downstream mixture at later times. A similar trend occurs repeatedly for other kernels in

time.

In order to investigate the influence of hydrogen addition on such a flame structure,

a snapshot of ỸOH is plotted for Case D10H2 is shown in Fig. 8. In this case, OH forms

right after the jet exit which indicates a totally different structure than the one observed

for Case D00H2. The structure of Case D10H2 corresponds to experimental observations

of OH chemiluminescence by Arteaga et al. [3]. This structure resembles a diffusion flame

structure which is stabilized by an edge flame, in clear contrast with the autoignition

structure of Case D00H2. Further analysis of the flame stabilization for the studied cases

is discussed in subsection 4.3.

Figure 9 shows the time-averaged {ỸOH} distributions obtained from the statistics of
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approximately 10 flow-through times of the fuel jet for all cases and models. The {ỸOH}

fields are shown here in order to compare with the measurements of OH chemiluminescence.

In Fig. 9, it is observed that computations with the FGM.UL result in approximately the

same lift-off height for cases D00H2, D05H2 and D10H2. However, computations with the

FGM.CL indicate a significant change of the lift-off height among these cases especially

between cases D00H2 and D05H2. For Case D25H2, the FGM.CL yields an attached

flame to the jet exit. These observations indicate that preferential diffusion has a strong

influence on the stabilization height and mechanism of the studied flames. It has to be

mentioned that for cases with significant ignition and extinction (e.g. Case D00H2), the

{ỸOH} field is highly intermittent and therefore, the time-averaged field is not very smooth.

However, cases with a more steady flame structure (e.g. Case D25H2) indicate a smooth

field. Regardless of the case, time-averaged fields of both controlling variables ζ and Y are

statistically converged and smooth for all cases (not shown here). These flame stabilization

mechanisms are analyzed and discussed in detail in subsection 4.3.

The time-averaged plots in Fig. 9 are compared with the measurements represented by

red lines which show the measured 50% probability of OH chemiluminescence (more details

can be found in [3]). By comparison of the {ỸOH} plots with the red lines, it appears that,

except for Case D00H2, the trend in lift-off heights are captured very well with the FGM.CL

model in contrast to the FGM.UL model which predicts considerably higher lifted flames.

This observation demonstrates that inclusion of preferential diffusion in the combustion

model is essential for hydrogen enriched cases. In cases D10H2 and D25H2, formation of

OH is predicted at somewhat smaller heights than the red lines. This can be explained

considering the fact that our computational model does not take into account heat loss

effects leading to a uniform distribution of the inflow temperature at the coflow side. Such

a uniform distribution results in a higher temperature, compared to measurements, in close

vicinity of the jet exit. This condition for the cases with small lift-off heights (cases D10H2

and D25H2) leads to a faster ignition and consequently lower lift-off heights. It should be
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mentioned that in experiments, there is heat loss from the coflow to the cooled fuel pipe

upstream of the computational domain of the current study, leading to a non-uniform mean

temperature profile as shown in [9]. The heat loss can be added to our combustion model

by inclusion of at least one extra scalar. However, such an extension is not pursued here

in order to exclude additional modeling uncertainties and focus on preferential diffusion

effects. Inclusion of the heat loss has been performed in several previous studies [24, 30]

but in combination with preferential diffusion effects, it remains as a future research.

It is interesting to compare lift-off heights of these turbulent flames with the ignition

delays of IML flamelets that were shown in Fig. 2. It is clear that the lift-off heights follow

a very similar trend to the ignition delays. In particular, for Case D00H2, the ignition delay

computed using the FGM.CL model is larger than that of the FGM.UL model. This trend

corresponds very well with the higher lift-off height of the computed flame (Case D00H2)

using the FGM.CL model compared to the one using the FGM.UL model. Accordingly,

the significant change of ignition delay between Case D00H2 and D05H2 (by application of

the FGM.CL) comply well with the predicted lift-off height of these cases by using these

FGM models. This behavior is explained considering that, as mentioned earlier, ignition

of these flames is initiated at very low mixture fractions (ζ < ζst=0.0178) very close to the

oxidizer side. In this region, turbulent structures in the fuel stream can hardly intrude the

ignition kernels at the most reactive mixture fraction ζMR [41] which induces that molecular

diffusion is comparable with turbulence transport. In this condition, it is expected that

these turbulent flames behave very similar to laminar flames. This behavior is also related

to the Reynolds number of these cases which is not relatively very high (Re = 4500).

From Figs. 2 and 9, it is observed that Case D00H2 follows a different trend when

preferential diffusion is included. Application of the FGM.CL to Case D00H2 leads to

a larger ignition delay and consequently a higher lift-off height in contrast to the other

cases. This can be explained considering that in Case D00H2, hydrogen is not initially

present in the fuel. During the pre-ignition phase, chain branching reactions form some

14



H2 molecules and H radicals. These species diffuse away from ζMR due to the preferential

diffusion. This leads to a lower reactivity at ζMR and consequently an increased ignition

delay and lift-off height. However, for other cases, hydrogen is initially present in the fuel.

Due to preferential diffusion effects, diffusion of hydrogen from the fuel to ζMR is enhanced

leading to a much higher reactivity at ζMR and eventually a decreased ignition delay and

lift-off height. This is also the reason that the ignition delay and lift-off height decreases

significantly from Case D00H2 to Case D05H2.

4.3. Stabilization mechanism of the lifted flames

In the previous subsection, based on instantaneous ỸOH distributions, a clear formation

of ignition kernels has been observed for Case D00H2. Similar behavior was observed for

Case D05H2 (but not shown here). However, the stabilization mechanism of Case D10H2

and D25H2 in which the fuel jet immediately burns after injection into the domain, is

not completely clear. In this subsection, we make further clarifications on the stabilization

mechanisms of the flames and assess them whether they are manily based on autoignition or

self-propagation. For this purpose, first, we remove autoignition chemistry from the FGM

look-up table by setting ¯̇ωY = 0 at the beginning of reaction progress, c̃ = 0. Afterwards,

we apply such a look-up table to a LES initiated from an already burning solution. Finally,

we analyze results to realize whether the flames are stabilized by autoignition or a self-

propagating flame structure.

This procedure has been applied to all cases and it is shown for Case D05H2 in Fig. 10.

In this figure, the left picture shows the initial field and the next two pictures show the

progress of the LES simulation. It is seen that for this case, the flame is gradually washed

out when the FGM table does not include autoignition chemistry. This clearly demonstrates

that flame is mainly stabilized by autoignition. We tested the same procedure for Case

D00H2 and observed similar behavior (not shown here). However, the two other cases

(D10H2 and D25H2) remained burning with the same lift-off height. These observations

demonstrate that autoignition is the main stabilization mechanism of Case D00H2 and
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D05H2, while the two other cases are stabilized by flame propagation. Furthermore, it

turns out that the IML approach is not only capable of prediction of autoignition but it

also predicts flame propagation with a very good accuracy.

5. Conclusions

A numerical model has been developed to study the influence of preferential diffusion

on the lift-off height and stabilization mechanism of turbulent lifted flames in a hot coflow.

For this purpose, IML flamelets have been employed to create a flamelet database and to

handle preferential diffusion effects in the model. A four dimensional flamelet database

(ζ̃ × ζ̃ ′′2 × Ỹ × Ỹ ′′2) has been generated for each studied case in which variances are

included with β-PDF approximation. LES of turbulent lifted flames has been performed

using FGM.UL and FGM.CL models. The DJHC burner has been chosen as a test case

which has been fed with a range of CH4/H2 mixtures. Comparison of the mixing field

between computations and experiments indicates a good agreement. It is found that the

influence of preferential diffusion on the stabilization height of the 0% H2 case is not

significant. In this case, both FGM.UL and FGM.CL models yield a reasonable prediction

of the lift-off height compared to measurements. However, preferential diffusion affects

strongly the lift-off height of hydrogen enriched cases, especially the 5% H2 case compared

to the 0% H2 case. This trend is not captured using the FGM.UL model, which yields

approximately the same lift-off height for 0% H2, 5% H2 and 10% H2 cases. Comparison

of all studied cases with the measured OH chemiluminescence demonstrates the necessity

of inclusion of preferential diffusion in the combustion model (FGM.CL) for hydrogen

containing cases (5% H2, 10% H2 and 25% H2). Further analysis of computational results

reveal that the 0% H2 and 5% H2 cases are stabilized by autoignition in which there are

distinct ignition kernels which form, grow and convect downstream. On the other hand,

10% H2 and 25% H2 cases are stabilized by a propagation mechanism without ignition

kernels. These observations are in a good agreement with the measured instantaneous
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snapshots of OH chemiluminescence. Therefore, it is concluded that hydrogen enrichment

leads to a significant change in the lift-off height and stabilization mechanism of the lifted

turbulent flames under studied conditions. There is an under-prediction of lift-off height

for the 10% H2 and 25% H2 cases using the FGM.CL model which can be explained due

to the neglecting of heat loss. As a future study, predictions can be further improved by

the extension of proposed model with at least one extra scalar in order to include heat loss

effects.
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Table 1: Reference inflow values of the fuel stream for the different cases. The oxidizer stream has the same

values for all cases: T = 1437 K, XO2
= 0.0485, XH2O = 0.1452, XCO2

= 0.0727, XN2
= 0.7336. ζst is the

stoichiometric mixture fraction.

Case T (K) XH2
XCH4

XC2H6
XN2

ζst

D00H2 448 0.00 0.813 0.037 0.15 0.0178

D05H2 448 0.05 0.763 0.037 0.15 0.0179

D10H2 448 0.10 0.713 0.037 0.15 0.0180

D25H2 448 0.25 0.563 0.037 0.15 0.0183

−0.4 −0.2 0 0.2 0.4 0.6
400

700

1000

1300

1600

1900

x (mm)

T
 (

K
)

(a)

−0.4 −0.2 0 0.2 0.4 0.6
400

700

1000

1300

1600

1900

x (mm)

T
 (

K
)

(b)

Figure 1: Evolution of temperature for (a) IML flamelets with Lei = 1, (b) IML flamelets with Lei = ci,

(c) ICF flamelets with Lei = 1 and (d) ICF flamelets with Lei = ci. Flamelets are plotted at t = 0, 0.5, 1,

..., 3 ms.
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Figure 3: Radial profiles of (lines) computed and (circles) measured [9] mean stream-wise velocity at heights

Z = 15, 60 and 90 for Case D00H2.
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Figure 4: Centerline profiles of (lines) computed and (circles) measured [9] RMS of stream-wise velocity,

RMS of span-wise velocity and turbulence kinetic energy (k = 1/2({w̃′′2}1/2 +2{ũ′′2}1/2)) for Case D00H2.

Figure 5: Reprinted images of the flames base by Arteaga et al. [3] at (left) a long exposure time of 1 s

and (right) a short exposure time of 0.5 ms. The red ellipse points out an autoignition kernel and the red

crosses denote the fuel pipe exit. The image width is approximately 8 cm.
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Figure 6: Computed instantaneous snapshots of ỸOH using the FGM.CL model for Case D00H2. Blue lines

indicate stoichiometric mixture fraction ζst.
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Figure 7: Computed instantaneous iso-surfaces of ζ̃st = 0.0178 (blue) and Ỹ = 2.9 (red) using the FGM.CL

model for Case D00H2.
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Figure 8: Computed instantaneous snapshot of ỸOH using the FGM.CL model for Case D10H2.
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Figure 9: {ỸOH} for all cases (from left to right D00H2, D05H2, D10H2 and D25H2). Computations with

(top) the FGM.UL model and (bottom) the FGM.CL model. Red lines correspond to 50% probability of

OH chemiluminescence by measurements [3].
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Figure 10: Computed instantaneous distributions of T̃ using the FGM.CL model without ignition chemistry

for Case D05H2.
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