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Characteristics based on confidence ellipses
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of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece

Abstract

The Receiver Operating Characteristics (ROC) is used for the evalua-
tion of prediction methods in various disciplines like meteorology, geophysics,
complex system physics, medicine etc. The estimation of the significance of
a binary prediction method, however, remains a cumbersome task and is
usually done by repeating the calculations by Monte Carlo. The FORTRAN
code provided here simplifies this problem by evaluating the significance of
binary predictions for a family of ellipses which are based on confidence el-
lipses and cover the whole ROC space.
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Number of processors used:
Supplementary material:
Keywords: Receiver Operating Characteristics (ROC), significance level, p-value
Classification: 4.13 Statistical Methods, 9 Databases, Data Compilation and In-
formation Retrieval, 14 Graphics.
Nature of problem: The Receiver Operating Characteristics (ROC) is used for
the evaluation of prediction methods in various disciplines like meteorology, geo-
physics, complex system physics, medicine etc. The estimation of the significance
of a binary prediction method, however, remains a cumbersome task and is usually
done by repeating the calculations by Monte Carlo. The FORTRAN code provided
here simplifies this problem by evaluating the significance of binary predictions for
a family of ellipses which are based on confidence ellipses and cover the whole ROC
space.

Solution method: Using the statistics of random binary predictions for a given
value of the predictor threshold ϵt, one can construct the corresponding confidence
ellipses. The envelope of these corresponding confidence ellipses is estimated when
ϵt varies from 0 to 1. This way a new family of ellipses is obtained, named k-
ellipses, which covers the whole ROC plane and leads to a well defined Area Under
the Curve (AUC). For the latter quantity, Mason and Graham [1] has shown that
it follows the Mann-Whitney U-statistics[2] which can be applied[3] for the esti-
mation of the statistical significance of each k-ellipse. As the transformation is
invertible, any point on the ROC plane corresponds to a unique value of k, thus
to a unique p-value to obtain this point by chance. The present FORTRAN code
provides this p-value field on the ROC plane as well as the k-ellipses corresponding
to the (p=)10%, 5% and 1% significance levels using as input the number of the
positive (P) and negative (Q) cases to be predicted.

Restrictions:

Unusual features: In some machines, the compiler directive -O2 or -O3 should
be used to avoid NaN’s in some points of the p-field along the diagonal

Additional comments:

Running time: Depending on the application, e.g., 4s for an Intel(R) Core(TM)2

CPU E7600 at 3.06GHz with 2GB RAM for the examples presented here

[1] S. J. Mason, N. E. Graham, Quart. J. R. Meteor. Soc. 128 (2002) 2145.
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[2] H. B. Mann, D. R. Whitney, Ann. Math. Statist. 18 (1947) 50. Program Sum-
mary section.

[3] L. C. Dinneen, B. C. Blakesley, J. R. Stat. Soc. Ser. C Appl. Stat. 22 (1973)
269. the end of

1. Introduction

Receiver Operating Characteristics (ROC) graphs is a technique currently
used[1, 2, 3, 4, 5, 6, 7], for estimating the predictability of various com-
plex systems and has already found useful applications in various fields like
medicine, e.g. see [8], meteorology[9, 10], etc. As suggested by Fawcett [11]
ROC graphs depict the trade off between hit rates and false alarm rates with
a conceptually simple way which also applies to the case of skewed class
distributions which is usually the case in the physics of complex systems.

We limit ourselves in the case of binary predictions. In this case, there
are two classes of events p or n; for example in the case of extreme events in
complex systems an event is classified as p if its magnitude exceeds a given
threshold Mt otherwise it is considered n. Before the occurrence of each
event a predictor ϵ is assigned based on some prediction algorithm and a
hypothesized class P or N for the forthcoming event is decided on the basis
of whether ϵ exceeds or not, respectively, the predictor threshold value ϵt. If
the hypothesized class is P and the event is p we have a successful prediction
called True Positive (TP). Similarly, if the hypothesized class is N and the
event is n we again have a successful prediction called True Negative (TN).
If, however, the hypothesized class is P and the event is n we have a False
Positive (FP) unsuccessful prediction. Finally, if the hypothesized class is N
and the event is p we have a False Negative (FN) unsuccessful prediction.
Assuming that in total we examine P events of the p class and Q events of
the n class, one defines[11] the True Positive rate (TPr) -or hit rate (H)- as
the ratio of the totality of TP’s over P,

H ≡ |TP |
P

=
|TP |

|TP |+ |FN |
, (1)

and the False Positive rate (FPr) -or false alarm rate (F)- as the ratio of the
totality of FP’s over Q,

F ≡ |FP |
Q

=
|FP |

|FP |+ |TN |
. (2)
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The ROC curve is obtained as we vary ϵt and plot H as a function of F , e.g.
see Fig.1.

In the example of Fig. 1, we depict the ROC curves for three different
values of Mt which result[6] when considering as predictor the number ϵk of
successive extrema of the aftershock magnitude time series mk+1 in the case
of the 1999 Hector Mine earthquake. As we vary the threshold ϵt an ROC
curve is obtained, e.g. see the results depicted by the red squares which
correspond to a target magnitude Mt=5.0. In this particular example, the
hypothesized class is either P or N depending on whether ϵk is smaller or
larger, respectively, than ϵt. We observe that the diagonal (black solid line)
corresponds to random predictions and would have been obtained as an ROC
curve for a random predictor if both P and Q had tended to infinity. If we
repeat the experiment using the definition of the hypothesized classes of the
previous paragraph, i.e., interchanging P with N, we obtain the ROC curves
that lie in the lower triangle which are also depicted with thick lines without
symbols in Fig.1 which are symmetric images of the originals with respect to
the center (Fc, Hc) = (1/2, 1/2). Thus, the statistical significance of an ROC
curve depends on its deviation from the H = F diagonal and by negating the
condition used for the construction of the hypothesized classes we can ‘reflect’
an ROC curve with respect to the center of the ROC space. Moreover, in
the present example, as we change Mt we drastically affect the number P of
p events, see Table 1, because earthquake magnitudes follow the Gutenberg-
Richter law[12]. The corresponding ROC curves may become more distant
from the diagonal, but this may be misleading as their statistical significance
varies when P (and Q) change. It is the aim of the present paper to present
a plausible visualization method for the statistical significance of an ROC
curve together with a FORTRAN code that generates the corresponding sig-
nificance intervals. In Section 2, we will present the proposed k-ellipses that
cover the ROC space and obtain the related statistics. Section 3 discusses
the implementation of the method in FORTRAN and Section 4 summarizes
the results.

2. The k-ellipses family

In order the estimate the statistical significance of an ROC curve, we need
to compare it with similar results obtained when using a random predictor.
Without loss of generality, we assume that the predictor threshold ϵt varies
in the range [0,1]. Then, as a random predictor we can consider a uniformly
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distributed random number ui in the same interval. Under these assumptions,
the conditional probabilities P (P|p) and P (P|n) to obtain the hypothesized
class P under the assumption that the event is either p or n are both equal
to ϵt. Thus, the number l of TP’s as well as the number m of FP’s follow
the binomial distribution with attempt probability ϵt for P and Q attempts,
respectively. The mean value of the hit rate H and the false alarm rate F
result in

⟨H⟩ = ⟨l⟩
P

= ϵt, (3)

⟨F ⟩ = ⟨m⟩
Q

= ϵt, (4)

with variances

σ2
H = ⟨(H − ⟨H⟩)2⟩ =

(
⟨l2⟩ − ⟨l⟩2

)
P 2

=
ϵt(1− ϵt)

P
, (5)

σ2
F = ⟨(F − ⟨F ⟩)2⟩ =

(
⟨m2⟩ − ⟨m⟩2

)
Q2

=
ϵt(1− ϵt)

Q
, (6)

respectively. When P and Q are sufficiently large[13] the binomial distribu-
tions of l and m can be approximated by Gaussian ones leading to a two
dimensional Gaussian distribution for H and F

f(F,H) =

√
PQ

2πϵt(1− ϵt)
exp

[
−Q(F − ϵt)

2 + P (H − ϵt)
2

2ϵt(1− ϵt)

]
. (7)

The confidence regions in this case[14] are the confidence ellipses

Q(F − ϵt)
2 + P (H − ϵt)

2 = kϵt(1− ϵt), (8)

with center (F,H) = (ϵt, ϵt) -on the diagonal of the ROC space- and k is a
positive parameter signifying the confidence level with p0 = exp(−k/2). If
we vary ϵt within the region [0,1], the aforementioned center moves along the
diagonal and we obtain different ellipses for a given p0-value. The envelope
of these ellipses can be determined by the maximization (minimization) of H
under the condition (8) for given values of F and k. Such an analysis results
in the following expressions for Hmax and Hmin

Hmax =
1

2
+

(
Q

Q+ k

)(
F − 1

2

)
+

√
k(Q+ k + P )[k + 4Q(F − F 2)]

2(Q+ k)
√
P

, (9)
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Hmin =
1

2
+

(
Q

Q+ k

)(
F − 1

2

)
−
√
k(Q+ k + P )[k + 4Q(F − F 2)]

2(Q+ k)
√
P

, (10)

respectively. By substituting Y = H − 1
2
and X = F − 1

2
, Eqs.(9) and (10)

turn to

[4Q(k + P )︸ ︷︷ ︸
A0

]X 2 + [−8PQ︸ ︷︷ ︸
B0

]XY + [4P (k +Q)︸ ︷︷ ︸
C0

]Y2 + [−k(k + P +Q)︸ ︷︷ ︸
F0

] = 0 (11)

which describes the envelope. Equation (11) is[15] an ellipse since B2
0 −

4A0C0 = −64PQk(k + Q + P ) < 0 with center at (F,H) = (1/2, 1/2) and
inclination θ with respect to the x-axis given by

cot(2θ) =
A0 − C0

B0

=
k

2

(
1

Q
− 1

P

)
. (12)

Let us call the family of the ellipses described either by Eq.(11) or by Eqs.(9)
and (10) as the k-ellipses family. The k-ellipses family covers the whole ROC
space and the k value corresponding to an arbitrary ROC point (F,H) is
given by the positive root of Eq.(11) which equals

k(F,H) = 2P (H2 −H) + 2Q(F 2 − F )

+ 2
√
[P (H2 −H) +Q(F 2 − F )]2 + PQ(F −H)2. (13)

We observe that for the ideal predictor, (F,H) = (0, 1), we have k(0, 1) =
2
√
PQ. Morover, Eq.(13) exhibits the aforementioned (see Section 1) sym-

metry of the ROC graphs: A reflection of the ROC curve with respect
to the ROC center (1/2, 1/2) leading to the transformation F ′ = 1 − F
and H ′ = 1 − H -which corresponds to negating the condition for the at-
tribution of the hypothesized classes- results in the same value of k, i.e.,
k(F ′, H ′) = k(F,H). Thus, the k-ellipses family may be used for the estima-
tion of the statistical significance of ROC curves.

Although each k-ellipse has been obtained for a given value of p0 [=
exp(−k/2)] for every value of ϵt, the probability to obtain by chance an ROC
curve enclosed by this envelope may significantly differ from that p0 value
as it is highly improbable for a given random realization of the prediction
method to keep a constant value of k for all ϵt. In order to estimate the
statistical significance of each k-ellipse, we have to resort to the statistics of
the Area Under the Curve (AUC), labelled by A, in the ROC plane which
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has been the subject of the study by Mason and Graham[10]. Mason and
Graham[10] have shown that

A = 1− U

PQ
, (14)

where U follows the Mann-Whitney U-statistics[16], i.e., it equals to the
sum of the number of cases a number uk, k = 1, 2, ..., P is larger than a
number u′

k, k = 1, 2, ..., Q when both {uk} and {u′
k} originate from the same

continuous distribution. For large values of P and Q, i.e., when P or Q
are greater or equal to 30 and P + Q ≥ 40, the U-statistics can be[10]
approximated by a Gaussian distribution having a mean

µU =
PQ

2
(15)

and a standard deviation

σU =

√
PQ(P +Q+ 1)

12
. (16)

Thus, if we calculate the AUC corresponding to Eq.(9) we can estimate the
correct significance level p of a k-ellipse. By direct integration of the AUC
A(k) of Eq.(9), we obtain that

A(k) =
(
1− x1

2

)
+

(
Q

Q+ k

)
x1

2
(x1 − 1)

+
1

2

(
1

Q+ k

)√
k (Q+ k + P )

P

√Q

(x1 −
1

2

)√
Q+ k

4Q
−
(
x1 −

1

2

)2

+

(
Q+ k

4Q

)
arcsin

(
2

(
x1 −

1

2

)√
Q

Q+ k

)]

+
1

4
√
Q

[√
kQ+ (Q+ k) arcsin

(√
Q

Q+ k

)]}
(17)

where

x1 =
1

2
+

PQ− k
√

Q(k +Q+ P )

2Q(k + P )
(18)

is the F value corresponding to Hmax = 1 in Eq.(9).
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3. Discussion and Implementation

Given the values of P and Q, in order to estimate the statistical signifi-
cance p in the ROC plane, we proceed as follows: For each point (F,H), we
estimate using Eq.(13) the k value of the k-ellipse that passes through this
point. Then, we calculate the AUC A(k) using Eq.(17) and estimate the cor-
responding statistical significance p using either Mann-Whitney U-statistics
or its Gaussian approximation where applicable. In the former case, the ex-
act numerical solution[17] given by the Algorithm AS62 was incorporated in
the FORTRAN code, whereas in the latter the GNU FORTRAN intrinsic
error function ERF(x) was used. The table of the p-values as a function of
the corresponding points (F,H) is given in the output file outfield.dat.

As the AUC statistics in both cases is available three k-ellipses with p-
values equal to 10%, 5% and 1% are also calculated by solving

AUC(p) = A(k) (19)

(cf. Eq.(17)) using Newton’s method. The results are written to the output
file outCL.dat.

As the user might like to know the statistical significance of an already
calculated AUC a fourth entry in the input file input.dat was reserved for
this real number which should be smaller than unity. The resulting statistical
significance is exported in the file outp.dat together with the integer values
of P and Q . The values P , Q and N constitute the first three entries of
the input file input.dat. The value of N denotes the number of segments
in which the interval [0,1] is divided for the calculation of the p-values in the
ROC plane. The final entry in the file outp.dat is an error code which should
be zero for correct execution and becomes unity if some input parameter is
unreasonable.

Typical results for the examples presented in Fig.1, are shown in Figs.2(a),
(b) and (c) for Mt=3.5, 4.5 and 5.0, respectively. As mentioned in the In-
troduction due to Gutenberg-Richter law the values of P vary significantly
in each case and are given in Table 1 together with the values of N used for
the construction of Fig.2. The latter figure was prepared in Gnuplot 4.6 by
plotting outfield.dat using image. We observe that in all three cases sta-
tistically significant predictions are obtained since the estimated p-values for
the AUC’s found by numerical integration of the experimental ROC curves
in each case (see the last column of Table 1) are well below 1%. We also
observe that although in Fig.1 the ROC curve for Mt = 5.0 lies markedly
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higher than that for Mt = 3.5, the latter is by orders of magnitude more
statistically significant.

Finally, we note that if in some specific case only one point (F1, H1) in
the ROC plane is available (see Fig.3), then by using the fact that the ROC
curve H = H(F ) is a non-decreasing function of F , e.g. see Figs.1 and 2,
the unknown AUC, labeled A1, passing through this point lies between the
limits

H1(1− F1) ≤ A1 ≤ H1F1 + 1− F1 (20)

which correspond to the extreme ROC curves depicted with the thick green
and blue lines in Fig.3, respectively. Selecting as k1 = k(F1, H1) from Eq.(13),
the AUC A(k1) corresponding to the k1-ellipse passing through the point
(F1, H1), see the red ROC curve in Fig.3, also satisfies inequality (20) since

H1(1− F1) ≤ A(k1) ≤ H1F1 + 1− F1. (21)

This fact may additionally justify the selection of the p-values of the k-ellipses
for the approximation of the statistical significance of the points on the ROC
plane in Fig.2.

4. Summary

A FORTRAN code for the visualization of the confidence intervals in
the ROC plane has been presented. The code provides an estimate of the
statistical significance p for each point on the ROC plane based on the family
of the k-ellipses introduced here. The code also provides the k-ellipses with
p-values 10%, 5% and 1% which also may be of interest for researchers using
ROC curves in various fields. The statistical significance p of a user defined
area under the ROC curve can be also estimated.
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Figure 2: (color online) Receiver Operating Characteristics when using ϵk as a predictor
for the aftershock sequence of Hector Mine earthquake for target earthquake magnitudes
Mt = 3.5 (a), 4.5 (b) and 5.0 (c). Using the FORTRAN code presented here and the
values of the second and the third column of Table 1 for each Mt, we also plot the p-values
(see the color table on the left) as well the k-ellipses corresponding to 10%, 5% and 1%
significance level.
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Figure 3: (color online) A schematic Receiver Operating Characteristics showing a point
(F1, H1) (black circle) together with the k-ellipse (red thick line) passing through this
point. The two extreme ROC curves which may include (F1,H1) are also depicted by the
thick blue and thick green line. The areas under the upper extreme ROC curve (blue) and
under the lower extreme ROC curve (green) bound the AUC of any ROC curve passing
through (F1,H1), see inequalities (20) and (21).

Table 1: The values of P , Q for the various target magnitudes Mt together with the AUC
of the ROC curves depicted Fig.1 and the corresponding p-values. The values of N used
for the construction of Fig.2 are also inserted.

Mt P Q N AUC p
5.0 4 4763 1000 0.950 0.09%
4.5 18 4749 1000 0.870 3× 10−6%
3.5 166 4601 1000 0.755 < 10−6%
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