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Abstract 

Cold region hydrological systems exhibit complex interactions with both climate and the 

cryosphere. Improving knowledge on that complexity is essential to determine drivers of 

extreme events and to predict changes under altered climate conditions. This is particularly 

true for cold region flooding where independent shifts in both precipitation and temperature 

can have significant influence on high flows. This study explores changes in the magnitude 

and the timing of streamflow in 18 Swedish sub-arctic catchments over their full record 

periods available and a common period (1990-2013). The Mann-Kendall trend test was used 

to estimate changes in several hydrological signatures (e.g. annual maximum daily flow, mean 

summer flow, snowmelt onset). Further, trends in the flood frequency were determined by 

fitting an extreme value type I (Gumbel) distribution to test selected flood percentiles for 

stationarity using a generalized least squares regression approach.  

Results highlight shifts from snowmelt-dominated to rainfall-dominated flow regimes with all 

significant trends (at the 5% significance level) pointing towards (1) lower magnitudes in the 

spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean 

summer flows. Decreasing trends in flood magnitude and mean summer flows suggest 

widespread permafrost thawing and are supported by increasing trends in annual minimum 

daily flows. Trends in selected flood percentiles showed an increase in extreme events over 

the full periods of record (significant for only four catchments), while trends were variable 

over the common period of data among the catchments. An uncertainty analysis emphasizes 

that the observed trends are highly sensitive to the period of record considered. As such, no 

clear overall regional hydrological response pattern could be determined suggesting that 

catchment response to regionally consistent changes in climatic drivers is strongly influenced 

by their physical characteristics.  

 

Key words: flood generation, Sweden Sub-Arctic, trend analysis, Mann-Kendall test, Gumbel 

distribution  
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1 Introduction 

Cold environments are complex in that their hydrological systems interact with both climate 

variables and the cryosphere. Our understanding of drivers and effects of climate change on 

these systems is still limited, especially in terms of extreme events related to water resources 

such as floods and droughts. For flood extremes, this is worrisome as northern landscapes 

become more densely populated calling for risk mitigation and management strategies that 

can remain viable under a changing climate. Because there is growing concern about 

increased frequency and severity of extremes, the understanding of hydrological functioning 

and responses in cold regions is needed (Kundzewicz et al., 2014).  

Recent studies have shown that flood extremes are shifting due to climate change but that 

changes vary with location (e.g. Burn et al., 2010; Wilson et al., 2010; Hall et al., 2014; 

Kundzewicz et al., 2014). Across Canada, for example, trends towards decreasing flood 

magnitudes and earlier flood occurrences have been detected for snowmelt-dominated 

catchments (Cunderlik and Ouarda, 2009; Burn et al., 2010). An ongoing shift in flow regime 

from snowmelt-dominated to rainfall-dominated coupled to the development of a bi-modal 

flow regime with two peaks in the annual hydrograph (one in late spring due to snowmelt and 

one in late summer due to rainfall events) has been found both in North America and northern 

Europe (Cunderlik and Ouarda, 2009; Dahlke et al., 2014). With regards to the magnitude and 

the occurrence of floods, variable spatial and temporal patterns have been detected for 

northern Europe (Wilson et al., 2010; Dahlke et al., 2012; Hall et al., 2014). Wilson et al. 

(2010) and Fleming and Dahlke (2014) showed that trends in annual and seasonal streamflow 

as well as changes in extreme events can be linked to precipitation and temperature trends, 

whereas the signal induced by temperature seems to be more clearly reflected in streamflow 

series. Consistent with this, increasing trends in minimum flows have been observed across 
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much of northern Sweden emphasizing the importance of the cryosphere on hydrological 

system’s response (e.g. Dahlke et al., 2012; Sjöberg et al., 2013).  

Concurrent with these changes, climate in northern Sweden has changed over the 19th 

century. Mean annual air temperature has increased in general and, over the last century, 

fluctuations have been present (van der Velde et al., 2013). Increasing air temperatures have 

been measured in northern Sweden at the beginning of the 20th century until the early 1940s, 

followed by a decrease until the 1970s and an increase ever since to values higher than in the 

1930s (Lindström and Alexandersson, 2004; Callaghan et al., 2010). The increase in air 

temperature is most pronounced in winter, whereas the temperature in summer did not rise 

significantly (Callaghan et al., 2013). Increasing extreme winter temperatures have been 

detected leading to enhanced snowmelt during winter and trends towards earlier snowmelt 

(Callaghan et al., 2010; Wilson et al., 2010; Callaghan et al., 2013; Hannaford et al., 2013). 

Mean annual and summer precipitation along with the variability of extreme precipitation 

events have constantly increased over the last century in northern Sweden (Lindström and 

Alexandersson, 2004; Callaghan et al., 2010). Enhanced winter precipitation, which mainly 

falls as snow, has been reported in the late 1980s and 1990s, whereas snow depth increased 

until the 1980s, but has since then decreased (Lindström and Bergström, 2004; Holmlund et 

al., 2005; Callaghan et al., 2013). Similarly, snow duration decreased significantly over the 

last century (Callaghan et al., 2013; Arheimer and Lindström, 2015).  

Due to the complexity of cold region hydrological systems, however, a catchment’s response 

can vary depending not only on climate forcing but also on catchment properties. As shown 

by previous studies, a region with a uniform climatic input can develop different streamflow 

responses depending on the state and the distribution of permafrost, storage capacity, glacial 

coverage, soil properties and a catchment’s geomorphology and elevation (e.g. Birsan et al., 

2005; Carey et al., 2010; Lyon et al., 2010; Walvoord et al., 2012; Tetzlaff et al., 2015). The 
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cryosphere in general and permafrost in particular have significant impact on streamflow in 

cold environments by buffering the hydrograph through enhanced subsurface flow causing an 

increase in winter base flow and a decrease in spring flood magnitude (Dahlke et al., 2012; 

Walvoord et al., 2012; Sjöberg et al., 2013). The discontinuous permafrost zone is particularly 

important for a catchment’s streamflow response due to the significant ice content in the 

ground, which influences infiltration and transit times (Lyon et al., 2010; Tetzlaff et al., 

2015). Furthermore, snow is a significant feature of cold regions, where snow depth as well as 

snow duration play a crucial role for different hydrological signatures such as timing and 

magnitude of the spring flood, but also onset of snowmelt (e.g. Burn et al., 2010). Since these 

characteristics can differ on a local scale, variable streamflow responses on catchment scales 

can develop (e.g. Dahlke et al., 2012; Fleming and Dahlke, 2014).  

Owing to the complexity of cold environments, a better understanding of the hydrology in 

sub-arctic catchments is needed. Decadal scale variability caused by atmospheric circulation 

such as the North Atlantic Oscillation brings about the need for long-term trend analysis to 

detect actual trends instead of natural variability in the system (Hannaford et al., 2013). This 

study focuses on examining trends and responsible mechanisms in the generation of high flow 

extremes (floods) in cold environments and their interactions with climate. Following the 

methodology in Dahlke et al. (2012) an emphasis is placed on changes in high flow extremes 

with consideration of trends and patterns across a range of flow characteristics. The goal of 

this study is to determine whether there are consistent regional patterns of change in 

streamflow records across the Swedish Sub-Arctic. This is accomplished by investigating 18 

sub-arctic catchments in northern Sweden for changes in their hydrology. The consistency (or 

lack thereof) in spatial patterns of flooding has the potential to yield information about the 

evolution of hydrological responses across cold regions in general and northern Sweden 

specifically.  
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2 Methods 

2.1 Study area 

This study explored changes in 18 unregulated catchments located in the Swedish Sub-Arctic 

at latitudes ranging from 65 and 69° N (Figure 1). The catchments considered have an area 

ranging from 100 to 10,000 km2 and a mean elevation of 720 m a.s.l. (Table 1). Northern 

Sweden is characterized by the Scandinavian mountain range in the west and the Baltic Sea in 

the east. The Scandinavian mountain range denotes the border to Norway and has elevations 

up to about 2100 m a.s.l. in Sweden. The catchments considered all drain towards the Baltic 

Sea with the Scandinavian mountain range functioning as the regional water divide.  

The glacial coverage in each of the catchments was estimated to be less than 2% of the 

catchments area (SMHI, 2013) and therefore not considered further in this study. The 

catchments are located in the continuous, discontinuous, sporadic or isolated permafrost zone, 

depending on latitude and elevation (Christiansen et al., 2010). The vegetation in the Swedish 

Sub-Arctic is mainly characterized by birch forests, tall shrubs, meadow, heath, and wetlands 

(Callaghan et al., 2013). These vegetation compositions are changing due to increasing air and 

soil temperatures and the thawing of permafrost resulting in an increase in tall shrubs and 

wetland graminoid vegetation (Callaghan et al., 2010). Northern Sweden is characterized by a 

cold and humid climate. The catchments considered have a mean annual air temperature 

between 0 and -8 °C with the lower values at higher elevations and latitudes. Above-average 

mean annual air temperatures have been reported in northern Sweden over the last decade (0.2 

to 2.8 °C higher than multi-annual average 1961 – 1990) (SMHI, 2014a). Precipitation varies 

on an east-west gradient with annual values up to 2000 mm/year in the west (mountainous 

areas) and 500 to 700 mm/year in the east. Over the last decade, mean annual precipitation 

values varied year to year with ranges from 80 to 170% compared to the multi-annual average 
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1961 – 1990 depending on year and location (SMHI, 2014b). Years with above-average mean 

annual precipitation were in the majority. 

Streamflow in northern Sweden is mainly snowmelt-dominated, with peak streamflow 

occurring in late spring and summer (May to July) when about half the annual streamflow 

occurs (Lindström and Bergström, 2004). The spring flood is approximately double the 

volume of the autumn flood caused by rainfall events (Arheimer and Lindström, 2015). 

Streamflow in northern Sweden can vary substantially at decadal scales as indicated by both 

the dry period in the 1970s and the wet period starting in the mid-1990s. Further, a higher 

than average increase in extreme values was reported over the entire 20th century starting in 

the 1990s with large floods both in 1995 and 2000 (Lindström and Bergström, 2004). 

Especially the flood in 1995 caused by enhanced winter precipitation was remarkable in 

northern Sweden, since it occurred in most catchments across the region (Lindström and 

Bergström, 2004; Holmlund et al., 2005). A loss in lake ice and a decrease in ice duration 

were reported over the last century, which affects air temperature, vegetation and streamflow 

(Lindström and Bergström, 2004; Callaghan et al., 2013). Lake ice and especially ice 

jamming have an influence on the snowmelt flood in spring (Lindström and Bergström, 

2004).  

2.2 Data and trend statistics 

Daily streamflow time series of at least 24 years (1990 – 2013) of continuous measurements 

were acquired from the Swedish Meteorological and Hydrological Institute (SMHI, 2013). 

The total length of record available for all catchments varies between 24 and 103 years (Table 

1) and corresponds to the full period of record of the time series considered. Time series were 

tested for trends using the non-parametric, rank-based Mann-Kendall trend test (Douglas et 

al., 2000; Helsel and Hirsch, 2002; Yue et al., 2002). Based on the assumption that the time 

series does not show serial correlation this test determines whether a time series shows a 
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significant trend without specifying whether this trend is monotonic or linear (Helsel and 

Hirsch, 2002; Clarke, 2013). Time series were tested for serial correlation by applying the 

Durbin-Watson test prior to the Mann-Kendall trend test to avoid false detections of trends 

(Durbin and Watson, 1950; Durbin and Watson, 1951; Burn et al., 2002; Helsel and Hirsch, 

2002).  

Similar to Dahlke et al. (2012) we considered the following hydrological parameters: annual 

maximum daily streamflow, which represents the flood magnitude, and the date of the annual 

maximum daily streamflow, which represents the flood occurrence. Further, annual minimum 

daily flow, mean summer flow (June to August), date of the snowmelt onset and date of the 

center of mass were assessed. Parameters associated with a date are referred to by the day of 

the year (DOY). Snowmelt onset was determined using the algorithm for “spring pulse” onset 

of streamflow developed by Cayan et al. (2001), which is a characterization of the shape of 

the hydrograph. The flow regime of a catchment can be determined and shifts therein can be 

detected using snowmelt onset (Stewart et al., 2005). The center of mass indicates the day of 

the year, when the cumulative streamflow reached 50% of the total annual streamflow and is 

an indicator for the shape of the hydrograph and thus the timing of when the majority of flows 

occur within the year (Stewart et al., 2005). A shift in the flow regime can be detected 

calculating the center of mass, which made it a widely used indicator to relate snowmelt to 

climate variability and change (e.g. Stewart et al., 2005; Whitfield, 2013). Whitfield (2013) 

pointed out that the center of mass as indicator for changes in the timing of the snowmelt 

caused by a change in temperature is only useful for pronounced hydrological regimes such as 

those associated with snowmelt-dominated regimes. To detect evident changes in the actual 

melting both the approaches for snowmelt onset and center of mass should be addressed 

(Stewart et al., 2005). This highlights that a change only in spring pulse onset or center of 

mass does not compulsory show a change in the flow regime caused by a change in 

temperature. Because the center of mass approach is sensitive to minimum flows and 
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precipitation during winter it is more likely to indicate variations in the annual streamflow 

instead of a change in the timing of streamflow (Whitfield et al., 2013).  

The Mann-Kendall trend test was performed for all catchments for i) a common period 

ranging from 1990 – 2013 and ii) the full period of record available for each catchment using 

a 95% confidence interval (2-sided). To allow for direct comparison between the catchments, 

approximate rates of change per decade were assessed by fitting linear regressions to the data 

series.  

2.3 Flood frequency analysis 

To assess flood frequency, an extreme value type I distribution (Gumbel distribution) was fit 

to all annual flood peaks for the catchments using the method of moments (Vogel, 1987; 

Stedinger et al., 1993; Loucks et al., 2005). The Gumbel distribution has the cumulative 

distribution function 

 ����� = exp	{− exp 
− �����
� �} (1) 

where X is a random variable, x is a possible value of X, � is the location parameter calculated 

using �� = 	� + 0.5772� and α is the scale parameter calculated using ��� = ����/6,	where 

µX is the mean and ��� the variance of the data set (Gumbel, 1941; Gumbel, 1954; Loucks et 

al., 2005). The Gumbel distribution fitting to all annual flood peaks was done for each 

catchment over the full periods of record available. Model adequacy of the fitted Gumbel 

distribution was tested applying the Kolmogorov-Smirnov test for goodness-of-fit at 95% 

confidence interval, which provides bounds within all observations should fall (Smirnov, 

1948; Chowdhury et al., 1991). The goodness-of-fit was further tested by applying Filliben’s 

Probability Plot Correlation Coefficient (PPCC) test at a significance level of 5%, which 

assesses the correlation between the ordered observations and the corresponding fitted 
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quantiles of the distribution, a measure of the linearity of the probability plot (Filliben, 1975; 

Chowdhury et al., 1991).  

To explore changes in the flood percentiles over the full record periods, selected flood 

percentiles were tested for stationarity using 10-yr moving windows. The 50th, 90th, 95th, 

98th and 99th percentiles were selected, which correspond to a flood with a return period of 2, 

10, 20, 50 and 100 years, respectively. For each window, a Gumbel distribution was fit to all 

flood peaks within the 10-yr window and the goodness-of-fit of the fitted distribution was 

likewise tested using the PPCC test. Trends in each flood percentiles over time were estimated 

by fitting a generalized least squares (GLS) regression model using a maximum likelihood 

estimator (Fox and Hartnagel, 1979). Serial autocorrelation in the time series was determined 

applying the Durbin-Watson test (Table 2), which quantifies the serial autocorrelation based 

on the residuals of the regression model (Fox, 2002). An autoregressive moving average 

model (ARMA(2,0) structure) was fit to the errors in the residuals of the GLS model to 

account for autocorrelation in the residuals of the moving windows. The ARMA(2,0) 

structure specifies that only a second order autoregression process was fit to the data. The 

order of the AR process was determined using the autocorrelation function (ACF) and the 

partial autocorrelation function. A sinusoidal decay in the partial ACF with a positive first and 

a negative second spike, as detected for the time series, is indicative for an AR(2) process 

(Fox, 2002). Likewise, a 95% confidence interval was applied.  

3 Results 

3.1 Trends in hydrological signatures  

Linear rates of change per decade were determined for selected hydrological parameters 

(Table 3). For the flood magnitudes only one catchment (Stenudden, p = 0.02, Figure 2a) 

showed a significant (decreasing) trend over its full record period. Across all catchments, 



  

11 

linear rates of change ranged from -7.4 to +4.3% per decade over the full periods of record, 

and -10.4 to +12.4% over the common data period of 1990 to 2013, whereby no significant 

trends were detected. It is interesting that most of the catchments showed one or more of their 

largest magnitude floods in the recent two decades (years 1995, 2004, 2005, 2012), which is 

consistent with previous work (e.g. Lindström and Bergström, 2004). The Stenudden and 

Gauträsk catchments (Figure 2) demonstrated signs of the large flood in 1995 which was 

experienced by nine of the catchments. These catchments are all located in the south of the 

study area or characterized by an above-average mean elevation. The long record period of 

the Stenudden catchment further showed high flows in the 1920s, whereas the Gauträsk 

catchment showed an increasing but not significant trend (p = 0.32) with remarkable high 

flows in the years 1995, 2005, 2010 and 2013.  

Over the full periods of record, the flood occurrence showed a significant decreasing trend 

representing an earlier occurrence for two catchments (Laisvall, p = 0.03 and Solberg, p = 

0.04). The median date of the annual flood was June 12 (DOY = 163) and June 5 (DOY = 

156) for the Laisvall and the Solberg catchments, respectively. For almost all catchments non-

significant decreasing trends were detected. Note, this excludes Abisko, p = 0.96 and 

Mertajärvi, p = 0.75, where increasing trends were found. Catchments with a decreasing trend 

in flood occurrence showed rates of change varying from 0.3 to 7.7 days per decade, and 0.5 

and 2.6 days per decade for the Abisko and Mertajärvi catchments, respectively. Considering 

all catchments, the median date of the annual flood was in June (DOY = 143 to 180) with 

ranges from the beginning of May (DOY = 120) to the beginning of October (DOY = 283). 

Over the common period, a significant (decreasing) trend in flood occurrence was detected for 

three catchments (Karesuvanto, p = 0.03, Laisvall, p = 0.03 and Stenudden, p = 0.01). Almost 

all catchments showed decreasing trends in flood occurrence (exceptions are the Karats, p = 

0.49 and Mertajärvi catchments, p = 0.84), where linear rates of change were 1.6 to 10.6 days 

per decade. Linear rates of change of 6.7 and 14.0 days per decade were detected for the 
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Karats and Mertajärvi catchments, respectively, which showed increasing trends in flood 

occurrence. The corresponding median flood occurrence dates were June 8 (DOY = 159) and 

May 25 (DOY = 145) for the Karats and the Mertajärvi catchments, respectively. Among all 

catchments the median annual flood occurrence date was in June (DOY = 145 to 182) and 

ranged from the beginning of May (DOY = 120) to the beginning of October (DOY = 283).  

The results of the mean summer flow statistics showed the most consistent pattern with all 

catchments exhibiting decreasing trends (significant for ten catchments) over the common 

period. Linear rates of change ranged from 6.6 to 26.3% less mean summer flow per decade, 

whereas six catchments experienced a decrease in mean summer flow of more than 20% per 

decade. All these catchments are located in the south of the study area or a combination of 

small area (< 1500 km2) and above-average mean elevation. Two catchments (Laisvall, p = 

0.01 and Övre Abiskojåkk, p = 0.01) further showed a significant decreasing trend in mean 

summer flow over the full periods of record. Linear rates of change over the full periods 

among all catchments ranged from a decrease in mean summer flow of 22.5% to an increase 

of 3.8%, whereas bigger changes in mean summer flow were detected for the catchments 

showing a decreasing trend.  

The analysis on snowmelt onset dates resulted in decreasing trends for most of the catchments 

over the full record periods (exception Tärendö 2, p = 0.56), with significant trends for eight 

catchments. Linear rates of change per decade were 0.2 to 4.8 days for catchments with earlier 

onset of snowmelt (1.6 days later for Tärendö 2). Two catchments (Abisko, p = 0.03 and Övre 

Abiskojåkk, p = 0.02) showed a significant decreasing trend in the date of snowmelt onset 

over the common period. Decreasing trends were detected for almost all catchments 

(exceptions Männikkö, p = 0.80 and Tärendö 2, p = 0.43, which are located most eastwards). 

Linear rates of change varied from 0.4 to 7.4 days per decade for catchments with earlier 

snowmelt onset and 0.8 to 2.3 days per decade for positive trends.  
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For the hydrograph center of mass over the full periods of record, only one catchment 

(Stenudden, p = 0.02) showed a significant change towards an earlier center of mass. Linear 

rates of change varied from 0.005 to 1.5 days for catchments with negative trends and 0.1 to 

1.9 days for catchments with positive trends. Over the common period of record, no 

significant trends were detected for the change in date of the center of mass. Linear rates of 

change were less than one day per decade for an earlier and 0.2 to 5.3 days per decade for a 

later center of mass.  

Trends in annual minimum daily flows resulted in significant increasing trends for seven 

catchments over their full record periods, whereas no catchment showed a decreasing trend. 

At non-significant levels, both increasing and decreasing trends were detected. Linear rates of 

change ranged from -6.4 to +13.0% per decade. Over the common period of record, only the 

Stenudden catchment showed a significant (decreasing) trend in annual minimum daily flow 

with a linear rate of change of -13.9% per decade. Non-significant trends were ranging from -

25.1 to +7.1% per decade.  

3.2 Flood frequency analysis 

The Gumbel distribution provided a good fit for all catchments (Figure 3). The lowest value 

resulting from the PPCC test was r = 0.959 for the Skirknäs catchment, which is above the 

critical value assuming a significance level of 5% (Loucks et al., 2005). The test for 

stationarity of the selected flood percentiles using 10-yr moving windows also matched the 

Gumbel distributions fitted to each window well. The probability plot correlation coefficients 

estimated for each catchment and the 10-yr window were all above the critical value except 

for the Skirknäs catchment for which r = 0.735 in one occasion was considered as acceptable 

since the mean r-value over all 10-yr windows was r = 0.914 for this catchment.  
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When analyzing the stationarity of selected flood percentiles, four catchments showed a 

significant trend over the full periods of record (Table 4, Figure 4). A significant increasing 

trend in the 10, 20, 50 and 100-yr flood percentiles was detected for the Gauträsk (p < 0.01), 

Kaalasjärvi (p = 0.04), Övre Abiskojåkk (p < 0.04) and Tängvattnet (p < 0.01) catchments 

(Figure 4a,e). All these catchments are characterized by an area of less than 1500 km2 and an 

above-average mean elevation. The Solberg catchment showed a significant increasing trend 

in the percentiles of the 10 and 20-yr floods (p = 0.03 and p = 0.05, respectively). There was a 

significant decreasing trend in the 2-yr flood percentile, which represents the median flow, for 

two catchments (Männikkö, p = 0.05 and Stenudden, p = 0.02). Among all catchments, there 

were both increasing and decreasing trends at non-significant levels in the flood percentiles.  

For the common period 1990 – 2013, increasing trends for at least the 50-yr and the 100-yr 

flood percentiles were detected for three catchments (Gauträsk, p < 0.04, Övre Abiskojåkk, p 

< 0.03 and Tängvattnet, p < 0.03) (Figure 4b,f). The Männikkö catchment showed a 

significant increasing trend for the 10 and the 20-yr flood percentiles (p = 0.03 and p = 0.05, 

respectively), whereas a significant increase only in the 10-yr flood percentile was detected 

for the Junosuando catchment (p = 0.02). Over the common period, three catchments showed 

a significant decreasing trend in the 10, 20, 50 and 100-yr flood percentiles (Abisko, p < 0.01, 

Kaalasjärvi, p < 0.01 and Stenudden, p < 0.01). A significant increasing trend in the 2, 10 and 

20-yr flood percentiles was detected for the Karats catchment (p = 0.01, p = 0.04 and p = 

0.05, respectively). Additionally, the Skirknäs catchment showed a significant decreasing 

trend in the 2-yr flood percentile (p = 0.01).  

Considering the median flow, which is represented by the 2-yr flood, the results of the flood 

frequency analysis agree with the results of the trend analysis on the flood magnitude. The 

median flow showed both increasing and decreasing trends at non-significant levels, whereas 

all significant trends were decreasing, indicating changes towards lower flows. The Stenudden 



  

15 

catchment, the only catchment with a significant trend for the flood magnitude (p = 0.02, 

Figure 2a), showed a significant decrease in the 2-yr flood over both the full record period and 

the common period (p = 0.02 and p < 0.01, respectively).  

4 Discussion 

4.1 Long-term changes in catchment hydrology 

Our results reflect the complexity of the hydrological system and interactions with climate 

variables and the cryosphere. Previous studies have shown that catchments located within a 

region of similar climate forcing can exhibit heterogeneous streamflow responses suggesting 

that climate is not the only driver influencing a catchment’s streamflow (e.g. Birsan et al., 

2005; Carey et al., 2010; Dahlke et al., 2012; Fleming and Dahlke, 2014). This difference in 

streamflow variability or catchment response to uniform climate forcing can be caused by 

multiple variables such as snow duration, snow cover, and the state of permafrost affecting 

the processes that translate rainfall into runoff in these hydrological systems (e.g. Cayan et al., 

2001; Stewart et al., 2005; Cunderlik and Ouarda, 2009; Walvoord et al., 2012). Whereas only 

a few catchments showed significant trends in the streamflow parameters explored (Table 3), 

those showing significant trends exhibited consistent patterns across all 18 catchments. These 

patterns included a negative slope in the mean summer flows and earlier timings for snowmelt 

onset and center of mass. The diversity in trends, with only a few catchments exhibiting 

significant trends, is consistent with previous trend studies conducted in northern Europe, 

which detected high variability in trends at regional scales, indicating that there is 

considerable variability in the processes and first order controls that locally influence the 

hydrology in these catchments (Burn et al., 2010; Wilson et al., 2010; Hannaford et al., 2013; 

Hall et al., 2014).  
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Especially the loss of permafrost reported in recent years appears to have a significant 

influence on a catchment’s hydrology by increasing the storage capacity and altering the 

shape of the hydrograph through enhanced winter flows (e.g. Callaghan et al., 2013; Sjöberg 

et al., 2013). Increasing trends in annual minimum daily flows, which are influenced by 

winter precipitation and the state of permafrost, were found for most catchments in this study 

and are consistent with findings by Sjöberg et al. (2013). Increasing trends for annual 

minimum daily flows and mean summer flows are consistent with permafrost-thaw-induced 

changes in streamflow. Numerous studies in the Swedish Sub-Arctic have shown an 

accelerated degradation of permafrost and a thickening of the active layer causing higher 

storage capacity and increasing subsurface flows due to enhanced thawing of ground ice 

creating new flow paths in the ground which dampen the hydrograph (e.g. Åkerman and 

Johansson, 2008; Dahlke et al., 2012; Callaghan et al., 2013; Sjöberg et al., 2013; Fleming 

and Dahlke, 2014).  

Snow, in specific snow duration and snow depth, have further a profound influence on a 

catchment’s flow characteristics in cold regions by affecting for example storage capacity, 

snowmelt onset and timing and magnitude of the snowmelt flood trough changes in the albedo 

and insulating effects on the ground (particularly in permafrost areas) (e.g. Stewart et al., 

2005; Åkerman and Johansson, 2008; Andrews et al., 2011; Callaghan et al., 2013). Our 

results for trends in snowmelt onset are consistent with findings from other studies, which 

observed an earlier onset of snowmelt in North America, northern Europe and Switzerland 

(e.g. Birsan et al., 2005; Stewart et al., 2005; Braberts and Walvoord, 2009; Callaghan et al., 

2013). Likewise, a significant trend towards an earlier onset of snowmelt was found for eight 

catchments over their full periods of record (Table 3), which is consistent with increasing 

trends in precipitation and air temperature showing an accelerated increase in the winter 

season (Callaghan et al., 2013). Numerous studies computed in North America and northern 

Europe linked changes in the timing of snowmelt onset to the increase in winter precipitation 
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and air temperature leading to enhanced snowmelt during winter (e.g. Birsan et al., 2005; 

Stewart et al., 2005; Cunderlik and Ouarda, 2009; Burn et al., 2010).  

4.2 Changes in flood extremes and shift in flow regime 

The absence of an overall pattern in flood magnitude and flood occurrence trends is consistent 

with previous studies on streamflow in northern Sweden, which likewise found inconsistent 

trends in these parameters. Such a lack of consistent patterns could be attributed, at least in 

part, to the increase in floods seen in recent years for some of the catchments influencing the 

slope of the trend (Wilson et al., 2010; Hannaford et al., 2013; Hall et al., 2014). Woo and 

Thorne (2008) concluded that changes in the flood magnitude are likely driven by winter 

precipitation whereas air temperatures during winter influence the flood occurrence. This is 

further corroborated by the fact that ice break up was occurring earlier in recent years due to 

increasing winter air temperatures and enhanced streamflow, which further alters the 

streamflow peak during snowmelt explaining the decreasing trends in flood magnitude (Woo 

and Thorne, 2008; Callaghan et al., 2013).  

Significant, decreasing trends in flood magnitude, flood occurrence and onset of snowmelt 

(Table 3) suggest that Swedish Sub-Arctic catchments will likely experience a shift from the 

more pronounced snowmelt-dominated to a more dampened rainfall-dominated flow regime 

within the next decades, which agrees with modeling results across much of Sweden (e.g. 

Teutschbein et al., 2010; Arheimer and Lindström, 2015). With the snowmelt floods showing 

a decreasing trend and the increasing trend in autumn floods a bi-modal flood regime is likely 

to develop as detected in sub-arctic catchments in Canada (Cunderlik and Ouarda, 2009). 

Since the spring flood, caused by snowmelt, is approximately twice the autumn flood (caused 

by rainfall events) in northern Sweden a seasonal analysis would need to be applied on the 

annual maximum daily flows separating the floods in spring and autumn in order to explore 

trends in the seasons separately (Stahl et al., 2010; Arheimer and Lindström, 2015). This was 
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however outside the scope of this current study but highlights a future potential line of 

research.  

The hypothesis of a shift in flow regime is further strengthened by the contrasting trends 

found in the annual minimum daily flows and the annual maximum daily flows, both of which 

indicate dampening of the hydrograph and a shift in flow regime (Dahlke et al., 2012). While 

annual minimum daily flows are influenced by winter precipitation, annual maximum daily 

flows are driven by the snow accumulation during winter and subsequent spring snowmelt or 

by heavy rainfall events during summer and autumn (Cunderlik and Ouarda, 2009; Burn et al., 

2010; Sjöberg et al., 2013; Hall et al., 2014).  

4.3 The effect of record length on statistical results 

Results from our study indicate that the total record length in general and particularly the 

starting and ending date potentially have a large impact on the outcomes of the trend analysis, 

which opens the need for more detailed investigation of long records and multi-temporal 

approaches, especially when linking streamflow to multi-decadal climate fluctuations caused 

by atmospheric circulations (Khaliq et al., 2009; Hannaford et al., 2013). For example, when 

analyzing the streamflow record of the Stenudden catchment, which offered one of the longest 

periods of record (starting in 1916), large variability in annual maximum daily flows was 

observed across decadal time scales. That catchment showed a wet period with high flood 

magnitudes in the 1920s and the 1990s, whereas in the 1950 and 1960s annual maximum 

daily flows were noticeably lower. That also translated into significant higher (lower) annual 

maximum daily flows during those periods as indicated by the higher flood magnitudes 

observed in 1995, 2004/2005 and 2011/2012/2013 for most of the catchments (Figures 2 and 

3). Similar inter-decadal variability in streamflow signatures was observed by Lindström and 

Bergström (2004), who analyzed 61 streamflow series throughout Sweden. In contrast to the 

Stenudden catchment, the Solberg catchment showed a significant increase in the flood 
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percentiles (for the 10 and the 20-yr floods), although this catchment contained a long period 

of record starting in 1911. The trend arises from the absence of a large flood in the 1920s, 

whereas the flood in the year 1995 showed a return period of 180 years (calculated over the 

period 1911-2013) (Figure 4c,d).  

Such variability in flood magnitudes and mean annual flows have a profound influence on the 

trend statistics if the analyzed time series started or ended in a significantly drier or wetter 

period than the long-term average (Jones, 2011; Hannaford et al., 2013). For example, the 

remarkable flood of 1995 was likely the main reason why most catchments showed significant 

decreasing trends over the common period (1990 – 2013), including the Kaalasjärvi 

catchment, which showed a significant increasing trend in the flood percentiles over the full 

record period (1947 – 2013). For catchments that exhibited a decreasing trend over the 

common period the flood in 1995 was either the largest magnitude event or the only flood 

event in recent years. Catchments that showed an increasing trend over both the full record 

periods and the common period of record were characterized by at least one extreme flood in 

the years 2010-2013 causing the positive slope indicating an increase in extreme events.  

This is especially true for the high-magnitude event happening in the Övre Abiskojåkk 

catchment in 2012. That particular event likely contributes to the explanation for the 

difference seen between our flood frequency analysis conducted for the Övre Abiskojåkk 

catchment and the findings presented by Dahlke et al. (2012) for the same catchment (Figure 

4a,b). While Dahlke et al. (2012) found significant decreasing trends (p < 0.02) in all flood 

percentiles (2, 10, 20, 50 and 100-yr floods) over the record period 1919-2009, increasing 

trends were detected in this study for the record period 1986-2013 (p < 0.04) in all flood 

percentiles except the 2-yr flood. Considering the record period investigated by Dahlke et al. 

(2012), their conclusions could be corroborated (data not shown). These contrasting trends 
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obtained considering different record periods emphasize the importance of the record length 

to distinguish actual trends from natural variability in time series.  

4.4 On the spatial similarity of observed changes 

The few significant trends found in this study highlight the importance of physical catchment 

properties on the generation of runoff. When analyzing the spatial distribution of catchments 

with significant trends in extreme events over the full periods of record (Gauträsk, 

Kaalasjärvi, Övre Abiskojåkk, Tängvattnet and Solberg), it is notable that all these catchments 

are located along the Norwegian border in the Scandinavian mountain range (Figure 1). These 

catchments appear to manifest a clear signal for extreme events, while trends are buffered for 

larger or downstream catchments (nested systems) due to competing catchment-hydroclimatic 

interactions (Pattison et al., 2014). Further, all catchments with significant trends in flood 

extremes show an above-average mean elevation and their area is smaller than 1500 km2 

(Table 1). The catchments’ close proximity to the Scandinavian mountain range in 

combination with the state of permafrost likely influences the hydrology. These findings are 

consistent with Birsan et al. (2005), who positively correlated streamflow to the catchment’s 

elevation in Switzerland. Winter precipitation falling as snow is especially important in these 

catchments as it determines the snowmelt flood in spring. This further concurs with our 

results for the trend analysis on flood magnitude and summer flows, where significant trends 

were detected for catchments with high maximum elevation (> 2000 m a.s.l.) or a more 

southern location within the study area.  

Altogether the spatial patterns of our results suggest that shifts in large-scale atmospheric 

circulation patterns are likely influencing changes in extreme events and variability in 

precipitation and temperature, especially during winter (Birsan et al., 2005). Additionally, 

catchment properties such as the state of permafrost, which influences a catchment’s water 

storage capacity (especially for the catchments located in the south of the study area), a 



  

21 

catchment’s elevation (both mean and maximum), and its location with respect to the 

Scandinavian mountain range have an influence on the exhibition of significant trends (e.g. 

Walvoord et al., 2012; Dahlke et al., 2014; Tetzlaff et al., 2015). Whereas other studies (e.g. 

Cunderlik and Ouarda, 2009; Wilson et al., 2010; Burn et al., 2010) found similar 

hydrological response patterns across regions with comparable climate input and catchment 

characteristics our results showed that these factors are all interconnected making the 

prediction of how climate trends will manifest themselves in cold regions difficult.  

5 Concluding remarks 

Our study showed that clear drivers of changes in hydrological systems in the Swedish Sub-

Arctic are difficult to identify due to the complexity of cold climate systems and landscape 

interactions. The hydrology is determined by changes in air temperature and precipitation at 

seasonal, annual and multidecadal time scales, caused by large-scale atmospheric circulation 

patterns over the North Atlantic. But additionally to the climate variables, catchment 

properties such as the state of permafrost, storage capacity and mean elevation also seem to 

have a significant impact on runoff generation and have to be taken into account analyzing 

cold region hydrology.  

To be able to improve knowledge on cold climate hydrological systems such as in northern 

Sweden, analyses of climate variables such as air temperature, precipitation in combination 

with catchment variables such as permafrost are desired. Development of approaches that are 

capable of, for example, addressing the influence of permafrost thaw in spring and its 

influence on the spring flood is of special interest in cold regions. Further, cross-correlations 

should be applied between changes in the hydrology, climate variables and atmospheric 

circulations on both annual and seasonal scales (Stahl et al., 2010; Wilson et al., 2010; Dahlke 

et al., 2012). Hannaford et al. (2013) suggested improvements for trend analyses on 
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hydrological purposes using a multi-temporal approach to be able to get an appropriate trend 

accounting for multi-decadal variability in climate caused by large-scale atmospheric 

circulations. It is further desired to apply a trend analysis on long (e.g. several decades) 

periods of record to be able to account for the effect of long-term variability on the results of 

trend statistics. Hall et al. (2014) further suggested that a combined approach of data-based 

trend analyses covering the past and models predicting the future is desirable to be able to 

give recommendations for water management strategies. To be truly effective, such analysis 

must also consider the evolution of the landscape and, specifically the cryosphere, in cold 

regions.  
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Table Captions 

Table 1: Properties for the catchments considered in this study. The length of the record 

period represents the full period of record available for each catchment; whereas the numbers 

in brackets represent the number of years with actual data (years with missing data are 

subtracted). The last year considered for all catchments is 2013. 

 

Table 2: Durbin-Watson test results (d-values) determining autocorrelation in the errors of the 

generalized least squares regression model.  

 

Table 3: Linear change rates of trends identified with the Mann-Kendall trend test over the 

full periods of record (left side) and the common (right side) period among the data. Linear 

rates of change were determined by fitting a linear regression line to the data. Relative 

changes (%) are shown for flood magnitude (MAG), mean summer flows (SUF) and annual 

minimum flows (MIN). Changes in flood occurrence (OCC), snowmelt onset (SNO) and 

center of mass (COM) are in days. Trends computed with the Mann-Kendall trend test 

significant at a level of 5% are highlighted in bold. A negative linear rate of change 

corresponds to a decreasing trend and a positive rate of change corresponds to an increasing 

trend.  

 

Table 4: Test for stationarity of selected flood percentiles over both the full record periods 

(left side) and the common period (right part). A moving window analysis with 10-yr 

windows was computed and stationarity was tested by fitting a least squares regression model 

to selected flood percentiles. 2-sided p-values indicating stationarity are shown. Values 

significant at a 5% significance level are highlighted in bold. Increasing trends are indicated 

with a (+), whereas (−) represents decreasing trends. The selected flood percentiles are the 

50th, 90th, 95th, 98th and 99th percentiles, which correspond to a flood with a return period 

of 2, 10, 20, 50 and 100 years respectively and an annual exceedance probability of 0.5, 0.1, 

0.05, 0.02 and 0.01 respectively. 
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Figure Captions 

Figure 1: Map over northern Sweden showing the location of the catchments considered. 

 

Figure 2: Trend analysis on the annual maximum daily streamflow (m3/s) for the a) 

Stenudden and b) Gauträsk catchments. The solid line represents the linear trend over the full 

periods of record, whereas the dashed line represents the linear trend over the common period 

1990-2013. The p-value represents the 2-sided p-value computed with the Mann-Kendall 

trend test. 

 

Figure 3: Probability plots for a) the Övre Abiskojåkk and b) the Gauträsk catchments. 

Quantiles of the fitted Gumbel distribution using Gringorten’s plotting position are plotted 

against the observed values X(i) (m3/s) (Gringorten, 1963). The solid line represents the 

idealized Gumbel distribution and the dashed lines represent the Kolmogorov-Smirnov 

bounds at the 95% confidence level. Exceedance probabilities and return periods are plotted 

on the secondary x and y-axis, respectively. The three floods with the highest return periods 

are labeled. 

 

Figure 4: Trends in the floods with a return period of 2, 10, 20 and 100 years (50th, 90th, 

95th, 99th percentiles) over the full periods of record (left graphs) and the common period 

1990-2013 (right graphs). Trends were estimated fitting a generalized least squares regression 

model using a 10-yr moving window. The solid lines represent the linear trends in the flood 

percentiles and the dashed lines represent the percentile estimates over the full periods of 

record. The Övre Abiskojåkk (a,b), Solberg (c,d) and Tängvattnet (e,f) catchments are shown 

as they exemplify the region. 

 

 

 



  

 

Name  
SMHI 

gauge ID 

Area 

(km
2
) 

Mean 

elevation 

(m a.s.l.) 

Elevation 

range  

(m a.s.l.) 

Start year of 

the record 

Length of 

the record 

period 

(years)  

Abisko 2357 3384 702 332 - 1782 1985 29 

Gauträsk 1630 1177 842 391 - 1499 1954 60 (50) 

Junosuando 4 10248 580 205 - 1975 1968 46 

Kaalasjärvi 1456 1426 871 446 - 2081 1947 67 (56) 

Karats 1403 978 650 404 - 1538 1942 72 

Karesuvanto 10006 3082 560 316 - 1505 1972 42 

Killingi 2159 2351 795 473 - 2074 1976 38 

Laisvall 2414 1534 825 429 - 1595 1990 24 

Lannavaara 5 3865 584 336 - 1346 1923 90 (60) 

Männikkö 11 10038 551 207 - 1975 1915 98 (78) 

Mertajärvi 1780 349 415 342 - 703 1960 54 

Niavve 591 1577 866 300 - 1991 1925 89 

Övre Abiskojåkk 957 969 969 340 - 1782 1986 28 

Skirknäs 2275 317 777 483 - 1243 1981 33 

Solberg 436 1079 783 455 - 1746 1911 103 

Stenudden 37 2423 792 433 - 1862 1916 98 

Tängvattnet 1673 100 774 472 - 1365 1958 56 

Tärendö 2 2358 7452 609 148 - 2086 1985 29 

http://ees.elsevier.com/hydrol/download.aspx?id=971665&guid=7787fc30-d183-4c8a-a225-5e4065fadccf&scheme=1


  

  Full record periods available Common period 1990 - 2013 

Return period 

(years) 
2 10 20 50 100 2 10 20 50 100 

Exceedance 

probability 
0.5 0.1 0.05 0.02 0.01 0.5 0.1 0.05 0.02 0.01 

Abisko 0.46 0.63 0.72 0.81 0.87 1.14 2.08 2.19 2.22 2.20 

Gauträsk 1.06 0.56 0.50 0.46 0.44 1.39 2.04 2.02 1.98 1.95 

Junosuando 0.44 0.46 0.46 0.47 0.47 1.52 1.47 1.30 1.16 1.10 

Kaalasjärvi 0.81 0.52 0.47 0.43 0.41 1.69 2.13 2.08 2.01 1.97 

Karats 0.27 0.31 0.32 0.32 0.32 1.97 1.34 1.29 1.25 1.24 

Karesuvanto 0.36 0.64 0.76 0.87 0.93 1.03 0.91 0.85 0.80 0.77 

Killingi 0.49 0.54 0.54 0.54 0.54 1.00 1.40 1.44 1.46 1.48 

Laisvall 0.74 1.39 1.49 1.56 1.60 0.74 1.39 1.49 1.56 1.60 

Lannavaara 0.24 0.50 0.58 0.65 0.68 0.96 0.73 0.67 0.63 0.60 

Männikkö 0.30 0.28 0.30 0.33 0.34 1.38 1.46 1.24 1.07 0.99 

Mertajärvi 0.62 0.77 0.76 0.74 0.73 0.66 1.25 1.51 1.78 1.94 

Niavve 0.40 0.18 0.16 0.14 0.13 1.48 1.33 1.10 0.94 0.86 

Övre Abiskojåkk 0.71 1.39 1.57 1.74 1.83 0.75 1.34 1.50 1.66 1.75 

Skirknäs 0.55 0.34 0.33 0.33 0.33 1.36 1.23 1.19 1.16 1.14 

Solberg 0.35 0.44 0.40 0.36 0.35 1.20 1.49 1.49 1.49 1.49 

Stenudden 0.21 0.21 0.22 0.23 0.24 1.76 1.72 1.68 1.65 1.63 

Tängvattnet 0.53 0.86 0.90 0.91 0.91 0.76 1.54 1.68 1.78 1.82 

Tärendö 2 0.63 0.82 0.88 0.95 0.98 1.52 1.69 1.70 1.71 1.72 

 

http://ees.elsevier.com/hydrol/download.aspx?id=971666&guid=ead0f52f-e275-40aa-9a23-f9266dbc394a&scheme=1


  

 Full record periods available Common period 1990 - 2013 

MAG 

(%) 

OCC 

(days) 

SUF  

(%) 

SNO 

(days) 

COM 

(days) 

MIN 

(%) 

MAG 

(%) 

OCC 

(days) 

SUF  

(%) 

SNO 

(days) 

COM 

(days) 

MIN 

(%) 

Abisko -0.9 0.5 -1.5 -3.2 -0.7 -1.6 -8.5 -1.6 -9.9 -5.5 -0.3 0.1 

Gauträsk 0.7 -1.2 0.3 -1.4 -0.6 3.5 3.1 -2.9 -23.9 -2.3 0.4 -6.1 

Junosuando 1.7 -0.5 3.1 -2.2 1.3 3.2 7.3 -3.4 -8.4 -2.4 1.3 -15.2 

Kaalasjärvi 0.8 -1.3 1.1 -0.8 0.1 3.8 -1.7 -4.3 -8.6 -1.3 1.9 6.7 

Karats -1.0 -0.5 -1.2 -1.1 0.2 0.5 -7.6 6.7 -6.6 -1.1 5.3 -2.0 

Karesuvanto -5.3 -1.8 -0.6 -0.2 1.4 -1.3 8.0 -9.4 -18.3 -0.8 1.5 -20.5 

Killingi -1.8 -0.3 0.3 -0.9 1.3 13.0 -0.8 -7.2 -14.6 -0.4 2.6 -15.4 

Laisvall -7.4 -7.7 -22.5 -1.6 < -0.1 -6.4 -7.4 -7.7 -22.5 -1.6 < -0.1 -6.4 

Lannavaara -2.0 -1.4 -1.8 -0.9 -0.3 6.7 12.4 -2.9 -13.2 -1.1 -0.3 6.9 

Männikkö -0.8 -1.7 0.2 -0.9 -0.5 1.9 4.0 -10.7 -10.0 0.8 1.5 0.4 

Mertajärvi -1.6 2.6 3.8 -1.5 -0.1 10.0 2.7 14.0 -6.7 -1.0 1.3 7.1 

Niavve -0.1 -1.1 -1.2 -1.0 -0.7 -1.8 -3.8 -7.2 -14.7 -0.9 1.3 2.1 

Övre 

Abiskojåkk 
0.5 -4.9 -14.6 -4.8 1.4 

7.3 
1.8 -7.6 -20.8 -7.4 0.5 

-1.4 

Skirknäs -4.1 -0.4 -6.4 -2.2 -1.5 2.3 -9.5 -5.7 -23.2 -1.7 1.6 -11.1 

Solberg 1.0 -1.5 -0.9 -0.6 -0.6 5.9 -3.5 -6.5 -26.3 -0.4 0.2 -25.1 

Stenudden -2.5 -0.4 -0.7 -1.0 -0.8 7.7 -10.4 -9.8 -12.8 -1.4 0.9 -13.9 

Tängvattnet 1.5 -1.5 1.0 -1.4 -0.9 5.6 3.5 -4.2 -23.7 -2.3 1.3 -6.0 

Tärendö 2 4.3 -0.4 -3.7 1.6 1.9 4.6 1.5 -7.4 -11.0 2.3 2.8 1.9 

 

http://ees.elsevier.com/hydrol/download.aspx?id=971667&guid=74c67b64-8b34-44c0-be7e-f58f060c5e36&scheme=1


  

  Full record periods available Common period 1990 - 2013 

Return period (years) 2 10 20 50 100 2 10 20 50 100 

Exceedance probability 0.5 0.1 0.05 0.02 0.01 0.5 0.1 0.05 0.02 0.01 

Abisko 0.90 () 0.85 () 0.81 () 0.76 () 0.74 () < 0.01 () < 0.01 () < 0.01 () < 0.01 () < 0.01 () 

Gauträsk 0.87 ()  0.01 (+) < 0.01 (+) < 0.01 (+) < 0.01 (+) 0.95 () 0.09 (+) 0.04 (+) 0.02 (+) 0.01 (+) 

Junosuando 0.29 (+) 0.94 (+) 0.95 (+) 0.88 (+) 0.84 (+) 0.15 (+) 0.02 (+) 0.06 (+) 0.10 (+) 0.12 (+) 

Kaalasjärvi 0.44 (+) 0.04 (+) 0.04 (+) 0.04 (+) 0.04 (+) 0.07 () < 0.01 () < 0.01 () < 0.01 () < 0.01 () 

Karats 0.23 () 0.98 (+) 0.91 (+) 0.82 (+) 0.78 (+) 0.01 () 0.04 () 0.05 () 0.06 () 0.06 () 

Karesuvanto 0.14 () 0.22 () 0.23 () 0.27 () 0.31 () 0.46 (+) 0.64 (+) 0.69 (+) 0.75 (+) 0.78 (+) 

Killingi 0.18 () 0.33 (+) 0.19 (+) 0.12 (+) 0.12 (+) 0.58 () 0.65 () 0.65 () 0.66 () 0.67 () 

Laisvall 0.60 () 0.15 () 0.13 () 0.12 () 0.12 () 0.55 () 0.15 () 0.13 () 0.12 () 0.12 () 

Lannavaara 0.45 (+) 0.73 (+) 0.99 () 0.63 () 0.44 () 0.13 (+) 0.07 (+) 0.08 (+) 0.08 (+) 0.08 (+) 

Männikkö 0.05 () 0.48 () 0.63 () 0.71 () 0.74 () 0.75 (+) 0.03 (+) 0.05 (+) 0.07 (+) 0.08 (+) 

Mertajärvi 0.33 () 0.08 () 0.10 () 0.14 () 0.16 () 0.54 () 0.58 () 0.73 () 0.97 (+) 0.69 (+) 

Niavve 0.96 () 0.99 (+) 0.99 (+) 0.99 () 0.99 () 0.07 () 0.21 () 0.39 () 0.52 () 0.58 () 

Övre Abiskojåkk 0.91 (+) 0.04 (+) 0.01 (+) < 0.01 (+) < 0.01 (+) 0.59 (+) 0.16 (+) 0.08 (+) 0.03 (+) 0.01 (+) 

Skirknäs 0.13 () 0.62 (+) 0.52 (+) 0.44 (+) 0.41 (+) 0.01 () 0.20 () 0.31 () 0.41 () 0.48 () 

Solberg 0.19 (+) 0.03 (+) 0.05 (+) 0.06 (+) 0.08 (+) 0.20 () 0.10 () 0.11 () 0.11 () 0.12 () 

Stenudden 0.02 () 0.14 () 0.18 () 0.21 () 0.23 () < 0.01 () < 0.01 () < 0.01 () < 0.01 () < 0.01 () 

Tängvattnet 0.31 (+) < 0.01 (+) < 0.01 (+) < 0.01 (+) < 0.01 (+) 0.40 (+) 0.08 (+) 0.03 (+) 0.01 (+) < 0.01 (+) 

Tärendö 2 0.21 (+) 0.92 (+) 0.83 () 0.61 () 0.50 () 0.60 () 0.14 () 0.10 () 0.08 () 0.08 () 

 

http://ees.elsevier.com/hydrol/download.aspx?id=971668&guid=35877e11-f0c1-4ba7-9f37-9723fbf83925&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=971659&guid=1853dd07-1ff0-42a3-b907-1871360ecaa5&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=971660&guid=b962a35c-1d2c-46b9-b9e0-fff153c620b3&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=971661&guid=bd280027-f2d8-4a8b-a138-c2d5ba50b017&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=971662&guid=e057ba52-97ce-47cc-adfe-fbfab91ec404&scheme=1


  

 Trends in hydrological signatures show variability in cold region catchments 

 Trends indicate shift from snowmelt-dominated to rainfall-dominated flow regime 

 Variability at catchment scale can be explained by catchments’ physical properties 

 Results depend highly on the record period chosen 

 Spatial variability in streamflow reflects the influence of permafrost 

Highlights


