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q-exponential relaxation of the expected avalanche size
in the coherent noise model

S.-R. G. Christopoulos, N. V. Sarlis∗

Department of Solid State Physics and Solid Earth Physics Institute, Faculty of Physics,
School of Science, National and Kapodistrian University of Athens, Panepistimiopolis,

Zografos 157 84, Athens, Greece

Abstract

Recently [Phys. Rev. E 85, 051136 (2012)] the threshold distribution function

p
(k)
thres(x) of the coherent noise model for infinite number of agents after the

k-th avalanche has been studied as a function of k, and hence natural time.

An analytic expression of the expectation value E(Sk+1) for the size Sk+1 of

the next avalanche has been obtained in the case that the coherent stresses are

exponentially distributed with an average value σ. Here, by using a statistical

ensemble of initially identical systems, we investigate the relaxation of the av-

erage ⟨E(Sk+1)⟩ versus k. For k values smaller than kmax(σ, f), the numerical

results indicate that ⟨E(Sk+1)⟩ collapses to the q-exponential [Tsallis, J. Stat.

Phys. 52, 479 (1988)] as a function of k. For larger k values, the ensemble

average can be effectively described by the time average threshold distribution

function obtained by Newman and Sneppen [Phys. Rev. E 54, 6226 (1996)].

An estimate k0(σ, f)(> kmax(σ, f)) of this transition is provided. This ensem-

ble of coherent noise models may be considered as a simple prototype following

q-exponential relaxation. The resulting q-values are compatible with those re-

ported in the literature for the coherent noise model.

Keywords: q-exponential, coherent noise model, natural time, off-equilibrium

dynamics
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1. Introduction

The coherent noise model introduced by Newman and Sneppen[1, 2, 3] is

a model that shows reorganization events whose distribution follows a power

law over many decades and displays ‘aftershock’ events. These events have

been shown[2, 4] to exhibit a behavior similar to that of the Omori law for real5

earthquake aftershocks, i.e., they exhibit a power law relaxation. The Omori

law describes the temporal decay of aftershock activity and its modified form[5],

see also Ref.[6], is given by the relation

r(t,m) =
1

τ0 [1 + t/c(m)]
p , (1)

where r(t,m) the rate of occurrence of aftershocks with magnitudes greater

than m per day, t is the time that has elapsed since the mainshock and τ0 and10

c(m) are characteristic times. Note that p ≈ 1 for large earthquakes (e.g., see

Ref.[7]). Both real earthquake aftershock sequences as well as coherent noise

model aftershocks have been shown[8, 9] to exhibit the aging phenomenon with

an associated scaling property which can be described in terms of a scaling func-

tion given by the q-exponential appearing in nonextensice statistical mechanics.15

Non-extensive statistical mechanics[10] (for a recent review see also Ref.[11]),

pioneered by Tsallis[12], is a generalization of Boltzmann-Gibbs statistical me-

chanics which assumes that the entropy is given by

Sq = k lnq W (2)

where k is the Boltzmann constant, W is the number of discrete states available

to the system, q a real number and the q-logarithm is given by20

lnq(x) ≡
x1−q − 1

1− q
. (3)

Equation (2) for q → 1 reduces to the Boltzmann-Gibbs entropy, SBG = k lnW ,

because in this case lnq(x) → ln(x). Nonextensive statistical mechanics provides

a consistent theoretical framework for the studies of complex systems in their

nonequilibrium stationary states, systems with (multi) fractal and self-similar
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structures, long range interacting systems etc (for the various applications see25

Part III of Ref.[10] and references therein). When considering the arbitrary

probabilities pi, i = 1, 2, . . .W , the Tsallis entropy of Eq.(2) takes the form[10]

Sq ≡ k

(
1−

∑W
i=1 p

q
i

q − 1

)
= −k

W∑
i=1

pqi lnq(pi), (4)

which also reduces to the Boltzmann-Gibbs-Shannon entropy SBGS = −k
∑W

i=1 pi ln(pi)

when q → 1. When the discrete states can be labelled by a continuous variable

x, pi’s give rise to a probability distribution function P (x) for which the Tsallis30

entropy is given by

Sq ≡ k

(
1−

∫∞
0

[P (x)]qdx

q − 1

)
. (5)

The maximization of Eq.(5) under the constraint that the mean value ⟨x⟩q,

⟨x⟩q ≡
∫ ∞

0

xP(x)dx, (6)

where P(x) is the escort distribution defined through[13]

P(x) ≡ [P (x)]q∫∞
0

dx′[P (x′)]q
, (7)

is known to be X
(1)
q , i.e., ⟨x⟩q = X

(1)
q , leads[10] to the distribution

popt(x) =
expq[−β

(1)
q (x−X

(1)
q )]∫∞

0
dx′ expq[−β

(1)
q (x′ −X

(1)
q )]

, (8)

where β
(1)
q is a Lagrange parameter and expq(x) the q-exponential:35

expq(x) ≡ [1 + (1− q)x]
1

1−q

+ , (9)

where the symbol [. . .]+ stands for the maximum between 0 and the quantity

enclosed by the brackets. When q → 1, Eq.(9) reduces to the Gibbs distribution

when x is considered as the energy and then β
(1)
q is the well known inverse

temperature parameter.

The scope of the present paper is to report the appearance of such q-40

exponential functions when studying an appropriate statistical ensemble based
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on the analysis of the coherent noise model. Recently [14], the threshold distri-

bution function p
(k)
thres(x) of the coherent noise model for the case of infinite num-

ber of agents after the k-th avalanche has been studied as a function of k, and

hence natural time[15, 16]. Note that an analysis in the natural time domain,45

which uncovers hidden properties in complex time series[17], has been applied to

a variety of fields including seismology (e.g., see Refs.[18, 19]), cardiology[20, 21],

physics of complex systems exhibiting self-organized criticality[22], identification

of the origin of self-similarity[23, 24], and distinction between similar looking

electric signals obeying different dynamics (e.g., see Ref.[25]). In particular, in50

Ref.[14] an analytic expression of the expectation value E(Sk+1) for the size Sk+1

of the next avalanche has been obtained. Here, by using a statistical ensem-

ble of initially identical systems, we study the behavior of the ensemble average

⟨E(Sk+1)⟩ versus k. The numerical results indicate that for k values smaller than

some value kmax(σ, f), ⟨E(Sk+1)⟩ collapses to the q-exponential as a function55

of k. Namely, we have ⟨E(Sk+1)⟩ = ⟨E(S1)⟩ expq (−k/τ). For larger k values,

however, a behavior compatible with the time average threshold distribution

found by Newman and Sneppen[1] is recovered.

The paper is organized as follows: Section 2 presents the coherent noise

model whereas Section 3 the results. The latter are discussed in Section 4 and60

summarized in Section 5.

2. The coherent noise model

The avalanches in the coherent noise model result from the following procedure[1,

2]: Consider a system of Na agents, for each agent i we associate a threshold

xi, i = 1, 2, . . . Na, that represents the amount of stress that the agent with-65

stands before it breaks. Without loss of generality[1, 2], xi may come from the

uniform distribution in the interval 0 ≤ x < 1. The dynamics of the model

consists of two steps, a ‘stress’ step, which is more important and sufficient

to produce large avalanches, and an ‘aging’ step. During the ‘stress’ step, we

select a random number (or ‘stress’ level) η from some probability distribution70
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function pstress(η) and replace all xi that are smaller than η with new values

resulting from the uniform distribution in the interval 0 ≤ x < 1. The number

of agents whose thresholds are renewed is the size S of the avalanche. During

the ‘aging’ step, a fixed fraction f of agents is selected at random and their

thresholds are also replaced with new thresholds resulting again from the uni-75

form distribution in the interval 0 ≤ x < 1. If we assume that Na → ∞,

the thresholds xi are represented by a threshold distribution function pthres(x)

which initially (k = 0) is considered uniform in the interval 0 ≤ x < 1, i.e.,

p
(0)
thres(x) = 1, see Fig.1(a). The size S1 of the first avalanche (k = 1) is just the

probability Prob[x < η1] =
∫ η1

0
p
(0)
thres(x)dx = η1 which represents the ‘mass’80

of the agents that had thresholds smaller than η1, see Fig.1(b). After the sub-

sequent ‘aging’ step (see the orange and brown arrows in Fig.1) the threshold

distribution becomes p
(1)
thres(x), see Fig.1(f). When repeating the two steps for

the second time -using η2- we can obtain S2 and p
(2)
thres(x) and so on.

One can show[14] that the threshold distribution p
(k)
thres(x) after the k-th85

avalanche is a piecewise constant function having the following general form

p
(k)
thres(x) =

nk∑
n=0

d(k)n Θ(x− b(k)n ), (10)

where nk is the number of steps present in the threshold distribution function

after the k-th avalanche and Θ(x) is the Heaviside (unit) step function, i.e.,

Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 0. For example, when k = 1, then n1 = 1

with d
(1)
0 = (1 − f)η1 + f , b

(1)
0 = 0, d

(1)
1 = 1 − f and b

(1)
1 = η1, see Fig.1(f).90

Each time a new (random) stress level ηk+1 is applied, an avalanche of size

Sk+1 =

∫ ηk+1

0

p
(k)
thres(x)dx =

nk∑
n=0

d(k)n (ηk+1 − b(k)n )Θ(ηk+1 − b(k)n ), (11)

is generated and the real non-negative parameters b
(k)
n , d

(k)
n , n = 0, 1, . . . nk are

updated by the following rules[14]: Let nmax be the maximum integer such that

b(k)nmax
< ηk+1 < b

(k)
nmax+1, (12)

if ηk+1 > b
(k)
nk then nmax = nk. Then,

b
(k+1)
0 = 0 , d

(k+1)
0 = (1− f)Sk+1 + f,
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b
(k+1)
1 = ηk+1 , d

(k+1)
1 = (1− f)

(
nmax∑
n=0

d(k)n

)
,

b
(k+1)
2 = b

(k)
nmax+1 , d

(k+1)
2 = (1− f)d

(k)
nmax+1,

b
(k+1)
3 = b

(k)
nmax+2 , d

(k+1)
3 = (1− f)d

(k)
nmax+2,

. . . , . . .

b(k+1)
nk+1

= b(k)nk
, d(k+1)

nk+1
= (1− f)d(k)nk

, (13)

where nk+1 = nk − nmax + 1. Equations (13) are valid as far as ηk+1 is smaller95

than unity. If ηk+1 > 1, then obviously Sk+1 = 1 and

p
(k+1)
thres (x) = p

(0)
thres(x) (14)

with

d
(k+1)
0 = 1, b

(k+1)
0 = 0 (15)

and the system has been completely regenerated.

Thus, Eq. (10) together with either Eq.(13) or Eq.(14) describe the evolution

of the threshold distribution function of the coherent noise model in the case100

of infinite agents. The evolution of the system as k increases is reflected in the

change of the 2nk quantities b
(k)
n , d

(k)
n for n = 1, 2, . . . , nk, because b

(k)
0 = 0 and

d
(k)
0 = 1−

nk∑
n=1

d(k)n (1− b(k)n ), (16)

due to the normalization condition of the threshold distribution function p
(k)
thres(x).

The knowledge of the 2nk quantities b
(k)
n , d

(k)
n for n = 1, 2, . . . , nk, enables[14]

the exact calculation of the probability distribution p(Sk+1) of the size Sk+1105

of the next avalanche and therefrom the evaluation of the expected avalanche

size E(Sk+1). In the commonly used[1, 9, 26, 27, 28] case that pstress(η) =

exp(−η/σ)/σ, the expectation value

E(Sk+1) ≡
∫ ∞

0

Sk+1p(Sk+1)dSk+1 (17)

is given by [14]

E(Sk+1) = σ

nk∑
l=0

d
(k)
l

[
exp

(
−
b
(k)
l

σ

)
− exp

(
− 1

σ

)]
. (18)
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Equation (18) provides the expected avalanche size for the k+1-th avalanche110

as the system evolves step by step. However, the statistically stationary state

-and hence the time averaged behavior that may arise as a competition between

the stress step and the aging step- in the coherent noise model has been already

studied in Ref.[1]. Newman and Sneppen[1] have evaluated the average threshold

distribution pthres(x) by balancing the two competing processes and their result115

leads to

pthres(x) =
f

σ [f + exp(−x/σ)] ln
{
1 + f

1+f [exp(1/σ)− 1]
} , (19)

from which the distribution exp(x/σ)/{σ[exp(1/σ)− 1]} in the limit f → 0 can

be easily extracted. Equation (19) leads[1] to an avalanche size s(η) given by

s(η) =
ln
{
1 + f

1+f [exp(η/σ)− 1]
}

ln
{
1 + f

1+f [exp(1/σ)− 1]
} , (20)

when η ≤ 1 and s(η) = 1 when η > 1. Accordingly, the resulting expected

avalanche size E [s(η)] is given by120

E [s(η)] =
∫ ∞

0

s(η) exp(−η/σ)

σ
dη =

f

σ

 1

ln
{
1 + f

1+f [exp(1/σ)− 1]
} − σ


(21)

It is the main scope of the present paper to study how the expected avalanche

size of Eq.(18) relaxes to that of Eq.(21) as the number of avalanches k increases

when starting from the initial state of the coherent noise model. For this reason,

in the next Section, we will study 105 simultaneously evolving such models and

evaluate the ensemble average ⟨E(Sk+1)⟩ after the k-th avalanche.125

3. Results

For the purpose of the numerical simulation, we considered 105 replicas

of the coherent noise model. Each replica started from the initial condition

of the coherent noise model (k = 0) and its evolution, by means of Eqs.(13)

and (14), was studied using the expected size E(Sk+1) of Eq.(18) for the first130

7



104 avalanches. The ensemble average ⟨E(Sk+1)⟩, hereafter also labeled yk for

brevity,

yk ≡ E(Sk+1), (22)

is shown in Fig.2 as a function of the number k (of the preceding avalanches)

for σ = 0.01 when f varies from 0 to 5× 10−3.

We observe that yk finally relaxes to the value resulting from Eq.(21) which135

was found on the basis of the average threshold distribution pthres(x) pro-

posed by Newman and Sneppen[1]. The relaxation, however, is obviously non-

exponential giving rise to a rather algebraic (power-law like) behavior.

In order to understand this algebraic behavior, we focus on the case when σ

is very small, e.g., see Fig.3 where σ = 10−4, and f → 0. In this case, Eq.(18)140

simplifies to

E(Sk+1) = σ

nk∑
l=0

d
(k)
l exp

(
−
b
(k)
l

σ

)
, (23)

where b
(k)
l for l ̸= 0 come from the exponential distribution with average σ and

hence exp

(
− b

(k)

l

σ

)
(= u

(k)
l ) follow the uniform distribution in the interval [0,1],

i.e.,

E(Sk+1) = σ

(
d
(k)
0 +

nk∑
l=1

d
(k)
l u

(k)
l

)
. (24)

When f → 0 the first line of Eq.(13) results in d
(k)
0 = Sk−1, where Sk−1 ∝145

ηk−1 due to Eq.(11), and hence the term d
(k)
0 in the parenthesis of Eq.(24)

is negligible because ηk−1 is exponentially distributed with average σ → 0.

Moreover, using this property recursively starting from the first avalanche, we

obtain from Eq.(13) that the only non-vanishing d
(k)
l (= 1 = d

(1)
1 ) is the one that

corresponds to the maximum ηl selected and hence to the minimum u
(k)
l . Thus,150

we have

E(Sk+1) = σmin
(
u
(k)
l , l = 1, 2, . . . , nk

)
, (25)

which in other words means that the ensemble average ⟨E(Sk+1)⟩ equals σ times

the average of the minimum value obtained out of k uniformly distributed ran-
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dom numbers:

⟨E(Sk+1)⟩
σ

=

∫ 1

0

∫ 1

U1

∫ 1

U1

. . .

∫ 1

U1

∫ 1

U1

U1dU1dU2dU3 . . . dUk−1dUk +

+

∫ 1

U2

∫ 1

0

∫ 1

U2

. . .

∫ 1

U2

∫ 1

U2

U2dU1dU2dU3 . . . dUk−1dUk + . . .

+

∫ 1

Uk

∫ 1

Uk

∫ 1

Uk

. . .

∫ 1

Uk

∫ 1

0

UkdU1dU2dU3 . . . dUk−1dUk =

= k

∫ 1

Uk

∫ 1

Uk

. . .

∫ 1

Uk

∫ 1

0

UkdU1dU2 . . . dUk−1dUk

= k

∫ 1

0

(1− Uk)
k−1UkdUk

= k

∫ 1

0

ξk−1(1− ξ)dξ =
1

k + 1
(26)

The fact that for small σ and f , we have yk = ⟨E(Sk+1)⟩ = σ/(k + 1) prompted155

us to compare the numerical values plotted in Figs.2 and 3 with the black solid

curve that corresponds to fk = y0/(k + 1), where y0 is the expected avalanche

size before the first avalanche y0 = σ[1− exp(−1/σ)], i.e., Eq.(18) for n0 =

0, d
(0)
0 = 1, b

(0)
0 = 0. We see that the lowermost curves in each case almost

collapse on fk strengthening our initial observation that the relaxation follows160

an algebraic law. Thus, for very small σ and f we expect to have

yk = y0 exp2(−k), (27)

where we made use of the definition of the q-exponential of Eq.(9).

The behavior observed in Figs.2 and 3 together with Eq.(27) prompted us

to further investigate the properties of yk through the ansatz

yk = y0 expq

(
−k

τ

)
, (28)

where the parameters q and τ were determined -for given values of σ and f -165

by solving Eq.(28) numerically for y1 and y2. In detail, we used the numerical

simulation data y1 and y2 to solve by the Newton’s method the equation

2 =
lnq

(
y2

y0

)
lnq

(
y1

y0

) =

(
y2

y0

)1−q

− 1(
y1

y0

)1−q

− 1
(29)
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that results from the ansazt (28) for the determination of the q value. The τ

value was then determined by

τ = − 1

lnq

(
y1

y0

) , (30)

i.e., solving Eq.(28) for k = 1. Figure 4 shows some typical examples of the170

fittings obtained upon using the ansatz of Eq.(28).

4. Discussion

As shown in Fig.4, the proposed ansatz describes well the numerical data

before yk approaches the value of Eq.(21) estimated on the basis of the average

threshold distribution pthres(x). Figures 2, 3 and 4 indicate that for k values175

smaller than some value of k labeled kmax(σ, f), the ensemble average ⟨E(Sk+1)⟩

collapses to the q-exponential as a function of k.

It is noteworthy that an estimate k0(σ, f)(> kmax(σ, f)) of this transition

can be found when comparing the results of Eqs.(28) with those of Eq.(21).

This is so because as we can clearly see from Figs. 2, 3 and 4, yk begins to180

deviate from the ansatz of Eq.(28) when k is a few times smaller than the k-

value k0(σ, f) at which the curve of Eq.(28) intersects the horizontal line drawn

on the basis of Eq.(21), i.e.,

yk0(σ,f) = E [s(η)]. (31)

Moreover, for k-values a few times larger than k0(σ, f), yk reaches the value

determined by Eq.(21). In other words, k0(σ, f) indicates when the initial185

q-exponential relaxation ceases and the time averaged behavior described by

Eq.(21) takes over. Figure 5 depicts the values of k0(σ, f) obtained as a func-

tion of σ for various values of f . We observe that as we decrease σ starting from

σ = 1, and hence more stress steps are allowed before the coherent noise model

is regenerated, k0(σ, f) increases following -closely for very small f - the solid190

line which has been drawn as a guide to the eye. At some value of σ, however,

the effect of the aging step described by the parameter f becomes dominant

10



and k0(σ, f) saturates. The saturation value of k0(σ, f) for the largest f shown,

i.e., f = 5 × 10−3, is about a few tens of avalanches, thus the region where a

clear q-exponential relaxation can be observed covers approximately the first ten195

avalanches, e.g., see also Fig.4(c). For larger f values, e.g., for f = 0.1 see Fig.6,

even the value of yk for k → ∞ deviates from the time average behavior. This

can be understood on the basis of the last line of Eq.(13) where the effect of the

largest ηj is attenuated as a geometric progression because d
(k+1)
nk+1 = (1−f)d

(k)
nk .

Thus, large values of f fade away the effect produced by the extreme values200

of ηj giving rise to a dominant aging step that almost cancels the stress step.

In this case, the balancing between the two steps is strongly disturbed and the

time average behavior cannot be observed.

From the discussion so far, it becomes clear that the key factor behind

the q-exponential relaxation is the stress step, i.e., the value of σ. In order205

to investigate this hypothesis, we depict in Figure 7 the results obtained from

the ansatz of Sec.3 for q and τ in a wide range of the model parameters σ

and f . We observe that both values are practically independent of f and solely

depend on σ, strengthening the conclusion that the stress step is the main origin

of the q-exponential relaxation. Fitting these data, we obtained the following210

expressions for q and τ :

q(σ) = 2 + 25.60σ2 + 10.83σ4, (32)

τ(σ) = 1 + 5.42σ1.12, (33)

which are drawn by solid lines in Figs.7(a) and 7(b), respectively. Equations

(32) and (33) have been obtained on the basis of Eq.(27) (e.g., see Fig.3), thus

the quantities q− 2 and τ − 1 were fitted by appropriate polynomial and power215

law functions in each case.

Let us finally compare these q values with those reported in the literature.

If we recall that k0(σ, f) should be larger than 10 so that the q-exponential re-

laxation is clearly observed, Fig.5 shows that Eq.(32) is of practical importance

for σ values smaller than approximately 0.25. This is the range in which the220
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coherent noise model is frequently investigated[1, 9, 26, 27, 28]. As a character-

istic example, Tirnakli and Abe [9] investigated aging in coherent noise models

in natural time by studying the event correlations and found a non-extensivity

parameter q ≈ 2.98 when σ = 0.2 (see Fig.5 of Ref.[9]). According to Eq.(32),

the value corresponding to σ = 0.2 is q =3.04 differing only by 2%. As a second225

example, a recent analysis of return distributions in the coherent noise model[27]

has led to q values equal to q =2.0, 2.09, and 2.21 for σ = 0.01, 0.05 and 0.065,

respectively (cf. Fig.1 and Eq.(5) of Ref.[27]). Interestingly, these values lie

within 5% compared to those estimated on the basis of Eq.(32).

5. Conclusions230

We studied how the ensemble average ⟨E(Sk+1)⟩ of the expected avalanche

size E(Sk+1) relaxes versus the order of the avalanche k in an ensemble of

105 coherent noise models starting from their initial state. A q-exponential

relaxation is observed during the first avalanches. This is governed by (and

mainly due to) the stress step. In this range, we have ⟨E(Sk+1)⟩ = σ[1 −235

exp(−1/σ)] expq (−k/τ), where q and τ solely depend on σ. For larger k values,

the ensemble average can be effectively described by the average threshold dis-

tribution function obtained by Newman and Sneppen[1]. The obtained q-values

are compatible with those found from the analysis of the return distributions in

the coherent noise model.240

References

[1] M. E. J. Newman, K. Sneppen, Phys. Rev. E 54 (1996) 6226–6231.

[2] K. Sneppen, M. Newman, Physica D 110 (1997) 209 – 222.

[3] M. E. J. Newman, Proc. R. Soc. London B 263 (1996) 1605–1610.

[4] C. Wilke, S. Altmeyer, T. Martinetz, Physica D 120 (1998) 401–417.245

[5] T. Utsu, Geophys. Mag. 30 (1961) 521.

12



[6] R. Shcherbakov, D. L. Turcotte, J. B. Rundle, Geophys. Res. Lett. 31

(2004) L11613.

[7] A. Saichev, D. Sornette, Tectonophysics 431 (2007) 7–13.

[8] S. Abe, N. Suzuki, Physica A 332 (2004) 533–538.250

[9] U. Tirnakli, S. Abe, Phys. Rev. E 70 (2004) 056120.

[10] C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer,

Berlin, 2009.

[11] C. Tsallis, U. Tirnakli, J. Phys.: Conf. Ser. 201 (2010) 012001.

[12] C. Tsallis, J. Stat. Phys. 52 (1988) 479–487.255
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Figure 1: (color online) Construction of the threshold distribution p
(1)
thres

(x) after the first

avalanche in the coherent noise model when Na → ∞: (a) the initial (uniform) distribution

function p
(0)
thres

(x). Stress step (shown by the red arrow): (b) Application of the first stress

level η1 (the size S1 of the first avalanche corresponds to the green shaded area), and (c) a

probability mass equal to S1 is uniformly distributed in the region [0,1]. Aging step (shown

by orange and brown arrows): (d) the threshold distribution in (c) is reduced by a fraction f ,

see panel (e), and a probability mass f is distributed uniformly in the region [0,1] in order to

obtain the threshold distribution p
(1)
thres

(x) after the first avalanche which is shown in panel

(f).
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Figure 2: (color online) The ensemble average ⟨E(Sk+1)⟩, herafter labeled yk as a function of

the number k of the preceding avalanches for σ = 0.01 and f = 0, 10−7, 10−6, 10−5, 10−4, 5×

10−4, 10−3, and 5×10−3. The horizontal solid lines indicate the values obtained from Eq.(21)

for f = 10−4, 5 × 10−4, 10−3, 5 × 10−3 and are drawn with the corresponding colors. The

thick black solid curve corresponds to fk = σ[1− exp(−1/σ)]/(k + 1).
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Figure 3: (color online) The same as Fig.2 but for σ = 10−4.
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Figure 4: (color online) Indicative examples of fitting the numerical data by the ansatz of

Eq.(28) (green dashed curve) for various values of σ and f : (a) σ = 0.01, f = 10−6, (b)

σ = 0.01, f = 10−4, (c) σ = 0.01, f = 5 × 103 and (d) σ = 0.15, f = 10−4 . The horizontal

lines result from Eq.(21).
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Figure 5: (color online) The estimate k0(σ, f) as a function of σ for various values of f . The

thick solid line corresponds to 6.17σ2[exp(1/σ)−1.39][1−exp(−0.468/σ)] and has been drawn

as a guide to the eye.
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Figure 6: (color online) The same as Fig.4, but for σ = 0.01 and f = 0.1.
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Figure 7: (color online) The estimated ansatz parameters (a) q and (b) τ of Eq.(28) versus σ

for various f values in the range [0, 5× 10−3], the solid lines correspond to Eqs.(32) and (33),

respectively.
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