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Abstract
Synthesis, characterization and density functional theory calculations have been

combined to examine the formation of the Zr3(Al1–xSix)C2 quaternary MAX

phases and the intrinsic defect processes in Zr3AlC2 and Zr3SiC2. The MAX

phase family is extended by demonstrating that Zr3(Al1–xSix)C2, and particularly

compositions with x�0.1, can be formed leading here to a yield of 59 wt%. It has

been found that Zr3AlC2 - and by extension Zr3(Al1–xSix)C2 - formation rates

benefit from the presence of traces of Si in the reactant mix, presumably through

the in situ formation of ZrySiz phase(s) acting as a nucleation substrate for the

MAX phase. To investigate the radiation tolerance of Zr3(Al1–xSix)C2, we have

also considered the intrinsic defect properties of the end-members. A-element

Frenkel reaction for both Zr3AlC2 (1.71 eV) and Zr3SiC2 (1.41 eV) phases are

the lowest energy defect reactions. For comparison we consider the defect pro-

cesses in Ti3AlC2 and Ti3SiC2 phases. It is concluded that Zr3AlC2 and Ti3AlC2

MAX phases are more radiation tolerant than Zr3SiC2 and Ti3SiC2, respectively.

Their applicability as cladding materials for nuclear fuel is discussed.

KEYWORD S

density functional theory, MAX phases, powder synthesis, silicon

1 | INTRODUCTION

Although they were initially studied in the 1960s,1 interest
in the Mn+1AXn phases (n=integer, M=early transition
metal; A=group 13-16 element and X=C or N) was regener-
ated by the report on the remarkable properties of Ti3SiC2

nearly two decades ago.2 This was followed by the synthe-
sis of numerous ternary3 or quaternary solid solution MAX
phases,4,5 which also shared these metallic and ceramic

properties (high elastic stiffness, high melting temperature,
high thermal shock resistance, good machinability, high
thermal, and electrical conductivity).2,6-12 Such properties
drive their technological importance and are attributed to
their structure, which consists of the stacking of n “ce-
ramic” layer(s) interleaved by an A “metallic” layer.2,6-8

MAX phases crystallize with the hexagonal P63/mmc
space group (no. 194).1,2 The MAX phase family has three
main forms, first M2AX (ie, n=1) type which are commonly
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referred as the 211 MAX phases, whereas the second type
(n=2) are known as the 312 MAX phases, whereas the third
type (n=3) are known as the 413 MAX phases. The 312
MAX phases are the subject of the present report. As illus-
trated in Figure 1, MAX phases possess a highly symmetric
unit cell with atomic layers stacked along the c-direction.1,2

For the 312 MAX phases, 3 M layers sandwich 2 X layers
and form an M3X2 slab (with a face-centered-cubic-type
stacking sequence), whereas A layers separate these M3X2

slabs. The stacking around the A layers has an HCP pattern
and the A layers form a mirror plane in the crystal.

As of today, the number of synthesized ternary MAX
phases reaches almost 80 individual compounds;3,9 and a fast-
growing number of quaternary compounds that are sought for
diverse reasons: tailoring certain physical properties (eg, an
isotropic thermal expansion as obtained by Cabioch et al. for
Cr2Al0.75Ge0.25C),

13 triggering magnetic properties,14 inte-
grating an element not found in ternary MAX phases sys-
tems5,15,16 or approaching as close as possible to a ternary

compound for which former synthesis attempts failed.5,16 The
latter reason motivated our research of synthesizing quater-
nary MAX phases with compositions as close as possible to
the long-sought Zr2AlC and Zr3AlC2. Indeed, noting the
absence of experimental reports of any Zr-Al-C-based ternary
MAX phase and after failing with several Zr2AlC and
Zr3AlC2 synthesis attempts, we turned to quaternaries and
successfully produced several Zr2(AlxA1-x)C compounds
(with A=Sn, Sb, Pb, and Bi). This was before the Lapauw
et al. reports in 2016 of both Zr2AlC and Zr3AlC2 successful
syntheses6,10 thereby making two important additions to the
MAX phase family. The present report proposes an explana-
tion on why they succeeded while other attempts failed. These
long-sought compounds5 are expected to display properties
that can be of great interest and beneficial for several industrial
applications, notably in the nuclear power field. A particular
aim for Zr-Al-C materials is their application in Accident-Tol-
erant Fuels (ATF) via the deposition of a coating onto the
exterior face of the Zr-based alloys commonly used as nuclear
fuel cladding materials.6,12,16-18 Such a coating would pas-
sively protect the cladding in severe accident conditions to
avoid, or delay for several tens of hours, the rapid oxidation
occurring at temperatures over 1200°C and associated produc-
tion of hydrogen (as occurred at Fukushima).

The drive to consider a Zr-based MAX phase stems
from the perceived compatibility that this material is
expected to have with the Zr-based cladding material.
Another great advantage of using Zr-based materials in
nuclear fuel assembly components is the low neutron cross
sections of the natural Zr isotopes that will not degrade
reactor performance and cost-effectiveness. Coupled with
the Zr nuclear properties, an element capable of diffusing
rapidly to initiate a passivating outer oxide layer should
also be present to provide the required high-temperature
oxidation resistance. As such, Al, and to a lesser extent Si,
are natural choices as they are known to be the better
enhancers for high-temperature oxidation resistance of
MAX phases3 through the formation of Al2O3 and SiO2

passivating scales, respectively.
The aim of this study was to synthesize Zr3AlC2 as well

as quaternary solid solution Zr3(Al1–xSix)C2 MAX phases.
Trying to add Si to Zr3AlC2 was decided on the basis of
the numerous reports on the analogous Ti3(Al1-xSix,)C2 sys-
tem for which general increases of yield and purity of
Ti3AlC2 were found when little Si was added to the reac-
tion mix,19-21 whereas maintaining the advantageous fea-
tures of Ti3AlC2 such as oxidation resistance.22,23

Density functional theory (DFT) calculations were also
employed to investigate the intrinsic defect processes of
Zr3AlC2 and Zr3SiC2 to anticipate their behavior in high-irra-
diation environments. For comparison purposes, the latter
work was extended to Ti-based analogues (Ti3AlC2 and
Ti3SiC2), which are also considered for the ATF application.11
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FIGURE 1 Crystal structure of the M3AX2 phases with the
P63/mmc space group
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FIGURE 2 X-ray diffractograms of Zr3(Al1-xSix)C2 with Si/
(Si + Al)=0, 0.1, 0.3, 0.5

2 | METHODS

2.1 | Experimental methods

Commercial reactants used were ZrH2 (APS 2-4 lm,
>99.7%, grade S, Rockwood Lithium, Frankfurt, Germany),
Al (-325 mesh, >99.9%, Alfa Aesar, Lancashire, UK), Si
(-325 mesh, >99.9%, Alfa Aesar, UK), and C (>99.9%,
Sigma Aldrich, Dorset, UK). Elemental mixtures for
Zr3(Al1-xSix)C2 were prepared with x=0, 0.1, 0.3, and 0.5.
Stoichiometries for the 312 phase were adjusted to 3/1.1/
1.0/1.9 for Zr/Al/Si/C to compensate for partial Al sublima-
tion and C uptake from graphite crucibles during synthe-
sis,11 as usually reported in the MAX phase literature. The
Zr3SiC2 end-member was not studied as solid solutions are
energetically more favorable phases. Solid solutions were
calculated to be formed as shown in different DFT studies,
in which the enthalpy of mixing in Ti3(Al1-x,Ax)C2, Ti2(Al1-
x,Ax)C, and Zr2(Al1-x,Ax)C for different A elements, includ-
ing Si, were calculated.24 A glove box was used to avoid
oxygen contamination or exposure to any hazardous process
during handling. Zr3(Al1–xSix)C2 precursor powders were
ball milled for 30 minutes at 150 rpm in a nylon jar in a
dry media using ZrO2 balls in a planetary ball miller PM100
(Retsch, Han, Germany). Synthesis thermal treatments to
precursors powders were carried out in graphite crucibles
lined and capped with graphite film in a hot-press furnace
HP W/25/1 (FCT, Rauenstein, Germany) at 1500°C for
1 hour under Ar atmosphere, according to the experimental
conditions described by Lapauw et al.10 for Zr3AlC2 synthe-
sis. Note that pressure was not applied and powders were
obtained after thermal treatments rather than dense billets.
Synthesized powders were ground in an agate mortar with a
pestle for X-ray diffraction (XRD) studies. A PANalytical
instrument was used for XRD studies, using a 0.02° 2h step
and an angular range from 5 to 100°. Crystalline phase
determination was carried out using the International Center
for Diffraction Data database (ICDD) and the Xpert High
Score plus software (PANalytical, Almelo, the Netherlands)
for phase matching. Determination of lattice parameters was
carried out using a full-pattern matching method (Le Bail
function) with the help of the Fullprof suite program.25

Xpert High Score software was also used to perform Riet-
veld refinements to obtain phase weight ratios starting with
the unit cell parameters determined from the previous refine-
ment methods. In all cases the differences in unit cell
parameters between the two methods were found to be far
below the values of associated uncertainties. Powders after
thermal treatment were crushed in an agate mortar with a
pestle and subsequently sieved up to a mesh of 320. Then,
they were placed on an aluminum stub and coated with Cr
to avoid charging effects during scanning electron micro-
scope (SEM) observations. In addition, powder observations

were carried out in a SEM Auriga (Zeiss, Oberkochen, Ger-
many), under back-scattering electron (BSE) and secondary
electron (SE) imaging modes, equipped with an energy-dis-
persive spectroscopy (EDS) detector with ultra-thin polymer
window (Oxford Instruments, Oxford, UK). Transmission
electron microscopy (TEM) of the synthesized powder was
carried out in an aberration-corrected FEI Titan 80-300
S/TEM operated at 300 kV, equipped with a windowless
energy dispersive X-ray spectroscopy (EDX) detector (Bru-
ker QUANTAX 400-STEM, Bruker Corporation, Billerica,
MA). As the Si K line is very close to the Zr L lines in the
EDX spectrum, the background and peak fitting parameters
were optimized using the Bruker Esprit EDX software and
kept the same for all the quantification analysis to detect the
potential presence of small contents of Si in some phases.
The procedure yielded zero content of Si in undoped mate-
rial, suggesting that the quantification is reasonably reliable
for the comparison of Si contents.

2.2 | Computational methods

In this study, we employed the plane wave DFT code
CASTEP.26,27 Exchange and correlation interactions were
formulated with the corrected density functional of Perdew,
Burke and Ernzerhof (PBE)28 within the generalized gradi-
ent approximation (GGA) and in conjunction with ultrasoft
pseudopotentials.29 The plane wave basis set was set to a
cut-off of 450 eV, whereas a 3 9 3 9 1 Monkhorst-Pack
(MP)30 k-point grid was used with a 108-atomic site super-
cell. All the calculations were under constant pressure
conditions. We performed an extensive search to calculate
the energetically favorable interstitials.
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3 | RESULTS AND DISCUSSION

3.1 | Synthesis and characterization of
Zr3(Al1–xSix)C2 MAX phase

Crystalline phase determination by XRD is shown in
Figure 2. It first reveals the formation of a 312 MAX phase
in the four samples along with ZrC. The refinement results
are reported in Table 1. The lattice parameters for the 312
MAX phases were all close to those determined by Lapauw
et al.10,11 for Zr3AlC2. From this and subsequent character-
izations detailed thereafter, it is reasonable to assume that
Zr3(Al1–xSix)C2 compositions were formed. In addition, the
lattice parameters refined for the ZrC phases are similar in
the first three samples and are equal to the lowest reported
ones for ZrC1–x (even in Si free synthesis), which suggests
that highly substoichiometric ZrC1–x is formed with
x�0.4.31 From Rietveld refinements, when Si/(Si + Al)=0,
Zr3AlC2 is present as a residual phase (7 wt%) (Table 1).
However, the formation of Zr3AlC2 or Zr3(Al1–xSix)C2 is
greatly promoted by the addition to the reaction mix of Si
for Si/(Si + Al)=0.1 (59 wt%) and Si/(Si + Al)=0.3 (47 wt
%). The yield, however, decreases greatly for Si/(Si + Al)
=0.5 (11 wt%).

In all samples with Si, a minor Si-based phase is found
(Zr5Si3 for Si/(Si + Al)=0.1, Zr2Si for Si/(Si + Al)=0.3 and
0.5 and ZrSi for Si/(Si + Al)=0.5) and this therefore sug-
gests that the solubility of Si in Zr3(Al1-xSix)C2 may be lim-
ited (x<0.1) or that Si incorporation in Zr3(Al1–xSix)C2 is
kinetically hindered under the present synthesis conditions.

When the a and c lattice parameters of the obtained
MAX phases are compared (Table 1), an increase in a with

the Si/(Al + Si) starting ratio and conversely a decrease in
c (and of the cell volume) are observed (we exclude the
value obtained for Si/(Si + Al)=0.5 as the uncertainty is
too high). Interestingly, the relative changes are greater
between Si/(Si + Al)=0 vs Si/(Si + Al)=0.1 than between
Si/(Si + Al)=0.3 vs Si/(Si + Al)=0.1 (eg, a0.1=1.0013 a0
while a0.3=1.0004 a0.1). This further suggests that Si incor-
poration in Zr3(Al1–xSix)C2 should be limited and should
saturate close to x=0.1 (at least for our selected experimen-
tal conditions).

Scanning Electron Microscopy (SEM) observations of
synthesized powders (Figure 3) confirmed the greater for-
mation of a 312 MAX phase for Si/(Si + Al)=0.1 or 0.3
compared to Si/(Si + Al)=0 or 0.5. The compositions with
the lowest and highest 312 MAX phase content, Si/
(Si + Al)=0 and Si/(Si + Al)=0.1, respectively, are shown
in Figure 3 to illustrate the different aspect ratios of the
ZrC and 312 MAX phases. Numerous layered particles
were observed in Zr3(Al1–xSix)C2 for Si/(Si + Al)=0.1, sug-
gesting the predominance of layered Zr3(Al1–xSix)C2 MAX
phase, whereas for Si/(Si + Al)=0 the particles were pre-
dominantly equiaxed with a size of ~2 lm. A clearer
example of the characteristic MAX phase grain laminar
microstructure is shown in Figure 4. EDX measurements
(Figure 4) were performed firstly to confirm formation of
Zr3AlC2 and Zr3(Al1–xSix)C2 MAX phases notably through
measurement of the Zr/(Al + Si) ratio, which was deter-
mined, as expected, to be equal or close to 3. EDX investi-
gations also revealed that in the Si/(Si + Al)=0.1 and Si/
(Si + Al)=0.3 samples the MAX phase grains had variable
Si contents (Figure 4): some grains were even found free
of Si (in the limits of sensitivity of the detector, being less

TABLE 1 Summary of synthesis results of the Zr3(Al1-xSix)C2 MAX phase

Targeted compound Phases Structure a (�A) b (�A) c (�A) V (�A3) Volume ratio (%)

Zr3AlC2 Zr3AlC2 P63/mmc 3.3287 (4) 3.3287 (4) 20.011 (1) 192.01 (6) 7 � 1

ZrC Fm-3 m 4.6866 (2) 4.6866 (2) 4.6866 (2) 102.94 (2) 66 � 2

ZrAl2 P63/mmc 5.2856 (9) 5.2856 (9) 8.754 (2) 211.8 (1) 8 � 1

Zr2Al3 Fdd2 5.5693 (7) 9.533 (6) 13.90 (1) 738 (1) 19 � 1

Zr3(Al0.9Si0.1)C2 Zr3AlC2 P63/mmc 3.3331 (2) 3.3331 (2) 19.940 (1) 191.85 (4) 59 � 2

ZrC Fm-3 m 4.6834 (2) 4.6834 (2) 4.6834 (2) 102.72 (2) 31 � 2

ZrAl2 P63/mmc 5.287 (2) 5.287 (2) 8.744 (4) 211.7 (2) 5 � 1

Zr5Si3 P63/mmc 7.965 (2) 7.965 (2) 5.502 (6) 302.3 (5) 5 � 1

Zr3(Al0.7Si0.3)C2 Zr3AlC2 P63/mmc 3.3344 (3) 3.3344 (3) 19.914 (2) 191.75 (6) 47 � 2

ZrC Fm-3 m 4.6871 (2) 4.6871 (2) 4.6871 (2) 102.97 (2) 47 � 2

Zr2Si I4/mmc 6.624 (2) 6.624 (2) 5.349 (7) 235.3 (5) 6 � 1

Zr3(Al0.5Si0.5)C2 Zr3AlC2 P63/mmc 3.31 (3) 3.31 (3) 20.2 (3) 192 (1) 12 � 2

ZrC Fm-3 m 4.6914 (5) 4.6914 (5) 4.6914 (5) 103.25 (9) 76 � 2

Zr2Si I4/mmc 6.618 (3) 6.618 (3) 5.356 (5) 234.6 (4) 11.5 � 2

ZrSi Pnma 7.11 (2) 3.723 (7) 5.18 (2) 137 (1) 0.5 � 1
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than 1 at.%). Interestingly, changes in Si content were bal-
anced by Al content, confirming the occurrence of partial
substitution of Al by Si in Zr3AlC2.The only possible rea-
son for the variable content of Si in Zr3AlC2 is that Si
incorporation in Zr3(Al1–xSix)C2 was subsequent to
Zr3AlC2 formation and that the diffusion/substitution rate
was too slow at the reaction temperature to achieve com-
plete and homogeneous Si distribution within 1 hour (the
Si content in a MAX grain being therefore correlated with
the quantity of the Si-rich grains touching this MAX grain
during the synthesis). Further investigations are presented
in what follows to confirm this hypothesis. Based on EDX
results, it was unclear whether the Zr3AlC2 grains contain
O or not, as the samples were coated with Cr for SEM
observations and the O peak in EDX is overlapped by one
of the Cr peaks as can be observed in Figure 4.

TEM investigation of the presence of oxygen in the
synthesized powders was done for the Zr3(Al0.9Si0.1)C2 and

Zr3AlC2 target samples only (Figures 5 and 6). The bright-
field TEM of the Zr3(Al0.9Si0.1)C2 sample given in Fig-
ure 5 shows different particles of two phases: Zr3AlC2 and
Zr5Si3. Zr5Si3 shows Al content as high as 20 at.%, sug-
gesting solid solubility of Al in Zr5Si3, although it is noted
that the quantified content can only be taken as an indica-
tion since the result was not calibrated with standards. In
addition, these particles contain minor amounts of C and
O, up to a maximum of 3 and 2 at.%, respectively. How-
ever, the Zr3AlC2 phase also contains some minor amounts
of Si, which is clearly shown by a comparison of the EDX
spectra obtained from the Zr3(Al0.9Si0.1)C2 and the
undoped Zr3AlC2 samples (Figure 5). Qualitative
compositional analyses suggested a Si content of as high
as ~1.7 at.% (x=0.102 assuming that the Al + Si content is
1/6), in agreement with the maximum solubility of Si in
the targeted Zr3(Al1–xSix)C2 phase as suggested by lattice
parameters calculated from XRD results in Table 1. It
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FIGURE 3 SEM images: Secondary electron images (A) Zr3AlC2 and (B) Zr3(Al0.9Si0.1)C2 and their respective back scattered electron
images (C) and (D)
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FIGURE 4 SEM image (SE) on left with EDX point analysis of numbered regions on right. The lower the number of the EDX spot, the
higher the Si content
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is also noteworthy that the previously reported Si solubility
in other Zr-Al-C-based ternary laminar carbides at a
similar level: for example, maximum solubilities of
(ZrC)m[Al1–zSiz]8C6 and (ZrC)m[Al1–zSiz]4C3 are 0.07 and
0.11, respectively.32,33 In addition, no Si was detected in
all Zr3AlC2 grains studied in the composition without Si,
which confirms that Si is not a major impurity in the ZrH2,
Al or C powders (Table 2). STEM-EDX also revealed
the presence of O in the Zr3(Al1-xSix)C2 phase, indicating
the partial oxidation of the powders during processing.
Figure 6 illustrates an average Zr3AlC2 particle on synthe-
sized powders for Si/(Si + Al)=0.1

The source of O is not clear but it could come either
from: (i) contamination with the ZrO2 milling media used
to homogeneously mix the elemental precursors, although
the speed of 150 rpm used in this study compared to the

400 rpm conventionally used to mill5 or mix ceramic pow-
ders is as low as possible to minimize contamination but
high enough to produce homogeneous mixing; (ii) exposure
of powders to air prior to and after synthesis; (iii) TEM
sample preparation (samples were prepared by inserting the
grid in the powders a couple of times without any extra
procedures which makes this step highly unlikely to intro-
duce any O). Considering the total content of O and C of
different particles measured, the stoichiometry correlates
well with the total C expected to be present, which sug-
gests a generic Zr3(Al1–xSix)(C1–yOy)2 phase formation,
consistent with the observed Zr, Al:Si, C:O stoichiometry
of 3:1:2. O does not belong to the family of MAX phases,
however, previous studies have reported oxygen substitut-
ing for C in Ti2AlC at levels as high as 12.5 at.% which
correlates with 50% of C substitution.34-37
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Al SiZr
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FIGURE 5 Bright-field TEM image of the Zr3(Al0.9Si0.1)C2 sample on left with right an EDX spectrum for a Zr3AlC2 grain containing Si.
The EDX spectrum of the Zr3AlC2 sample that does not contain Si (as shown in Figure 6) is included here for comparison

TABLE 2 Elemental contents (wt%), including impurities,
according to Rockwood lithium, which is the ZrH2 supplier of
Chemetall

Element content
Grade G
(Lapauw et al.)6,10 Grade S (This work)

Zr + Hf 97.6 � 0.5% 97.2 � 0.5%

Hf approx. 2% min. 0.2%

H min. 1.9% min. 1.9%

Si max. 0.5% max. 0.1%

Fe max. 0.08% max. 0.1%

Cl max. 0.05% max. 0.02%

Al max. 0.3% –

Ti max. 0.3% –

Mg max. 0.2% –

Cr – max. 0.1%

Ca total max. 0.15% –

Ca soluble max. 0.05% –

1 μm

Zr3AlC2

FIGURE 6 Bright-field TEM image for a Zr3AlC2 grain
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Defect enthalpy formation for O partial substitution has
shown in Ti2AlC that the most likely position for the O to
be located is substituting for C in the MX blocks of MAX
phases.38 However, the second lowest enthalpy for O partial
substitution is for interstitial O in an Al layer at the center
of a bi-triangular pyramid with M atoms at the vertex.39 It
has been experimentally observed in Cr2AlC that O is par-
tially substituting for the Al,40 which was also the most
likely substitution observed in this system in the theoretical
calculations mentioned earlier, but also limits its maximum
content to 3.5 at.%.39 Furthermore, it was predicted for
Zr2AlC and Hf2AlC that O would partially substitute for C
in the case that these phases could be experimentally syn-
thesized. Therefore, our experimental observations qualita-
tively agree well with the prediction for the 211 Zr2AlC and
it seems reasonable to suggest the formation of Zr3(Al1–
xSix)(C1–yOy)2. The presence of O may be undesirable but,
if it comes from the milling media, as a result of a substitu-
tion reaction that stabilizes the MAX phase or as exposure
of the powders in air either before being placed in the hot
press or after synthesis, it is difficult to avoid. Also, car-
bothermal reduction processes require higher temperatures,
above 1657°C in the case of ZrO2,

34 and longer times to be
completed, which would produce a complete degradation of
any MAX phase structure. For example, it was previously
reported that the reaction of ZrO2 with C forms different
ZrCxOy particles under oxidation experiments at tempera-
tures above 1500°C (the same temperature used in this work
to produce the MAX phase).41 Although the presence of O
is undesirable, the ZrCxOy particles stabilize the long-term
oxidation behavior of ZrB2-SiC composites.41 Therefore,
although being at first sight a detrimental feature, the inclu-
sion of O in these materials may turn out to be beneficial:
firstly as it probably stabilizes the structure and secondly
because it could act as a reservoir for internal self-healing
with shorter diffusion paths.38 Further investigations are
undergoing to locate O in the Zr3(Al1–x,Six)C2 structure.

When reporting for the first time the synthesis of the
long-sought Zr2AlC and Zr3AlC2 MAX phases, Lapauw
et al.10 stated that “At this moment, it is not easy to explain
the failure of others to synthesize this Zr-based MAX phase,
which was produced readily and repeatedly in this work.
One possible reason is the use of ZrH2 raw powders, which
might have facilitated the nucleation of these nanolayered
carbides. The results of this work suggest that the key in
synthesizing such complex phases is inextricably linked
with their nucleation. These comments notwithstanding, it is
hereby acknowledged that more work is required to identify
the starting materials and processing conditions favoring the
formation of the hitherto elusive Zr3AlC2 MAX phase”. It
was clear for us that ZrH2 by itself could not be the key rea-
son for successful synthesis of Zr2AlC and Zr3AlC2 since:
(i) we did not succeed in forming Zr2AlC

5 and obtained

Zr3AlC2 with a low yield starting from ZrH2; and (ii) ZrH2

decomposes at only ~800°C and Zr presumably readily
reacts with graphite to form ZrC, so that the actual precursor
for MAX phase formation is ZrC. The findings of the pre-
sent work, however, tend to confirm their hint that nucle-
ation is the key to achieveing Zr3AlC2 (and presumably
Zr2AlC and Zr3(Al1–x,Six)C2) synthesis. During TEM obser-
vations of the Si/(Si + Al)=0.1 reacted sample, it was noted
that Zr5Si3 particles seem to have MAX phase particles
attached to their boundaries (Figure 5), giving the impres-
sion that MAX grains are forming and growing out of Zr5Si3
grains. Such phenomena, the Zr3AlC2 particles collated to
Zr5Si3 particles, was observed repeatedly throughout the
Zr3(Al0.9Si0.1)C2 powders. Zr5Si3 particles thus potentially
serve as substrates for Zr3(Al1–x,Six)C2 nucleation and
growth. This would imply that such heterogeneous nucle-
ation processes provided by Zr5Si3 grains either strongly
enhance the nucleation rate of Zr3(Al1-x,Six)C2 (so that for-
mation rate of the MAX phase gets faster than its dissocia-
tion rate) or that, according to the Classical Nucleation
Theory,42 surface effects decrease sufficiently the barrier of
the MAX phase free energy of nucleation so that nucleation
becomes far more energetically favorable, which leads to an
increased yield as high as 59 wt% for Si/(Si + Al)=0.1.

For the Zr3(Al0.7Si0.3)C2 synthesis attempt, a high MAX
phase content was also obtained although Zr5Si3 was not
found by XRD at the end of the heat treatment. This, how-
ever, does not discredit the hypothesis presented here, since
Zr2Si could have the same influence as Zr5Si3 (lowering
Zr3AlC2 nucleation-free energy by surface effects) and/or
Zr5Si3 could have transformed to Zr2Si after having served
as a fertile ground for the MAX phase nucleation of Si (ow-
ing to the slow depletion of Si diffusing into the MAX
phase): hence Si and/or Zr5Si3 may be present but remain
undetected by XRD owing to low content and/or low crys-
tallinity. To be conservative, we will, however, continue
developing our hypothesis considering more generic ZrySiz
phase(s). Table 2 shows the content of the different ele-
ments from the ZrH2 source powders used in the reports of
Lapauw et al.6,10 and in the present work, according to the
manufacturers’ data. Notably, the major difference between
the two commercial powders concerns Si maximum content:
that of Lapauw et al. is ≤0.5 wt% and in this study it is
≤0.1 wt%. In molar content in the reaction mix for Zr3AlC2

synthesis these values correspond to maxima of about 0.83
and 0.17 mol%, respectively, which is to be compared to the
1.67 mol% of Si introduced for the Zr3(Al0.9Si0.1)C2 synthe-
sis attempt. It is therefore most likely that in both this study
and that of Lapauw et al. during attempts to produce
Zr3AlC2, the ZrySiz helped the nucleation and growth of
Zr3AlC2. However, the attempt of Lapauw et al. led to an
order of magnitude higher Zr3AlC2 yield thanks to the
higher Si impurity level in their ZrH2 powder batch. It is
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notable that the Zr3AlC2 samples with no Si addition contain
7 wt% of Zr3AlC2, which could be related to the small con-
tent of Si (≤0.1 wt%) in the ZrH2 source powders (Table 2).

Retrospectively, the suggested reaction mechanism may
also explain the heterogeneous distribution evidenced by
EDX of Si in the MAX phase grains. Indeed, it is likely
that Si may diffuse from ZrySiz grains into the attached
MAX phase grains while Al is moving in the opposite
direction, in agreement with the notable Al content found
in Zr5Si3 grains during the TEM investigation. This inter-
diffusion would, however, proceed at a slower rate than
that of MAX phase grain growth, so that Si is found
heterogeneously (the closer to the ZrySiz substrate, the
higher the Si content in the MAX phase).

In summary, our investigations and comparison to the
Lapauw et al. results allowed the gathering of a body of cor-
roborating evidence that Si impurities are likely to have a
beneficial impact on Zr3AlC2 (and by extent on Zr3(Al1–x,
Six)C2 and Zr2AlC) nucleation and/or formation yields. A
last indirectly converging proof comes from Ti3AlC2, where
previous studies19,20 observed that, all the other experimental
parameters being the same, Ti3AlC2 yield, purity and grain
size were greatly improved by the deliberate addition of Si
(~1 to 4 at.%) in the reaction powder mix. Interestingly,
Zhou et al.21 even proved this allowed reducing the reaction
temperature. Furthermore, Xu et al.19 found residual traces
of Ti5Si3 when synthesizing Ti3(Al1–x,Six)C2 solid solutions.
This similarity between Zr3AlC2 and Ti3AlC2 syntheses in
the presence of Si further suggests that silicides in general
may help in forming and/or accelerate MAX phase formation
and this could be a lead to follow to try synthesizing new
MAX phases and/or to try improving their purity.

3.2 | DFT study of radiation tolerance

Radiation damage in essence is an accumulation of defects
formed by displacement cascades.11,43,44 Calculation of the
energy of Frenkel defects is important for nuclear applica-
tions, as a low pair formation energy is associated with
greater numbers of more persistent defects which in turn
lead to a loss of the material’s crystal structure. Relations
1-3 are the three key Frenkel reactions in Kr€oger-Vink
notation (ie, VM and Mi will denote a vacant M site and a
M interstitial defect, respectively)45

MM ! VM þMi (1)

AA ! VA þ Ai (2)

XX ! VX þ Xi (3)

For all the MAX phases considered the energetically
favorable interstitials are reported in Table 3.

During radiation damage, the point defects formed by
the displacement cascade will either recombine or occupy
an alternative lattice site forming an antisite defect.11 The
physical meaning of a low-energy antisite formation energy
is that a large proportion of residual defects will remain in
the material.11,46 Relations 4-6 refer to the simple antisite
formation mechanisms:

MM þ AA ! MA þ AM (4)

MM þ XX ! MX þ XA (5)

AA þ XX ! AX þ XA (6)

Interstitial defects preferentially form in the A layer
therefore their association with VA needs to be considered:

Mi þ VA ! MA (7)

Xi þ VA ! XA (8)

Relations 7 and 8 reveal whether Mi and Xi defects will
recombine with VA to form MA and XA antisites, respec-
tively, or remain as interstitials.

In addition, after displacement cascades the overstoi-
chiometry of interstitials may lead to the displacement of
atoms from their lattice sites to interstitial sites with the
concurrent formation of antisite defects. For example, in c-
TiAl the following reaction may take place Tii + AlAl ?
TiAl + Ali.

46 This leads to the reduction in the unfavorable
Tii and increases the concentration of TiAl + Ali.

46 Equiva-
lent reactions were examined in Ti3SiC2 and were deemed
energetically unfavorable.11 The following reactions will be
considered here for completeness:

Mi þ AA ! MA þ Ai (9)

3.3 | Trends and implications of defect
processes

An assessment of the radiation performance of materials is
their propensity to form and accommodate point defects.44

TABLE 3 Positions of the energetically favourable interstitials for the 312 MAX phases considered

M A X

Zr3SiC2 0.77832, 0.84054, 0.25082 0.55056, 0.27774, 0.25086 0.33333, 0.66669, 0.25073

Zr3AlC2 0.75939, 0.84831, 0.25150 0.66870, 0.33984, 0.25077 0.33333, 0.66669, 0.73437

Ti3SiC2 0.75228, 0.70167, 0.25075 0.66381, 0.33063, 0.25073 0.33510, 0.66492, 0.24999

Ti3AlC2 0.27651, 0.28686, 0.25068 0.66033, 0.33072, 0.25078 0.33588, 0.66414, 0.25002
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This is because materials can be destabilized by the accu-
mulation of defects, which can in turn lead to volume
changes and microcracking.44,47,48 A consequence of the
displacive radiation is an athermal concentration of Frenkel
pairs. The radiation tolerance of a material will be deter-
mined by the resistance to the formation of persistent popu-
lations of Frenkel (and antisite) defects, therefore a high
defect energy is a factor of radiation tolerance.44

Previous experimental studies49,50 determined that
Ti3AlC2 is more tolerant to radiation damage compared to
Ti3SiC2. For the analogous MAX phases Zr3AlC2 and
Zr3SiC2 considered here there are limited synthesis results
on Zr3AlC2 (Ref. 10) and Zr3(Al0.9Si0.1)C2 (the present
study) but no radiation damage studies. On the grounds of
the defect processes investigated by DFT (Tables 4 and 5)
it can be inferred that Zr3AlC2 will be more radiation toler-
ant than the hypothetical Zr3SiC2. This is because the low-
est energy intrinsic disorder mechanism (relation 2, the
Frenkel reaction) in Zr3AlC2 is higher in energy compared

to Zr3SiC2 (1.46 eV and 1.40 eV, respectively, refer to
Table 5) and therefore there will be a lower concentration
of Frenkel defects in Zr3AlC2. On these grounds, compar-
ing with Ti3AlC2 and Ti3SiC2 it can be inferred that these
Ti-based MAX phases have even higher Frenkel energies
and therefore they can be superior in a radiation environ-
ment (Tables 4 and 5).

For Zr3AlC2 the Frenkel formation energy of Al is sig-
nificantly lower compared to the Frenkel formation energy
of Zr and C. This implies that the population of Ali and
VAl will be higher than the other point defects. Interest-
ingly, for Zr3AlC2 and Zr3SiC2 relation 9 is favorable by –
0.27 eV and –0.17 eV respectively (refer to Table 5). This
indicates that there is a direct route to transform Zri to ZrAl
and Ali (and Zri to ZrSi and Sii for Zr3SiC2). This is in
contrast to that calculated for the Ti-based 312 MAX
phases considered here where Relation 9 has positive ener-
gies (refer to Table 4). Although the kinetics of this pro-
cess need to be considered in Zr3SiC2 it is noteworthy that
the high mobility of Sii in the analogous Ti3SiC2 suggests
a rapid recovery mechanism for Sii.

A trend that was identified in all the 312 MAX phases
considered here is that the Mi preferentially fill a VA (rela-
tion 7), whereas the Ci remains an interstitial (relation 8).
This implies that MA antisite defects will exist after a dis-
placement cascade; however, C is expected to either exist
as an interstitial species or at its crystallographic site.
Importantly, in the Ti-based MAX phases this process is
significantly more favorable than in the Zr-based MAX
phases. This implies that the concentration of MA antisites
via this process will be more pronounced in the Ti-based
MAX phases. This process will only be significant after
irradiation given that the formation of the Mi defects via
the Frenkel reaction (relation 1) will be prohibitive owing
to the high reaction energies for all the MAX phases con-
sidered here (6.12-7.32 eV, refer to Tables 4 and 5). In
any case the radiation-damaged Ti-based MAX phases will
more readily form MA antisite defects, reducing their Mi

and VA concentrations. The equivalent process for the for-
mation of XA antisites (relation 8) is not energetically
favorable for any of the MAX phases considered here
(0.06-0.46 eV, refer to Tables 4 and 5). Nevertheless,
given that Zr3AlC2 is likely to be more compatible to the
Zr-alloy of the cladding it is a good candidate material for
passive safety protection of nuclear fuel cladding. How-
ever, its radiation tolerance and oxidation resistance at high
temperature will need to be determined.

Defect reactions can provide important information on
the radiation tolerance of MAX phases. However, they
should be verified by experiments and theoretical calcula-
tions of migration energy barriers and cascade processes.51-
56 The present results are consistent with previous DFT
studies for Ti3AlC2 and Ti3SiC2 MAX phases.11,53

TABLE 4 Calculated defect reaction energies (in eV, for relations
1-9) for Ti3AlC2 and Ti3SiC2

Reaction Ti3AlC2 Reaction Ti3SiC2

TiTi?VTi + Tii 7.32 TiTi?VTi + Tii 7.30

AlAl?VAl + Ali 3.40 SiSi?VSi + Sii 3.19

CC?VC + Ci 3.17 CC?VC + Ci 3.09

TiTi + AlAl?TiAl
+ AlTi

3.27 TiTi + SiSi?TiSi
+ SiTi

4.65

TiTi + CC?TiC + CTi 10.52 TiTi + CC?TiC + CTi 13.44

AlAl + CC?AlC + CAl 9.26 SiSi + CC?SiC + CSi 6.28

Tii + VAl?TiAl -3.25 Tii + VSi?TiSi �2.69

Ci + VAl?CAl 0.31 Ci + VSi?CSi 0.06

Tii + AlAl?TiAl + Ali 0.15 Tii + SiSi?TiSi + Sii 0.50

TABLE 5 Calculated defect reaction energies (in eV, for relations
1-9) for Zr3AlC2 and Zr3SiC2

Reaction Zr3AlC2 Reaction Zr3SiC2

ZrZr?VZr + Zri 6.12 ZrZr?VZr + Zri 6.78

AlAl?VAl + Ali 1.46 SiSi?VSi + Sii 1.40

CC?VC + Ci 3.47 CC?VC + Ci 2.78

ZrZr + AlAl?ZrAl +
AlZr

3.46 ZrZr + SiSi?ZrSi +
SiZr

4.96

ZrZr + CC?ZrC + CZr 10.60 ZrZr + CC?ZrC + CZr 14.14

AlAl + CC?AlC + CAl 8.43 SiSi + CC?SiC + CSi 4.84

Zri + VAl?ZrAl -1.72 Zri + VSi?ZrSi �1.57

Ci + VAl?CAl 0.46 Ci + VSi?CSi 0.42

Zri + AlAl?ZrAl + Ali -0.27 Zri + SiSi?ZrSi + Sii �0.17
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4 | CONCLUSIONS

This study has considered the powder synthesis of Zr3(Al1–
xSix)C2 MAX phases. It is determined here that Zr3(Al1–xSix)
C2 forms, with some O contamination therefore producing
Zr3(Al1–xSix)(C1–yOy)2 (with 0≤y≤0.5 and with x up to about
0.1). Furthermore, the characterization of the obtained pow-
ders and comparison with analogous work10 suggest that the
key for Zr3AlC2 and Zr3(Al1–xSix)C2 successful synthesis is
to surpass the nucleation free energy barrier without favoring
competitive phase formation. This was presumably achieved
here and in the Lapauw et al.10 study owing to a heteroge-
neous MAX phase nucleation process occurring at the sur-
face of ZrySiz phase(s). Maximum yield reported in this
study is 59 wt%, which is the same yield reported by
Lapauw et al.10 for Zr3AlC2. As Si additions to Ti3AlC2

powder reaction mixes had already proven to ameliorate the
quality of the produced compound,19-21 it is envisaged that
Si impurities or deliberate additions could by such mecha-
nisms help in forming or improving the quality of several
other MAX phases. The formation of Zr3(Al1–xSix)C2 is a
significant extension of the MAX phase family and should
be further investigated experimentally in view of its potential
nuclear applications.

A preliminary investigation of the radiation resistance of
some M3AX2 phases (M=Zr or Ti; A=Al or Si, and X=C)
was conducted. For the Zr3AlC2 and Zr3SiC2 MAX phases
considered the dominant intrinsic disorder mechanism was
calculated to be the Frenkel reaction (relation 2). Its higher
energy for Zr3AlC2 implies its better radiation tolerance. The
even higher energy for Ti3AlC2 implies it will be an even
better material in a radiation environment, however, Zr3AlC2

may be more compatible in a Zr-based alloy nuclear fuel
cladding system. Moreover, Zr3AlC2 is a hard-to synthesize
material and success with Zr3AlC2 coatings for Zr-based
alloys for nuclear fuel cladding systems would depend on the
possibility of producing coatings by CVD or PVD, which is
far from the purpose of this study.

Finally, here we have concentrated on the defect reac-
tion mechanisms but not on the impact of the concentration
of point defects on the lattice stability. This will influence
the propensity of the material to amorphize in a radiation
environment. The other issue that needs to be investigated
is the kinetics of the processes: that is, the migration
energy barriers for point defects such as interstitials and
vacancies to diffuse and annihilate harmlessly by recombi-
nation in a process that is reverse to the Frenkel reactions.
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