
Networked body sensing: enabling 
real-time decisions in health and 
defence applications  
Rednic, R. , Kemp, J. , Gaura, E. and Brusey, J. 
 
Author post-print (accepted) deposited in CURVE March 2012 
 
Original citation & hyperlink:  
Rednic, R. , Kemp, J. , Gaura, E. and Brusey, J. (2012) 'Networked body sensing: enabling real-
time decisions in health and defence applications' in 2011 International Conference on 
Advanced Computer Science and Information System (ICACSIS) Proceedings (pp: 17-24). 
IEEE. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6140736 
 
 
Publisher statement: © 2012 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 
 
 
 
 
 

CURVE is the Institutional Repository for Coventry University 
http://curve.coventry.ac.uk/open  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228143393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6140736
http://curve.coventry.ac.uk/open


Networked Body Sensing: Enabling real-time
decisions in health and defence applications

Ramona Rednic, John Kemp, Elena Gaura, James Brusey
Cogent Computing Applied Research Centre,

Faculty of Engineering and Computing, Coventry University, UK
Email: aa6418@coventry.ac.uk

Abstract—This paper presents the application sce-
nario, conceptual overview and implementation of a
monitoring system targeted at monitoring EOD suit
wearers during missions. The system’s aim is to deliver
prediction of heat stress risk in the operative and provide
actuation of a cooling system integrated within the suit.
Prior work established that such prediction requires
real-time autonomous processing of skin temperature
and body acceleration data, and thus a system imple-
mentation is presented based on two interacting sub-
systems that perform the required sensing and data
processing. Posture classification is performed with an
accuracy of 96.1%, and a heat stress prediction algorithm
is demonstrated with an overall accuracy of 88.5% when
predicting the occurrence of heat stress within the next
2 minutes.

I. INTRODUCTION

A range of Body Sensor Network (BSN) systems
have been proposed in the literature for monitoring the
human body towards timely detection of health-related
problems. The developers of these systems have tar-
geted a variety of environments, but the focus of the
sensing can be broadly split into two categories: phys-
iological monitoring (skin temperature and heart rate),
and posture/activity monitoring (using accelerometers
and/or gyroscopes). Current systems are generally ei-
ther designed to capture the evolution of particular
parameters and ensure that alarms are generated when
parameters stray outside a safe range, or to provide
general monitoring solutions for patient status within
a hospital or similar environment. The focus is thus on
gathering and presentation/storage of data, rather than
on autonomous real-time decision making. A survey
of literature in the area shows that the field has, in
this way, resolved many of the challenges related to
data acquisition. The remaining challenges are largely
related to data processing, summarisation, effective
visualisation, and automated actuation of connected
equipment in real-time, along with inferring decisions
and making predictions on the basis of acquired data.

The contribution brought here is the concept and im-
plementation of a end-to-end, real-time, on-body pre-
diction system for reducing health risks due to Uncom-
pensable Heat Stress (UHS). This involves gathering
physiological data (multi-point skin temperature) and
postural information (multi-point body acceleration)
for the purpose of autonomous real-time modelling

and prediction. The work is based on empirical data
collected from Explosive Ordnance Disposal (EOD)
operatives in mission-like protocols.

The paper is structured as follows: Section 2
presents examples of BSN-based systems from the lit-
erature targeted at physiological parameter monitoring
in dangerous environments, and postural monitoring
for general healthcare. Section 3 presents the appli-
cation scenario that is considered in the work here.
Section 4 gives a conceptual overview of the monitor-
ing system developed by the authors, while Section 5
details the implementation of the system in terms of
two sub-systems. Finally, Section 6 summarises and
concludes on the work here.

II. RELATED WORK

A. BSNs in dangerous environments: physiological
parameter monitoring

A range of BSN systems have been proposed in
the literature for monitoring the human body towards
assessment of health-related problems. The developers
of these systems have targeted a variety of applica-
tions, often with a focus on monitoring patients in first
response, hospital, or physiotherapy environments [6],
[7], [10] or workers in dangerous environments.

A good example of a commercial product designed
for the purpose of monitoring personnel carrying out
missions in dangerous environments is the LifeShirt by
VivoMetrics (evaluated by Heilman and Porges [8]).
The LifeShirt is aimed at personnel engaged in fire-
fighting, hazardous materials training, emergency re-
sponse, industrial cleaning using protective gear, and
bio-hazard-related occupational work. The full system
is supplied in three parts: a lightweight, machine
washable chest strap with embedded sensors; a data
receiver; and VivoCommand software for monitoring
and data analysis. The sensors embedded in the chest
strap monitor the subject’s breathing rate, heart rate,
activity level, posture, and skin temperature at a single
point, while the VivoCommand software displays the
gathered data (along with 30 second average trends)
in real-time on a remote PC.

A second notable system is the Smart Vest proposed
by Pandian et al. [17]. The focus of their work was
on traditional Wireless Sensor Network (WSN) issues
such as power consumption, security, wireless network



formation, and network communication protocols. In
this system, a group of wireless sensors monitor a
variety of physiological parameters: electrocardiogram
(ECG) trace, heart rate, blood pressure, body temper-
ature, galvanic skin response, arterial blood oxygen
saturation (SaO2), respiratory rate, electromyogram
(EMG) trace, electroencephalogram (EEG) trace, and
movement via three-axis accelerometer. These sensors
communicate with an on-body sink node which for-
wards the results wirelessly to a remote monitoring
station.

Finally, the LifeGuard system was proposed by
Mundt et al. [16]. This device is intended as a gen-
eral solution for monitoring of astronauts, soldiers,
firefighters and first responders. The LifeGuard sys-
tem consists of an on-body Crew Physiologic Ob-
servation Device (CPOD) and a portable base sta-
tion. The CPOD is capable of logging gathered data
as well as wirelessly transmitting data to the base
station via Bluetooth. The sensors available include:
accelerometers; ambient, skin, and core temperature
via thermistor probes; ECG and respiration via chest
electrodes; peripheral blood oxygen saturation (SpO2);
and systolic and diastolic blood pressure via a cuff-
based device. Heart rate is derived from the ECG
output. The device was tested in several environments
including underwater (as a space station analog) and
at high altitude.

Works such as those above focus on capturing
large amounts of physiological data which can then
be transmitted to a remote receiver for visualisation,
storage, or later processing. In-network processing and
autonomous operation in these applications are not
common topics of research.

B. BSNs in general healthcare: posture monitoring

Posture and activity tracking are relatively well cov-
ered research subjects, with a number of branches and
applications, including activity detection [13], [17],
position recognition [14], [3], real time movement
recognition for martial arts [9], and gait measure-
ment [2].

Several examples of systems for posture classi-
fication exist that were developed for patient care
applications, often involving patient rehabilitation. One
such system was developed by Pansiot et al. [18]. This
system integrates an ear-worn activity recognition (e-
AR) sensor with wall mounted video camera based
systems that extract silhouettes from the video image
and also extracts optical flow to detect motion. Two
types of information are derived from the e-AR sen-
sor: tilt, and a movement frequency spectrum. Sensor
fusion is performed, based on a Gaussian Bayes EM
classifier, using the e-AR and silhouette information.
Some activities are classified perfectly, whilst others
(e.g. sitting) have a recall as low as 0.47.

Other systems detect posture-related events, such
as steps while walking. An example of this is the

system implemented by Ying et al. [20] for automatic
step detection for patients with Parkinson’s disease.
Several methods of detection have been evaluated by
Ying. The system implemented consists of a dual
axis accelerometer (ADL322), and passive low-pass
filtering. The Peak-detection method was concluded to
be most suitable for deployment on microprocessors
with limited computing power, as it can be written as
a fixed-point algorithm. Step recognition has also been
researched by Milenkovic et al. [15] as part of a wider
personal health monitoring system.

It has been observed, as described above, that pos-
ture recognition in itself is a widely researched topic,
with developed systems delivering a high level of ac-
curacy in each specific targeted application. However,
the generation of postural or activity information is
often a goal in itself and is often performed offline. In
contrast, the work here requires postural information
to be generated in real-time in order to support fur-
ther predictive modelling operations performed by the
monitoring system.

III. APPLICATION SCENARIO

This paper treats one scenario that reflects the need
for real-time actuation of wearable devices, prediction
of behaviour from the data and ability to mine in
real-time across a mix of parameters (physiological
and postural). The scenario is that of monitoring EOD
operatives during missions—a specific application ex-
ample taken from the wider range of applications that
may be targeted in the defence field and applications in
the wider realm of workers in dangerous environments
(such as described in Section II-A). The physiological
strain undergone by EOD operatives during missions
is well documented, as well as the possible reme-
dial actions: 1) heat stress, particularly the dangerous
condition of UHS, is a concern for wearers of EOD
suits [5], [19], 2) effective prevention of heat stress
in an EOD operative requires the use and predictive
actuation of adequate in-suit cooling systems [11], and
3) such prediction relies on knowledge of posture. In
addition to heat-related health problems, the concentra-
tion of Carbon Dioxide (CO2) within the helmet may
potentially reach dangerous levels due to the lack of
natural ventilation [12], and thus predictive actuation
of the cooling system can also bring benefits in this
regard. In order to sense physiological data and provide
effective actuation in real-time, a natural solution was
that of a BSN-based design.

The system described here was thus developed as
a monitoring system to enable increased safety of
EOD operatives through: i) monitoring of physiologi-
cal parameters, ii) inference of health state information
from data, iii) autonomous actuation of the in-suit
cooling system, and iv) provision of appropriate data,
information and alerts to both the remote observer and
the operative as appropriate.
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Figure 1. Conceptual design of prototype system.

IV. THE ENABLING CONCEPT

One of the central concepts driving system develop-
ment in this scenario is that data processing must be
performed by system devices mounted on the body.
Autonomous operation is essential because a long-
range radio link to a central location will not nec-
essarily be available due to the use of radio jamming
devices by the operative (in order to prevent remote
detonation of the explosive device). A relatively pow-
erful hardware platform is thus required to support
real-time on-body data processing, particularly during
system development when a variety of algorithms are
tested for suitability.

Due to the need for autonomous operation, the
system described here is based around the use of two
control loops as presented in Figure 1: one autonomous
loop contained within the EOD suit, and one loop
partially external to the suit involving the mission ob-
server. As an outcome of sensing and data processing,
the internal autonomous loop performs actuation of the
cooling system and provides feedback to the operative,
while the external loop enables the remote observer
to plan strategically. The following stages within the
loops are:

Sense: Physiological data such as multi-site skin
temperature, heart rate, posture and helmet CO2 con-
centration is gathered, along with acceleration data
from multiple body segments. Calibration and outlier
rejection are applied to the data.

Model: The Model stage converts sensor values into
an estimate of the state of the suit wearer and their
immediate environment. Alerts are also generated for
individual physiological parameters should abnormal
or dangerous conditions be identified. A variety of
sensor fusion based information extraction and mod-
elling strategies are also part of this stage, primarily:
determination of posture, prediction of future heat
stress conditions, and prediction of helmet CO2 levels.

Decide: The state information extracted in the
Model stage (specifically thermal and CO2 informa-
tion) is supplied to a decision-making engine, which

produces the pattern for actuation of the cooling sys-
tem.

Act: At the Act stage, the result of the Decide
stage is transformed into hardware commands and exe-
cuted to provide the required cooling level. Additional
outputs can also be provided in the form of haptic
feedback to the suit wearer based on alerts generated
by the Model stage or outputs of the Decide stage.

Transmit: Information and, optionally, data is
transmitted to the remote mission observer, for storage
and visualisation.

Visualise: The information and, optionally, data
reported by the instrumentation system is displayed to
remote observers on a computer. Though the system is
capable of operating autonomously to achieve the goal
of providing the EOD operative with increased com-
fort and safety, this component of the system brings
a mission observer (who can judge the information
within the larger context of the mission) into the loop.
The observer is provided with the ability to monitor
the state of the subject and check that the system
is functioning correctly. He/she can also remotely
place requests for detailed data to be delivered by the
instrumentation system.

Mission plan changes: The remote observer may
choose to implement changes to the mission plan in
response to the information provided by the instrumen-
tation system. For instance, if the system indicates a
consistently high chance of heat stress occurring in
the operative, then they may be required to return to
the base station more frequently to take in fluids and
install new cooling system batteries.

V. END-TO-END IMPLEMENTATION OF A HEALTH
STATE PREDICTION SYSTEM

Following from the scenarios presented in Sec-
tion III, and as shown in Figure 2, a prototype health
state prediction system was implemented, based on
two interacting sub-systems, with the goal of gath-
ering health related data, providing prediction-based
actuation of safety equipment, and allowing remote
visualisation of relevant information. The two sub-
systems were named Medusa2 (responsible for gather-
ing physiological and environmental data and running
the predictive algorithms) and Class-act (responsible
for gathering body segment acceleration data and pro-
viding postural information to the Medusa2 system).
The Medusa2 system also demonstrates several addi-
tional robustness related features with regard to sensor
and communications errors (particularly for the long-
range communications link to the remote monitoring
station).

Figure 3 illustrates the division of system nodes
between suit segments and the placement of sensors
for a fully integrated monitoring system of the type
proposed. A Data Acquisition Node (DAN) is allocated
to each suit segment. Data is collected by the sensors
and passed to their associated DAN via a wired con-
nection. A Data Processing Node (DPN) is located in
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Figure 2. EOD operative monitoring system overview. Sensor types shown on the operative: white—skin temperature; yellow—
accelerometer; blue—helmet CO2 ; green—pulse oximeter (pulse rate and blood oxygenation).
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Figure 3. Medusa2/Class-act system node and sensor configuration.

the jacket segment of the suit to enable easy access to
the cooling fan electronics, which are fully contained
within this segment for both a fan blowing air into the
jacket and one providing air into the helmet. While the
figure demonstrates the configuration for the integrated
case, the prototype Medusa2 and Class-act systems are
described separately below to emphasise the unique
tasks carried out by each.

A. Medusa2: gathering physiological data

The focus of the Medusa2 sub-system was on two
central elements: 1) predictive actuation of the in-
suit cooling system to prevent heat stress occurring
in the EOD operative, and 2) robust autonomous
operation given the potential for sensor and commu-
nication failures in the harsh conditions of the real-
world deployment scenario considered here. The heat
stress prediction algorithm used is described in Sec-
tion VI. To help ensure that the system could operate
autonomously, several features were implemented that
reduce the impact of sensor and communication errors
that may occur:

• The skin temperature sensors are mounted in pairs
at each location, and the data from each pair is
processed jointly via a Kalman filter. This means
that if one sensor in a pair fails then the system

can continue to function using the data from the
remaining sensor.

• A linear extrapolation feature is implemented on
the DPN so that if communication fails temporar-
ily with a DAN, the data processing algorithms
can continue to function using estimates of the
current data values.

• Data is buffered on the DPN prior to trans-
mission to the base station, and a system of
receipt confirmations is implemented. This allows
retransmission of data in the event that the long-
range link is temporarily interrupted.

• Prioritisation of data is implemented on the DPN
so that important information and alerts are trans-
mitted before less important data. This works
with the buffering feature such that new data is
prioritised over historical data once connectivity
is restored after a communications loss.

A functional evaluation of the system was performed
to ensure that it met the requirements of the applica-
tion. The battery life was found to be around 4 hours,
which is sufficient for the EOD application. The Blue-
tooth communication links used in the prototype were
found to be able to support a maximum of 85 “data
units” per second (a data unit being a distinct piece of
data or information, for example a skin temperature
measurement), which is in excess of the expected
requirements of the system, including the additional
postural data generated by the Class-act system. The
link latency was found to be 0.04 seconds, which is
significantly shorter than the 1 second sampling period
used for most of the Medusa2 sensors. Finally, the
maximum link range when using the Bluetooth radio
was found to be between 5.5 metres and 63.5 metres
depending on the local environmental obstructions.
While this does not satisfy the requirements of the ap-
plication (in which the operative may be over 100 me-
tres away from the remote station), it was sufficient
for the prototype testing and evaluation. In all cases,
the link range would be sufficient for node-to-node
communications.
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B. Class-act: deriving postural information

The focus of the Class-act system is to gather
acceleration data from various points on a subject’s
body and determine their current posture in real-
time. In order to achieve this, the C4.5 algorithm is
used to learn a decision tree capable of performing
the classification. Decision trees as a classifier type
provide several advantages. First, the C4.5 algorithm
pushes attributes that provide the most information
to the top of the tree. This feature makes it easy to
see whether some sensors are redundant or at least,
less useful, in performing the classification. Second,
the derived decision tree is readily converted into
program code. Third, since the resulting code does
not contain loops, a strict real-time limit can be set
for its operation. Finally, due to the nature of C4.5
decision trees, a monotonic transform on any feature
has no effect on the resultant tree in terms of clas-
sification performance. In principle, basic calibration
of accelerometers is performed using a monotonic
transform and therefore, a decision tree based on
raw accelerometer measurements will perform just the
same as a decision tree based on calibrated accelerom-
eter measurements. This was shown in the context of
classifying acceleration data by Brusey et al. [4].

The data processing flow for training the posture
classifier using experimental data is shown in Figure 4.
Note that a median filter with a window size of three
samples is applied to help eliminate single-sample
transient errors. A sliding window of 30 samples
is used for the feature extraction process. Both the
raw data and the selected data feature are used for
classification. The feature computation is required in
order to differentiate static from dynamic postures. In
previous work by Brusey et al. [4] the need for features
is investigated in depth.

The training and testing set for the system consisted
of data gathered from 40 experimental trials across
17 subjects (a total of 6 hours and 20 minutes of
data). The subjects were required to perform particular
postures along with tasked activities (for example
kneeling while moving items from one container to
another). Data was gathered for eight postures deter-
mined (via communication with application experts)
to be the most commonly encountered during EOD
missions: sitting, standing, walking, kneeling, crawl-
ing, and laying down (on one side, front, and back).

 36.5

 37

 37.5

 38

 38.5

 32  33  34  35  36  37  38  39

R
e

c
ta

l 
te

m
p

e
ra

tu
re

Mean skin temperature

Figure 5. Subject mean skin temperature and rectal temperature.
The solid line indicates equal mean skin and rectal temperatures.

Leave-One-Subject-Out Cross-Validation (LOSOXV)
was adopted as a validation method for the system.
The best results were obtained when using windowed
variance as a data feature, with the sensors placed on
the upper arms, forearms, chest, thighs, and calves.
In this configuration, the accuracy overall across all
eight postures and 17 subjects was 96.1%. The Class-
act sub-system thus met well the requirements for the
predictive algorithm to be successfully implemented.

VI. HEAT STRESS PREDICTION

Due to the danger of heat stress in the EOD
operative, importance was placed on developing an
algorithm capable of providing autonomous actuation
of the in-suit cooling system prior to heat stress
occurring.

The heat stress prediction algorithm developed is
a probabilistic model based on a Dynamic Bayesian
Network (DBN) incorporating the subject’s current
posture/activity, the cooling applied to the subject, and
the subject’s mean skin temperature as a proxy for core
temperature. In this model, it is assumed that activity
At, cooling level Ct, and mean skin temperature Tsk,t
are sufficient to allow prediction of future mean skin
temperature and that the tuple 〈A,C, Tsk〉 has the
Markov property. While core body temperature is the
critical parameter in determining heat stress, Figure 5
demonstrates that, for EOD suit wearers, core temper-
ature correlates with skin temperature once the latter
exceeds approximately 36 °C, making it possible to use
skin temperature as a proxy for core temperature when
considering effects such as heat stress. Two additional
parameters must be determined prior to training and
using the predictor:

1) A unit of time defining how far into the future
the prediction is needed. In this work, two minute
prediction is used and so t+ 1 is taken to mean
“the current time plus two minutes.”

2) The mean skin temperature to be used as a “dan-
ger” threshold. Here, a relatively low threshold
value of Td = 36.5 °C is used due to the safety
limits of the trials used to form the model.



The model allows us to predict the probability of
heat stress by finding the probability of the threshold
temperature being reached or exceeded. For brevity, d
(for “danger”) is defined to be the event Tsk,t+1 > Td,
and d̄ is its negation. Therefore, the goal is to deter-
mine P (d|Tsk,t, At, Ct). Training data gathered from
experimental trials using the suit is used to find Prob-
ability Density Functions (PDFs) P (Tsk,t|d,At, Ct)
and P

(
Tsk,t|d̄, At, Ct

)
and then Bayes’ rule is applied

to find P (d|Tsk,t, At, Ct) via

P (d|Tsk,t, At, Ct) = αP (Tsk,t|d,At, Ct)P (d,At, Ct)

where α is a normalising constant such that the condi-
tional probability of d and d̄ sum to 1. To form a good
fit for the available data, each PDF is approximated
using a Gaussian Kernel Density Estimator.

To evaluate the predictor, data from a total of
26 trials was used [1]. Twelve subjects underwent a
mission-like protocol while wearing the EOD suit at
40 °C ambient temperature and three different in-suit
cooling variations—no cooling (NC), chest cooling
(CC), and head cooling (HC). The trials consisted
of four identical back-to-back cycles of: walking on
a treadmill (3 mins), kneeling while moving weights
(2 mins), crawling (2 mins), postural testing (2.5 mins),
arm exercise while standing (3 mins), and cognitive
tests while sitting (6 mins). The first cycle performed
in each trial was excluded from the data used in the
analysis here due to non-representative rapid changes
in skin temperature during this cycle.

Figure 6 shows mean skin temperature against P (d)
for each of the three cooling variations.

Applying the trained model to a test data set yields
the graph in Figure 7. For evaluation purposes, the
output from the predictor is classed as correct if the
generated probability is over 0.5 when the future mean
skin temperature is over 36.5 °C, and vice versa (the
regions shown shaded grey in Figure 7). Given this
criteria, the overall accuracy of the predictor was
88.5% for the test data used. This demonstrates that
the model is a usable predictor of whether the danger
threshold will be exceeded.

VII. CONCLUSIONS

This paper presented the application scenario and
conceptual overview of a monitoring system targeted
at monitoring EOD suit wearers during missions.
The aim was to provide predictive actuation of the
in-suit cooling system to prevent heat stress in the
operative, and such prediction required the real-time
autonomous processing of skin temperature and body
acceleration data. Based on the scenario and system
concept, a system was described that is composed of
two independently developed, but co-dependent, sub-
systems responsible for different elements of data gath-
ering and modelling. The first sub-system, Medusa2,
gathers physiological data such as skin temperature
and performs predictive modelling to determine the
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Figure 6. Mean skin temperature against P (Tsk,u ≥ Td|Tsk,t)
for three cooling variations with Td = 36.5 °C. Top: no cooling.
Centre: chest cooling. Bottom: head cooling. Curves are shown
for individual activities and for an aggregate (as would be used
if activity information is not known).
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future probability of heat stress (with an accuracy
of 88.5% for a two minute prediction). However, for
this to occur, postural information is required as an
input. The second sub-system fulfils this requirement
by sensing body acceleration data and determined the
current posture (with a 96.1% accuracy over the full
set of eight postures selected and 17 training/testing
subjects). Both sub-systems have been extensively
evaluated in laboratory settings during mission-like
protocols.

The combination of small lightweight sensing de-
vices (in this case temperature sensors and accelerom-
eters), machine learning techniques, and Dynamic
Bayesian Networks together provide a powerful so-
lution to automatic posture recognition, predictive
physiological modelling, and pre-emptive actuation of
safety equipment. The shift away from sensing as an
end in itself and towards autonomous real-time data
processing provides a range of benefits and brings
sensor network systems a step closer to becoming self-
contained knowledge-driven solutions for a variety of
applications.
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