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Abstract  

 

Hydropower barriers are among the most conspicuous anthropogenic alterations to natural 

riverine connectivity, resulting in species-specific effects linked to dispersal abilities, 

especially swimming performance. They may present a particular problem for small-bodied 

‘non-sport fish’, such as those that characterize the freshwater communities of temperate 

regions in the Southern Hemisphere. Recent studies have suggested that nature-like 

fishways could ensure passage of diverse fish assemblages through hydropower barriers. 

Through experiments performed in a swim tunnel, we present, for the first time, fishway 

design criteria for two non-sport species endemic to Chile, a country experiencing rapid 

hydropower development. Incremental velocity tests showed that Cheirodon galusdae and 

juveniles of Basilichthys microlepidotus were capable of very similar standardized critical 

swimming speeds of 69.7 and 69.6 cm s
-1
 respectively. When expressed in units of body 

lengths, C. galusdae was capable of very high critical speeds of 16.2 bl s
-1
, whereas for B. 

microlepidotus this was 7.6 bl s
-1
. However, fixed velocity tests revealed that the swimming 

endurance of the latter species was slightly higher. Dimensionless analysis showed a clear 

relationship between fatigue time and fish Froude number, similar to that already described 

for subcarangiforms. Based on these results we present fishway design curves indicating a 

transition from sustained to prolonged swimming at a fishway length of 15 m. Our results 

show that the swimming capacity of these species is well-suited to the mean flow velocity 

field described for nature-like fishways. However, more work is required to understand the 

effects of turbulence on the passage of non-sport species. 

 

Keywords: River fragmentation, small body size fish, Multispecies fish-passes, Swimming 

capacity. 
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INTRODUCTION 

Alterations to natural riverine connectivity have strong implications for fish 

population processes and community structure (Peres-Neto and Cumming, 2010; Webb and 

Padgham, 2013). Loss of physical connectivity is presumed to be one of the most 

generalized and important human induced alterations in riverine ecosystems, and it is 

frequently perceived as one of the main causes in the decline of freshwater fish species 

(Branco et al., 2012). Intermittent stream connections as well as permanent features such as 

large waterfalls are natural barriers (Roberts et al., 2013), but hydroelectric dams are 

among the most conspicuous anthropogenic barriers affecting riverine connectivity (Morita 

and Yamamoto, 2002). These barriers result in species-specific effects based on dispersal 

abilities.  

‘Non-sport fish’ is a term used to describe freshwater species with small body size 

(< 150 mm total length when adults), which is the case for most native species in temperate 

regions of the Southern Hemisphere (see e.g. Boubée et al., 1999, for New Zealand species 

and Link and Habit, 2015, for Chilean species). Due to their small body size, they are 

generally not commercially important, but several are endemics and have high conservation 

value (Habit et al., 2006). Independently of their size, riverine fish species depend on 

connectivity along river systems to complete their life cycle and maintain genetic diversity 

and gene flow. Typically non-sport fish do not present a distinctive migratory behavior and 

are expected to have weaker swimming abilities than larger species (Belwood and Fisher, 

2001). Accordingly, they may not suffer consequences of altered connectivity as severe as 

large diadromous species because they might be able to fulfill their life cycle at the river 

reach scale. However, over a long time period, habitat fragmentation could drive extinction 

of some species, due to loss of genetic diversity leading to a decline of fitness (Thomas, 

2014). Indeed, in the absence of physical barriers non-migratory species can display 

surprisingly extensive gene flow patterns (Roberts et al., 2013) and idiosyncratic genetic 

diversity and gene flow in the same river (Victoriano et al., 2012). Therefore, 

fragmentation due to dams could have a large impact on these endemic non-sport species, 

which has not been well studied.  

Besides translocation, the technical alternative for mitigation of fragmentation 

caused by hydropower dams, and thus for diminishing losses in riverine connectivity, is the 

construction of fish passes or ‘fishways’. With few exceptions work has been focused on 

ecohydraulic design criteria for sport fish species of the Northern Hemisphere, particularly 

salmonids (e.g. Brett and Glass, 1973; Taylor and Foote, 1991; Booth et al., 1997; see 

Roscoe and Hinch, 2010, for a review). Equivalent information is scarce or non-existent for 
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most of the non-sport freshwater fish species, with some exceptions for galaxiids in New 

Zealand (Boubeé et al., 1999; Nikora et al., 2003; Baker and Boubeé, 2006; Plew et al., 

2007; Doehring et al., 2011; Doehring et al., 2012).  

The hydraulic design of fish passes requires basic information on fish swimming 

abilities. Important parameters are related to swimming modes (Brett, 1964; Brett, 1967; 

Beamish, 1978; Hammer, 1995; Drucker, 1996; Sfakiotakis et al., 1999), endurance (Brett, 

1964; Brett, 1967; Beamish, 1978; Jones et al., 1974; Videler and Wardle, 1991; Hammer, 

1995), turbulence effects (Nikora et al., 2003; Lupandin, 2005; Liao, 2007; Lacey et al., 

2012), and behavior (Plew et al., 2007; Russon and Kemp, 2011). Swimming performance 

is especially important in determining when velocities are likely to exceed the endurance 

(e.g. for culverts) or burst (e.g. for orifice and weir fish ladders) swimming speeds (Russon 

and Kemp, 2011). In particular, the fatigue or critical swimming speed (Brett, 1964) 

corresponds to the velocity at which oxygen consumption is maximum, thus being a 

measure of the maximum aerobic capacity of fish (Hammer, 1995) The critical swimming 

speed is determined through the incremental velocity test (Brett 1964; Brett, 1967; Beamish 

1978). Though a number of internal and external factors (e.g. population and body size, 

season and temperature, sex, water quality, light and food availability) affect the critical 

swimming speed, making the intra- and inter- specific comparison far from straightforward 

(Hammer, 1995), it is a standard approach for assessing the swimming capabilities of fish 

(Plaut, 2001; Farrel, 2008; Tudorache et al., 2013; Gui et al., 2014). 

Without reference to other biological criteria, the use of critical swimming speed for 

fishway design rests on assumptions regarding swimming performance. For a more 

complete characterization of swimming ability, fish endurance curves can be fitted using 

the fixed velocity method (Brett, 1964; Beamish, 1978). In fishway design it is common to 

use endurance curves to gather specific information on how long (endurance times) and 

how far (swimming distances) a particular fish can swim against given water velocities 

(Katopodis, 1992). Katopodis (1994) developed the dimensionless endurance curves for 

fishway design for anguiliform and subcarangiform species. 

The EU Water Framework Directive [WFD; 2000/60/EC] has advanced interest in 

progressing the development of fish passage criteria for multiple species throughout their 

life-history (Russon and Kemp, 2011). Consequently, over the last decade, design criteria 

have started to change towards consideration of requirements of target species for effective 

multi-species fish passage provision (Baker and Boubeé, 2006; Fould and Lucas, 2013). 

Additionally, an ecosystem approach has led to the development of nature-like fish passes 

(Baki et al., 2014). Their main objective is to provide suitable passage for all biota living in 

a waterbody (Katopodis et al., 2001). Recently, nature-like fish passes have been 
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recognized as economically and ecologically viable alternatives to traditional engineered 

fish passes (e.g., pool and weir, vertical slot, or Denil fish passes), and have attracted 

considerable interest. They are typically constructed with naturally occurring materials such 

as combinations of gravel, rocks, boulders, bamboo, and wood (Katopodis and Williams, 

2012).  

Considering the urgent need for design of multi-species, nature-like fish passes for 

non-sport fish, in this study we analyze swimming abilities of two endemic species to 

Chile, Cheirodon galusdae (Eidenmann 1928) and juveniles of Basilichthys microlepidotus 

(Jenyns 1841), both <120 mm total length. With this research we answer the question of 

whether existing design guidelines for nature-like fishways (e.g. Katopodis, 1992; 

FAO/DVWK, 2002; USBR, 2007) are applicable to non-sport fishes, i.e. are their 

swimming abilities similar to salmonids and galaxiids? To what extent are any arising 

differences important for fishway design? Consequently, we present information on both 

critical swimming speed and endurance, and compare them with available information. 

Finally, the implications for fishway design are illustrated through design curves for 

maximum allowable flow velocity in a fish ramp for different lengths.  

 

MATERIALS AND METHODS 

 

Studied species 

The studied species are endemic to the Chilean ichthyogeographic province (sensu 

Dyer, 2000) located in the Central-South zone of the country, between 28° and 41° Lat. S. 

The same geographic area is classified as a biodiversity hotspot (Myers et al., 2000) and is 

under high pressure for hydropower development with about 1000 new expected projects of 

small hydropower plants (Ministerio de Energía 2015). Typically these dams are up to ca. 

3–5 m high and divert discharges in the order of several cubic meters per second, usually 

around 1 m
3
/s. Even when these dams do not have regulation capacity, they impound water 

upstream and disrupt connectivity for small body size fish (Link and Habit, 2015). The 

region comprises 23 main Andean watersheds (from the Huasco to the Bueno River with 

watershed between 500 and 24.500 km
2
) and several small watersheds of rivers with their 

origin in the coastal mountain range and streams of the Chiloé Island (Figure 1).   

Cheirodon galusdae inhabits at the piedmont of the Andes and Central Valley from 

35 to 39° Lat. S. (Dyer, 2000). Maximum body size is 90 mm when adult and swimming 

mode is subcarangiform. Basilichthys microlepidotus inhabits at the piedmont of the Andes 

and Central Valley from 21 to 40° Lat. S. (Véliz et al., 2012). Maximum body size is 120 
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mm for juveniles and 300 mm when adults. Swimming mode is carangiform (Link and 

Habit, 2015). Conservation status of both species is vulnerable (Vila and Habit, 2015). 

 

Capture and maintenance 

Fish were collected from the Itata River using a backpack electroshocker (Smith-

Root LR24, Vancouver, WA, USA) and seine net (2-mm mesh). All collected fish were 

transported to glass aquariums at the Hydraulics and Environmental Engineering 

Laboratory of the University of Concepción. To avoid mortality, guideline for fish 

transportation and successful maintenance in captivity of Chilean native fish was follow 

(Sobenes et al. 2012). Fish were kept for at least 15 days before experiments. Fish were fed 

ad libitum with live prey (macroinvertebrates from streams and Enchitrea sp., Tenebrio 

molitor, and Eisenia foetida) three or four times a week according to Sobenes et al. (2012) 

and García et al. (2012). Following Jobling (1982) feeding was interrupted 48 h before each 

experiment. Water temperature was kept stable at 17±1°C for 1 week before the 

experiment.  

A total of 198 individuals (93 C. galusdae and 105 B. microlepidotus) of different 

body length classes were tested (see supplementary material). All individuals of C. 

galusdae were adults, while all B. microlepidotus were only juveniles due to body length 

restrictions of the laboratory equipment. A total of 70 individuals were used for 

determination of critical swimming speed (31 C. galusdae and 39 B. microlepidotus) and 

128 individuals for determination of endurance curves (62 C. galusdae and 66 B. 

microlepidotus). For the critical swimming speed and endurance tests respectively, the 

mean (±SD) total body length was 44.0 (±9.0) mm and 42.4 (±4.3) mm for C. galusdae and 

81.0 (±0.1) mm and 84.6 (±9.1) mm for B. microlepidotus. 

 

Experimental installation and protocols 

Experiments were conducted in a swimming tunnel (Loligo System SW10050; 

Figure 2). Discharge was controlled by a variable frequency drive, and temperature was 

kept constant using a chiller (Resun Mini20).  

 

Determination of critical swimming speed 

Critical swimming speeds were determined following the incremental velocity test 

(Brett, 1964; Brett, 1967; Beamish, 1978; Hammer, 1995; Plaut, 2001). Individuals were 

acclimated at a slow velocity of 0.5 bl s
-1
 for 2 hours. Flow velocity was maintained for 600 

s and incremented in steps of 1.0 bl s
-1
 until fatigue. The critical swimming speed was 

computed as (Brett, 1964): 
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fi

c f

t
U U U

t
= + ∆

∆
                    (1) 

 

where i

cU  is the critical velocity achieved by the i
th
 fish, 

fU is the highest velocity 

maintained, 
ft  is the time to fatigue at the highest velocity, t∆  is the time increment (600 

s), and U∆ is the velocity increment (1.0 bl s
-1
). 

Because i

cU  varies significantly among individuals, it is usual to characterize the 

swimming capacity of a species through the mean critical velocity (e.g. Mateus et al., 2008; 

Castro et al., 2010):  

 

1 n
i

c c

i

U U
n

= ∑                      (2) 

 

where n  is the total number of individuals. 

For a standardization of the swimming capacity according to the body length, Smit 

et al. (1971) proposed the standard critical velocity: 

 

( )2
* 1 1

i
n

c

c i

i i

U
U L

n n L
= ∑                             (3) 

 

where iL  
is the total body length of the i-fish. *

cU  allows comparison between species 

(Hammer, 1995). 

 

 

 

Determination of endurance curves 

Endurance curves were determined following the fixed velocity test (Brett 1964; 

Brett, 1967; Beamish, 1978; Jones et al., 1974; Adams et al., 1999) in which the swimming 

performance of the fish is measured as time to fatigue for increments of flow velocity. 

Individuals were acclimated at a very slow velocity of 0.5 bl s
-1
 for 1.5 hours. Flow velocity 

was kept constant until fatigue. For each species, 12 to 13 different velocities between 17 

and 128 cm s
-1
 were tested. Fish were considered fatigued when, despite attempts, they 

remained impinged for more than 10 seconds on the net. 
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Katopodis (1994) analyzed swimming performance of several fish species with 

variables representing the fish Froude number and the standardized fatigue time, finding 

different patterns for carangiforms and anguiliforms. The variables are:  

 

f

f

U
F

gL
=             (4)  

 

*
g

t t
L

=                 (5) 

 

where 
fU
 
is the section averaged flow velocity, g is acceleration due to gravity, L  is the 

total body length, and t
 
is time to fatigue. 

 

Fishways design curves 

Design curves were produced following Peake et al. (1997): 

 

f s

D
U U

t
= −             (6) 

 

where sU  
is the swimming speed of the fish, and D is the fishway length. Maximum 

allowable flow velocity in the fishway is: 

 

,f max s

D
U max U

t

 = − 
 

           (7) 

 

RESULTS 

 

Critical swimming speed  

i

cU  
was highly variable, ranging from 38.3 to 96.8 cm s

-1
  for C. galusdae and from 

28.2 to 140.0 cm s
-1
 for B. microlepidotus. The standardized critical velocity (Hammer, 

1995) was *

cU = 69.7 and 69.6 cm s
-1
, for C. galusdae and B. microlepidotus respectively 

(Figure 3a). When plotted in dimensions of bl s
-1
, standarized critical speeds exhibit less 

variability with body length. In this case, *

cU =  16.2 and 7.6 bl s-1 for C. galusdae and B. 

microlepidotus respectively. The correlation with fish length is * 1.65 23.25
c

U L= − +  ( 2 0.14R = , 
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p<0.04) for C. galusdae and * 1.25 2.44cU L= −  ( 2
0.29R = , p<0.0004) for B. microlepidotus 

(Figure 3b). Negligible differences were obtained using the mean critical velocity. Uc  was 

69.4 and 70.1 cm s
-1
, or 15.9 and 7.7 bl s

-1
, for C. galusdae and B. microlepidotus, 

respectively. 

 

Endurance 

Endurance of B. microlepidotus was slightly higher than C. galusdae, but the 

endurance of both species was similar to that of O. mykiss, G. maculatus and G. vulgaris 

(Figure 4). Sustained swimming for B. microlepidotus covers a wider range of velocities 

(up to 52.3 cm s
-1
) than C. galusdae (up to 46.1 cm s

-1
). Endurance decreases at very 

similar rates with velocity for both species.   

Figure 5 shows dimensionless endurance curves for C. galusdae and B. 

microlepidotus, including patterns described for anguiliforms and carangiforms (Katopodis, 

1994). Data points collapse showing a clear relationship between standardized fatigue time 

*t  and fish Froude number 
fF . The slope of the tendency line for both species is similar to 

that found by Katopodis (1994) for subcarangiform species, indicating that endurance of 

carangiforms (i.e.: B. microlepidotus) and subcarangiforms vary in similar form with the 

fish Froude number.  

  

3.3 Fishway design curves 

Maximum allowable flow velocities for passage of fishways with lengths from 5 to 

100 m equate to 87.8 to 60.1 cm s
-1
 for C. galusdae, and 90.5 to 64.5 cm s

-1
 for B. 

microlepidotus (Figure 6). The latter could withstand higher flow velocities than C. 

galusdae. Maximum allowable flow velocities for both species decreased with fishway 

length when considering average endurance. However, when considering the weakest 

performing individuals, curves exhibit a change in slope at a fishway length of 15 m, 

indicating a change from sustained to prolonged swimming mode (Figure 6).  

 

DISCUSSION 

In contrast to what it was expected, standardized critical velocities of the studied 

non-sport fish species (69.7 cm s
-1
 for C. galusdae and 69.6 cm s

-1
 for B. microlepidotus) 

resulted in the same range and even higher than those reported for salmonids (e.g. O. 

mykiss, with 36.1–41.9 cm s
-1
 for lengths of 890-950 mm; Bestgen et al., 2010). Also they 

were similar to those reported for other small size body species of the Southern Hemisphere 

like G. maculatus and G. vulgaris (galaxiids) in New Zealand. Moreover, the Brazilian 
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characin Bryconamericus stramineus Eigenmann, 1908, similar to the native characin from 

Chile, C. galusdae, presented a critical velocity of 51 cm s
-1
 for individuals which have just 

reached sexual maturity at 590 mm total length (Castro et al., 2010). As a result, when 

velocities are expressed in body lengths per second (bl s
-1
), C. galusdae exhibited a very 

high critical speed of 16.2 bl s
-1
, comparable with burst velocities of fast swimming 

salmonid like Stenodus nelma (Pallas 1773) (13.6 bl s
-1
, Jones et al., 1974). Similarly, 

available information on swimming performance for galaxiids suggest that this non-sport 

species appears capable of maximum swimming speeds of the order 10 bl s
-1
 (Mitchell, 

1989; Nikora et al., 2003; Plew et al., 2007). However, these results are consistent with the 

described fish physiology, since the relative speed in body lengths per second is almost 

invariably higher in smaller species (Bainbridge, 1958; Wardle, 1975; Belwood and Fisher, 

2001). This was demonstrated also with reef fish larvae, which achieved swimming speeds 

as higher as 49 bl s
-1 
(Belwood and Fisher, 2001). 

  Our results clearly show that swimming capacities of the studied species are well-

suited with the mean flow velocity field described for nature-like fish ramps designed for 

salmonids. However, other variables besides current velocities like turbulence are relevant 

in fishway design. Bretón et al. (2013), as well as Baki et al. (2014 and 2015), analyzed the 

flow field and turbulence in a typical salmonid fish ramp. Their results showed that flow 

velocities occurring in the fishway would allow the passage of C. galusdae adults and B. 

microlepidotus juveniles. Therefore, it is expected that nature-like fish ramps represent a 

viable alternative for mitigation of habitat fragmentation of non-sport fish species, like the 

studied species. However, as both species inhabit the water column (Link and Habit, 2015) 

further research is needed to generalize the feasibility of nature-like fish ramps as multi-

species fishway for other non-sport fishes with different habitat use. For example, Gischke 

(2014) observed that the benthic native catfish Trichomycterus areolatus (Vallencienes 

1840) presented an inhibited rheotaxis and performs sprints, preferentially for flow velocity 

equal 1.0 bl s
-1
. Similarly, preliminary analysis using the native Chilean darter Percilia 

gillissi Girard 1855, revealed a different behavior, since it remains in the same position on 

the bottom using pectoral fins, instead of increasing its swimming velocity with the flow.  

Even though this study clearly shows that the mean flow field occurring in a nature-

like fish-ramp is compatible with the swimming capacity of adults of C. galusdae and 

juveniles of B. microlepidotus, corresponding turbulence might be an issue for their passage 

(Lacey et al., 2012; Wilkes et al., 2013). Instantaneous velocities in most technical fish 

passes, traditionally designed for sport fish species capable of very high burst speeds (e.g. 

up to 4.13 m s
-1
 for Salmo salar Linneaus, 1758; Colavecchia et al., 1998), are likely to 

exceed the burst speeds of the species studied. Furthermore, as non-sport fish are expected 
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to be smaller than wake vortices in a number of cases, the size and frequency of vortices are 

expected to significantly affect swimming abilities (e.g. Liao et al., 2003; Liao 2007). 

Further research is needed to integrate effects of turbulence on swimming abilities of non-

sport fish in fishway design, and to evaluate suitability of the nature-like fish ramp for 

provision of longitudinal river connectivity. This would also provide an opportunity to test 

the transferability of swimming performance measures from highly artificial laboratory 

conditions.  

At a time when the world is experiencing a boom in the construction of hydropower 

dams due to global population growth, increasing electricity demand, the need to reduce 

greenhouse gas emissions, and the vast unrealized potential of renewable energy resources 

(Zarfl et al., 2014, Zhou et al., 2015), riverine connectivity arises as a very sensitive issue. 

Traditional fish passes, originally conceived for migratory sport fish species, and especially 

nature-like fish ramps appear to be suitable for provision of habitat connectivity for non-

sport species. 
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Distribution of the studied species in the Chilean ichthyogeographic province.  
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Figure 2. Variable frequency drive (A), pump (B), chiller (C), honeycomb matrix for flow alignment (D), 
swim chamber (E), and (F) net.  
90x30mm (300 x 300 DPI)  

 

 

Page 17 of 21

http://mc.manuscriptcentral.com/rra

River Research and Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 3. Critical swimming speed over total body length for C. galusdae and B. microlepidotus. a) in [cm s-

1], and b) normalized by the body length in [bl s-1]. The grey areas indicate the expected range of Ui
c  for 

the different sizes and the large circles indicate the critical swimming speed for the species.  
114x47mm (300 x 300 DPI)  
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Figure 4. Endurance curves for (a) C. galusdae and (b) B. microlepidotus. Black lines correspond to the line 
of best fit. Large circles correspond to the critical velocity. For reference, curves are also shown for other 
species. The grey lines correspond to endurance of O. mykiss with total length of 70 mm (Boubeé, 1999), 
grey triangles to G. maculatus with a total length of 70 - 110 mm, and grey squares to G. vulgaris with a 

total length of 60 - 80 mm (Stevenson and Baker, 2009).  
149x89mm (300 x 300 DPI)  
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Figure 5. Normalized endurance curves for (a) C. galusdae and (b) B. microlepidotus. Grey lines are patterns 
for anguiliforms and subcarangiforms (Katopodis, 1994).  
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Figure 6. Maximum allowable flow velocity over fishway length computed with average (avg.) and minimum 
(min.) endurance capacities for C. galusdae and B. microlepidotus.  
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