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ABSTRACT  

 

A phenolic novolac resin has been chemically reacted with 4-vinylbenzyl chloride to introduce 

polymerizable vinyl benzyl groups. The modified novolac spontaneously polymerizes like styrene, is 

physically and chemically compatible with a typical unsaturated polyester (UP) resin, and can be 

free-radically cured (crosslinked) alone and in mixtures with UP using styrene as a reactive diluent. 

The cured vinylbenzylated novolac and co-cured blends of it with UP show superior flame retardance 

to cured UP alone and have potential applications as matrix resins in glass-reinforced composite 

laminates especially for marine structures. 

 

 

Keywords: vinylbenzylated, phenolic novolac, unsaturated polyester, blend, fire performance, 

thermal stability 
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1. Introduction  

 

Glass-fibre reinforced composite laminates utilising styrene-cured (free-radically crosslinked) 

unsaturated polyesters (UPs) as the resin matrix are today widely used in the manufacture of strong, 

light-weight panels for automobiles, trucks, boat hulls and aircraft interiors [1]. There is currently one 

major disadvantage to such materials however, especially when used in marine composites, and that 

is their flammability, which arises from the low thermal stability of the resin matrix and the fact that 

they decomposes to give a variety of flammable degradation products, such as styrene, aliphatic 

alcohols, aromatic and aliphatic anhydrides, and other hydrocarbon fragments, leaving very little 

protective char residue [2]. Hitherto, the problem of flammability in UPs has been addressed through 

the incorporation of flame-retardant additives [3,4], by building reactive flame-retardant groups into 

the UP structure [3,5] or by replacing some or all of the styrene cross-linking monomer with a more 

flame-retardant monomer [3,6,7]. These strategies, however, can have deleterious effects on the 

physical and mechanical properties of the UP and/or can significantly increase material costs. In order 

to address this problem, we have been investigating a potentially more cost-effective method of flame 

retarding UPs by co-curing UP with char-forming, and hence more flame-retardant, resins such as 

phenolic resoles, furan resins and melamine-formaldehyde resins [8–13]. Surprisingly, the blending 

of UP with other resins has hitherto been used mainly to improve surface finish or to decrease mould 

shrinkage rather than to improve flame retardance [14, 15]. Our work has demonstrated that whilst 

flame-retardance may easily be improved by this “blending” approach, it is important that the added 

resin is co-cured into the matrix if good flame-retardance is to be accompanied by acceptable physical 

and mechanical properties. Thus furan resins, which do not co-cure with UP, effectively plasticise the 

UP [12], and simple resoles, which also do not co-cure, lead to phase separated blends displaying two 

glass-transition temperatures [9]. Of the commercially available resoles so far studied, we have found 

only allyl-subsituted resoles to be chemically incorporated into the styrene-cured UP matrix (via 

radical reactions involving the allyl groups) giving homogeneous blends with single glass transition 

temperatures (Tgs), good mechanical properties and acceptable flame retardance [9,10]. However, to 

achieve these properties, the blends have to be subject to a complex curing cycle involving several 

stages, at temperatures up to 190 ºC in order to fully react free methylol and residual allyl groups, 

whereas unmodified UPs can be cured at temperatures no higher than 80 ºC. Because of these last 

observations, we have most recently incorporated into styrene-cured UPs, a phenolic novolac resin 

(no free methylol groups) chemically modified at the phenolic-OH with methacrylate groups [13]. 

These groups are incorporated readily into the UP network via copolymerization with styrene and 

with the unsaturated maleate groups in the backbone of the UP over the normal RT−80 ºC curing 

cycle for styrene-cured UP resins, giving homogeneous co-cured blends with single Tgs, good 
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mechanical properties, and acceptable flame retardance. However, the flame retardance of these last 

blends are not as good (greater total heat release and peak heat release rate) than blends of similar 

composition based on blends of UP with allyl-functional resoles, probably owing to the ease with 

which the methacrylate groups depolymerize when heated. 

 

In this paper we describe an alternative modification of novolac, this time with vinylbenzyl groups in 

an attempt to make a homogeneous, free-radically co-cured phenolic/UP blend with better flame 

retardance than those made using the methacrylate-functional novolac. The preparation of a flame 

retardant bearing vinylbenzyl groups was described in 1991 but this was based on a low molecular 

weight halogenated phenol and not on a phenolic resin [16]. 

 

2. Experimental 

 

2.1. Materials 

 

The following materials were obtained from the suppliers indicated and used as received: 

Phenolic novolac: Durez 31459 (Sumitomo Bakelite Europe NV), molar mass ca. 2500. 

 4-Vinylbenzyl chloride, 90% (Sigma-Aldrich) 

 Potassium carbonate, anhydrous, ≥ 99% (Sigma-Aldrich) 

 p-Benzoquinone (Sigma-Aldrich) 

 Methyl ethyl ketone (Fisher Scientific) 

 Diethyl ether (Fisher Scientific) 

Unsaturated polyester: Crystic 2.406PA (Scott-Bader), an unsaturated, phthalic anhydride 

based resin containing ca. 35–40 wt% styrene as a reactive solvent, pre-accelerated with 0.2 

wt% cobalt octoate. 

Catalyst M (Scott-Bader): a free-radical initiator consisting of a solution of MEK peroxide in 

MEK. 

 

2.2. Synthesis of vinylbenzylated novolac (VB-novolac) 

 

The synthesis of the VB-novolac was carried out according to the reaction scheme shown in Figure 1, 

i.e. the phenolic groups in the novolac are reacted with 4-vinylbenzyl chloride (VBC) in the presence 

of weak base to remove the HCl produced by the condensation reaction. 
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Figure 1. Reaction of phenolic novolac with 4-vinylbenzyl chloride to give VB-novolac. 

 

Novolac (508.8 g, equivalent to 4.8 mol of phenolic rings) was dissolved in 1400 ml of methyl ethyl 

ketone (MEK) in a 1 L three-neck round bottom flask, purged with nitrogen and equipped with 

condenser, thermometer and mechanical stirrer. Anhydrous K2CO3 (729.3 g, 5.28 mol) was then 

added to the novolac solution with stirring upon which the solution became orange. To this solution, 

p-benzoquinone (70 ppm) was added (to prevent polymerization of vinylbenzyl chloride), followed 

by anhydrous sodium iodide (0.8 g, 0.0053 mol). Following this, vinylbenzyl chloride (805.3 g, 5.28 

mol) was added slowly, drop-wise at a rate of 1 drop/sec over a period of about 1 h. At the same time, 

the temperature of the reaction vessel was slowly raised to 80 oC, at which point another 30 ppm of p-

benzoquinone was added and heating at 80 oC continued for another 6 h. Small samples were 

removed from the reaction vessel at hourly intervals for analysis by size exclusion chromatography 

(SEC) to monitor the progress of the vinylbenzylation. For the final hour of the 6 h heating period, 

SEC indicated no significant increase in molar mass of the resin so at the end of this period the 

reaction mixture was allowed to cool to room temperature.  

 

MEK was then distilled from the reaction vessel by connecting it to distillation column, reducing the 

pressure to 1000 mbar and heating to 50 oC. After about 500 ml of the MEK had been removed, 1000 

ml of deionised water was added with stirring, followed by 500 ml of diethyl ether. The VB-novolac 

resin mixture (the organic phase) was then separated from the more dense, yellow aqueous phase 

using a separation funnel and washed several times with deionised water before a final separation. 

 

The recovered solution of VB-novolac resin in MEK/diethylether was then dried over anhydrous 

magnesium sulphate and transferred to a round bottom flask fitted with a distillation column, and the 

MEK/diethyl ether removed by distillation at 30 oC under a reduced pressure of 1000 mbar. The final 
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VB-novolac was obtained as a viscous yellow liquid. 

Yield: 779.3 g (47.7% of theoretical, assuming complete vinylbenzylation). Number-average molar 

mass by SEC: 3240. The resin was further characterized by IR spectroscopy to confirm that 

vinylbenzylation of the novolac had indeed occurred (see Section 3.1). 

 

2.3. Preparation of cured plaques of UP/VB-Novolac blends 

 

Plaques of UP, VB-novolac and UP/VB-Novolac blends were prepared by vigorous hand mixing of 

UP and VB-Novolac resin in various proportions with the addition of 2 wt% Catalyst M (a free 

radical initiator), and pouring the resultant mixtures into small circular aluminium moulds of diameter 

5.5 cm and depth 3 mm. The method has been described in detail previously [9,13]. These plaques 

were then allowed to cure at RT for 12 h and then post-cured at various temperatures from 90 ºC to 

150 ºC, depending on composition, for periods of up to 12 h, the exact cure procedure being decided 

on the basis of DSC experiments in which the temperature range over which curing exotherms 

occurred were monitored (see Section 3.3). In some of the samples, additional styrene was added in 

various amounts up to that required to approximately match the original styrene content of the UP 

(ca. 30 wt%). 

 

2.4. Characterization of materials 

 

Infrared (IR) spectra of starting materials and products were recorded on a Nicolet iS10 Fourier 

transform spectrometer equipped with a Smart iTR attachment employing a single bounce diamond 

crystal. 

 

Molar masses of the parent novolac and of samples of VB-novolac were measured by size exclusion 

chromatography (SEC) using a VWR/Hitachi Chromaster SEC equipped with a 30 cm column 

packed with highly crosslinked spolystyrene/divinylbenzene spherical beads having a pore size of 

100 Ǻ and capable of resolving molar masses of up to 4000. The instrument was operated at 35 ºC 

using THF as solvent at a flow rate of 1 ml/min. The columns were calibrated with a set of narrow 

molar mass polystyrene standards (160–10,000) and thus molar masses of samples quoted in this 

paper are polystyrene equivalents. 

 

A DSC Q2000 differential scanning calorimeter (DSC) was used to study the curing behaviour of 

VB-novolac and of UP/VB-novolac blends co-cured using styrene as a crosslinking monomer. 

Sample size was typically 2–10 mg with a heating rate of 5 ºC/min over the temperature range 30–
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350 ºC. 

 

Thermo-oxidative stabilities of cured resins and their blends were assessed by thermogravimetric 

analysis (TGA) using a TA Instruments SDT 2960 over the temperature range 25–800 ºC using 15 ± 1 

mg samples heated at a constant rate of 10 ºC/min in air flowing at 100 ± 5 ml/min. 

 

Dynamic mechanical thermal analysis (DMTA) was carried out on a TA instruments Q800 was used 

with a single cantilever clamp and multi-frequency set up (0.1 % strain and 1 Hz frequency) over the 

temperature range 25−350 ºC at 5 oC/min heating rate. From these experiments, storage moduli were 

evaluated along with glass transition temperatures (from maxima in plots of tan δ vs. T) 

 

2.5. Assessment of flame retardance 

 

Limiting oxygen indices (LOI) of cured resins and co-cured resin blends were measured by a standard 

method (BS 2782) using a Fire Testing Technology (FTT) LOI instrument equipped with an oxygen 

analyzer. 

  

A cone calorimeter (Fire Testing Technology Ltd. UK) was used to assess the flammability 

parameters of cured resin systems. Circular samples measuring 5.5 cm in diameter with a nominal 

thickness of 3 mm were fire tested in the horizontal mode with an ignition source under a radiant heat 

flux of 50 kW/m2, similar to that used in our previous work [17]. Before testing, the bottom surfaces 

and the edges of the samples were wrapped with aluminium foil to ensure that only the top surfaces 

would be directly exposed to the heat source. A minimum of three tests were performed for each 

formulation.  

 

3. Results and discussion 

 

3.1. Characterization of VB-novolac 

 

Figure 2 shows IR spectra for the VB-novolac and for the principal reactants: the novolac and 

vinylbenzyl chloride. It can be seen that the prominent OH stretching band of the phenolic groups in 

the novolac at around 3400 cm-1 is greatly reduced in intensity in the spectrum of VB-novolac, 

consistent with the phenolic groups in the latter having been significantly vinylbenzylated in the 

manner shown in Figure 1. Also present in the spectrum of VB-novolac but not in that of the parent 

novolac are bands at ca. 910 and 1000 cm-1 characteristic of =CH2 groups [18]; these bands are 
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present also in the spectrum of VBC as expected. 

 

The molar masses of the parent novolac and of the VB-novolac were found by SEC to be 2480 and 

3240, respectively. If it is assumed that the repeat unit for the novolac and for the vinylbenzylated 

novolac are as given in Figure 1, i.e the molar masses of the repeat units are 106 and 222 respectively, 

then full vinylbenzylation would have given a molar mass for the product of 2480/106 × 222 = 5194. 

Thus the degree of vinylbenzylation for this sample, X, is given by: 

 

X × 5194 + (1-X) × 2480 = 3240 

 

From this, it can be calculated that X = 0.28, i.e. 28% of the phenolic units have been 

vinylbenzylated. The number-average molar mass of the unmodified novolac (2480) is consistent 

with the average chain consisting of 2480/106, i.e. 23.4, methylene phenol repeat units. This figure, 

combined with a degree of vinylbenzylation of 28%, suggests that on average, 23.4 × 0.28, i.e. 6.5 of 

the phenolic units in each novolac chain have been vinylbenzylated, with 16.9 per chain remaining 

unmodified. 

 

Assuming that the amount of resin recovered at the end of the VB-novolac preparation represents 

quantitative recovery of modified resin; the weight data too (see Section 2.2) can be used to evaluate 

the degree of vinylbenzylation. Thus, 508.8 g of novolac gave 779.3 g of modified resin and so, 

degree of vinylbenzylation, X is given by: 

 

X × 1633.8 + (1-X) × 508.8 = 779.3 

 

Thus, by this method of assessment, X = 0.24, i.e. 24% of the phenolic units have been 

vinylbenzylated. This value of X is very close to that evaluated from the SEC data, indicating that 

recovery of the modified resin was close to quantitative and that the degree of vinylbenzylation is 

around 0.24–028. 
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Figure 2. IR spectra of (a) VB-novolac, (b) the parent novolac and (c) vinylbenzyl chloride 

 

3.2. Curing (crosslinking) of VB-novolac 

 

When a sample of VB-novolac was heated in the DSC at 5 ºC/min between 35 and 300 ºC, clear signs 

of curing were seen in the form of exothermic peaks with maxima at ca. 180 and 250 ºC. The DSC of 

the resin cured at room temperature for 12 h and at 80 oC for 6 h (similar to that used for curing of 

UP) showed that both exothermic resin still remained, though shifted to slightly higher temperatures,  

210 and 260 ºC respectively, Figure 3(a). The exotherms are thought to arise from a spontaneous 

polymerization of the vinylbenzyl groups in the VB-novolac, which probably takes place via a free-

radical mechanism similar to that for the spontaneous thermal polymerization of styrene [19]. The 

positions of these exotherms were found to be influenced by the extent to which the sample had been 

degassed, probably owing to the influence of dissolved oxygen, a known retarder of radical 

polymerizations, on rates of reaction [20]. In order to cure VB-novolac at temperatures comparable to 

those used to cure UP, 2 wt% Catalyst M was added. The DSC trace for such a sample is shown in 

Figure 3(b) in which a sharp exotherm can be seen now at the much lower temperature of ca 80 ºC. 

However, this sample still exhibits a small exotherm at ca 250 ºC indicating that polymerization is not 

complete at 80 ºC. This small exotherm is still present in the DSC trace of a sample of VB-novolac 

cured external to the DSC machine at RT for 12 h followed by 80 ºC for 6 h, Figure 3(c), again 

showing the potential for further curing at temperatures well beyond the usual curing temperatures. 

A
bs
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e 

/ a
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.
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(a) VB-novolac

(b) The parent novolac

(c) Vinylbenzyl chloride 
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Based on these DSC results, final curing conditions of RT for 12 h, 80 ºC for 6 h and then 110 ºC for 

3 h with a ramp rate between temperatures of 1 ºC/min were chosen as the optimum, giving an extent 

of cure of at least 80% based on measurements of DSC exotherm peak areas. Cured VB-novolac is a 

clear, transparent pale yellow glass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. DSC traces of (a) a sample of VB-novolac previously heated at RT for 12 h and 80 ºC for 6 

h, (b) a sample of VB-novolac to which 2 wt% Catalyst M has been added and (c) a sample of VB-

novolac containing 2 wt% Catalyst M cured at RT for 12 h and 80 ºC for 6 h prior to the DSC 

experiment. 

  

 

IR spectra of VB-novolac before and after heating to 300 ºC confirm the polymerization of the 

vinylbenzyl groups: the characteristic stretching vibrations of the =CH2 groups at ca. 1000 cm-1 and 

910 cm-1, seen in the spectrum of the uncured resin, Figure 4(a), are now absent, Figure 4(b). 
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Figure 4. IR spectra of (a) uncured VB-novolac and (b) thermally cured VB-novolac (no added 

initiator) 

 

3.3. Curing of UP/VB-novolac resin blends 

 

DSC was used to monitor the curing reactions also of UP/VB-novolac resin blends and to establish 

conditions suitable for ensuring their extensive cure. 70/30 blends of UP with VB-novolac were found 

to cure readily, but for 50/50 blends, samples appeared more homogeneous after curing if additional 

styrene was added. Typical amounts used were 10, 15 and 30 wt% based on the VB-novolac content. 

These amounts of styrene are in addition to that already present in the UP as supplied by Scott-Bader 

(35–40 wt%). The details of these samples are given in Table 1. The optimum curing conditions for 

70/30 UP/VB-novolac blends were established as: RT for 12 h, 80°C for 6 h, and 110°C for 3 h (with 

an intermediate heating rate of 1 °C/min). For 50/50 blends, curing conditions of RT for 12 h, 90 °C 

for 8 h (with an intermediate heating rate of 1 °C/min) and finally 110 °C for 3 h (with an 

intermediate heating rate of 0.3 °C/min), were chosen. 

 

3.4. Glass transition temperatures and moduli of cured resins and resin blends 

 

Plots of tan δ vs T for various cured resins and resin blends are shown in Figure 5. It can be seen from 

these plots that single tan δ maxima are seen for all samples except for the sample of VB-novolac 

cured after the addition of 2% of Catalyst M, which displays two maxima. We conclude that all resin 
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samples, apart from the VB-novolac, are homogeneous materials, uniformly cured throughout. That 

the VB-novolac appears inhomogeneous may be an indication that the material fails to cure uniformly 

owing to the macromolecular nature of the material, i.e. because there is no reactive solvent (styrene) 

present to dilute the system, many of the pendant vinylbenzyl groups of the VB-novolac remain 

unreacted, even at the end of the curing cycle. A low, or incomplete, degree of cure may be the reason 

also why the Tg of the UP/VB-novolac 50/50 blend cured with 10 wt% styrene (in addition to that 

always present in the UP) is lower than that of the other cured resins. The Tgs (tan δ peak maxima) of 

the various resins are presented in Table 1. From these data we can note that the Tgs of the resin 

blends are similar to that of the cured UP (with the exception of the UP/VB-novolac blend cured with 

only 10 wt% additional styrene). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. a) Plots of tan δ vs. T  and b) storage moduli (E') vs. T for various cured resins and resin 

blends 
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Table 1. Glass transition temperatures (Tg) and storage moduli (E') at 30 ºC for various cured resins 

and resin blends obtained from Figures 5 (a) and (b), respectively. 

 

Sample Tg / ºC E' / MPa 

UP 94 2750 

UP/VB-novolac 70/30 (no additional styrene) 85 1411 

UP/VB-novolac 50/50 (10 wt% additional 
styrene) 

65 496 

UP/VB-novolac 50/50 (15 wt% additional 
styrene) 

93 1210 

UP/VB-novolac 50/50 (30 wt% additional 
styrene) 

83 1496 

VB-novolac 88, 139 959 
 

 

Plots of storage modulus (E') vs. T for the various cured resins and resin blends obtained from the 

DMTA experiments are given in Figure 5(b). 

 

Storage moduli at 30 ºC from the data in Figure 5(b) are gathered in Table 1. The moduli for all 

UP/VB-novolac cured resin blends are lower than that for cured UP, with those for cured VB-novolac 

and 50/50 UP/VB-novolac cured with only 10 wt% additional styrene most notably so. We take this 

to be a further indication that these last two resins are incompletely cured, i.e. only loose networks 

have been formed. 

 

3.5. Thermo-oxidative stabilities of cured resins and resin blends 

 

The thermo-oxidative stabilities of cured resins and resin blends were assessed by TGA runs carried 

out at a heating rate of 10 ºC/min under air atmosphere. TGA traces for cured UP, cured VB-novolac 

and cured blends of UP/VB-novolac are shown in Figure 6 with data extracted from these traces 

given in Table 2. 
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Figure 6. TGA traces recorded at 10 ºC/min under air for (a) cured UP, (b) a cured 70/30 UP/VB-

novolac blend, (c) a cured 50/50 VB-novolac blend with 15 wt% additional styrene, (d) a cured 50/50 

VB-novolac blend with 30 wt% additional styrene, (e) a cured 50/50 VB-novolac blend with no 

additional styrene, and (f) cured VB-novolac. In all cases, 2 wt% Catalyst M has been added to 

initiate the free-radical cure reaction. 

 

 

UP is seen to degrade in two stages, with the first one completing at about 435 oC and representing 

thermal degradation [10]. Above this temperature oxidation of the decomposition products in the first 

step occur, leaving no char residue above about 550 oC (represented as T100%  in Table 2)  The order of 

thermo-oxidative stabilities, as judged from the relative positions on the T axis of the mass loss 

curves are very much as expected, with VB-novolac being the most thermo-oxidatively stable and UP 

the least. The onset of decomposition temperature, represented by T5%  in Table 2, is 275 oC, while for 

VB-novolac it is 351 oC. VB-novolac also degrades in two stages, the first one starting after a 

previous small mass loss at about 430 oC (while in UP by this temperature the first stage has 

completed) and finishing at about 600 oC. The second stage finishes at 705 oC. The thermo-oxidative 

stabilities of the blends are intermediate between those of the pure resins, as expected, with the 50/50 

UP/VB-novolac blends performing better than the 70/30, again as expected. The styrene content in 

the 50/50 blends also affects thermo-oxidative performance, with the blend containing 30 wt% 

additional styrene being less thermo-oxidatively stable than that containing 15 wt% additional 

styrene, which in turn performs less well than that to which no extra styrene has been added (see 

M
as

s 
/ 

%

Temperature / oC

(c)

(a)
(b)

(d)

(e)

(f)
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particularly relative amounts of residue remaining at 500 °C and temperatures for 100% mass loss in 

Table 3). The styrene content also has an effect on the onset temperature for degradation as judged 

from the T5% values (see Table 3) and of particular note here is the fact that T5% is lower for the 50/50 

blends containing no additional styrene and 15 wt% additional styrene than for that containing 30 

wt% additional styrene. This may a further indication that the 50/50 blends require ca. 30 wt% 

styrene at least to form a complete, thermally stable crosslinked network as previously suggested on 

the basis of unexpectedly low Tg values and storage moduli (Section 3.4).  

 

Table 2 also lists the residual mass of all resins at 550 oC, chosen as the temperature where the char 

oxidation of UP is complete, leaving virtually no char residue (0.6%). The high char yield (residual 

mass at 550 oC) for VB-novolac indicates its crosslinking and charring tendency, and hence indicating 

lower flammability. Table 2 also lists calculated average residual masses at 550 °C, calculated from 

the residual masses of the pure components at this temperature. For example, for a 50/50 UP/VB-

novolac blend, the mass average residual mass at 550 °C is calculated as 50% of residual mass of UP 

at 600 °C plus 50% of residual mass of VB-novolac at 600 °C. For samples containing extra styrene, 

the concentration of styrene has been compensated for in the calculations. In all cases the 

experimental values are higher than the expected averages, indicating some interaction between the 

two resins. The difference between the experimental and calculated values (∆ residue) however 

increases with increasing phenolic content in the blend, while with added styrene, the difference 

decreases (Table 2) 

 

Table 2. TGA analysis data for cured UP, VB-novolac and various UP/VB-novolac blends 
 

Sample Temp at mass loss 
/ oC 

Residue remaining at 550 oC 
/ wt% 

T5% T100% Experim
ental 

Calculated ∆ residue 
(Experimental 
–Calculated) 

UP 275 550 0.6 – – 

UP/VB-novolac 70/30 227 625 21.2 16.9a 4.3 

UP/VB-novolac 50/50 
with no additional 
styrene 

211 650 35.0 27.8a* 7.2 

UP/VB-novolac 50/50 
with 15 wt% additional 
styrene 

200 636 31.0 25.7b 5.3 
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UP/VB-novolac 50/50 
with 30 wt% additional 
styrene 

248 622 26.4 20.5c 3.8 

VB-novolac 351 705 55.0 – – 

a,a* Calculated assuming that char yield in blends are mass averages of those of component resins 
b,c 92.5 and 85% value of a* to compensate for extra styrene 

 

3.6. Limiting oxygen indices (LOI) 

 

LOI values were recorded on plaques of cured UP, VB-novolac and various UP/VB-novolac blends. 

The higher LOI value of VB-novolac (23.6 vol%) compared with that of UP (18.0 vol%) shows the 

lower flammability of the former. This value is also higher than that for an allyl-functional phenolic 

resole (22.2 vol% [10]) and a methacrylate-functional novolac (21.3 vol% [13]) reported in our 

previous publications. 

 

The LOI of UP/VB-novolac blends are given in Table 3, and indicate a decrease in flammability as 

the VB-novolac content of a UP/VB-novolac blend is increased. However, the amount of additional 

styrene in the case of the 50/50 UP/VB-novolac blend appears to make little difference to LOI within 

the experimental limits of the method. This is more clear from the calculated average values given in 

Table 3, where 70UP/30VB-novolac has the expected LOI value. For the 50/50 blend without styrene 

(which could not be prepared) the expected value is 20.8 vol%. With additional styrene the LOI 

values are higher than expected. 
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Table 3. LOI values of cured resins and resin blends 

 

Sample LOI / vol% O 2 Calculated LOI of 
blends / vol% O2 

UP 18.0 – 

70UP/30VB-novolac (no additional styrene) 19.7 19.7 

50UP/50VB-novolac (10 wt% additional styrene) 19.9 18.7 

50UP/50VB-novolac (15 wt% additional styrene) 19.8 19.2 

50UP/50VB-novolac (30 wt% additional styrene) 20.0 17.7 

VB-novolac (no styrene) 23.6 – 
Note: The calculated average LOIs of 50/50 blends containing 10, 15 and 31% styrene are 90, 92.5 and 85% of 

the calculated value of the blend with no styrene  (20.8 vol%) 

 

3.7. Cone calorimetry 

 

Cone calorimetry was carried out under a radiant heat flux of 50 kW/m2 on cured plaques (5.5 cm 

diameter × 3 mm depth) of the UP, VB-novolac resins and their blends. Plots of heat release rate 

(HRR) and mass loss vs. time (t) for the cured resins and resin blends are given in Figures 7 (a) and 

(b), respectively and all derived cone calorimetric data are presented in Table 4. It can be seen from 

Figure 7 (a) that both the peak heat release rate (PHRR, peak of the HRR vs. t curve) and total heat 

released (THR, area under the curve) are less for the VB-novolac than those for UP, but that time to 

ignition (TTI) is shorter. The cured 70/30 blend shows behaviour in these respects intermediate 

between those of the pure components. In 50/50 blends however, the effect of styrene can be clearly 

seen, i.e., TTI is reduced and the PHRR is increased with increasing styrene content. Smoke 

production is significantly less for VB-novolac than for UP, with the blends again showing 

behaviours intermediate between those of the component resins and those with styrene having higher 

smoke production (Table 4). The mass vs. t curves also indicate the earlier mass loss of the blends 

containing styrene. The char formation in VB-novolac and UP/VB-novolac blends is significant, 

whereas UP alone produces very little char, Figure 7 (b), which can also be seen visually from digital 

images of the residues in Figure 8. The 50UP/50VB-novolac with 15% styrene shows fragmented 

char compared to other samples where the char is very compact, indicating that this sample is not 

completely cross-linked.   
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Figure 7. (a) HRR (b), mass loss and c) RSR versus time curves for UP, VB-novolac and their blends 

obtained by cone calorimetry at 50 kW/m2 heat flux. 
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Figure 8. Digital images of the residues left after the cone experiments of UP, VB-novolac and their 

blends.  

 

 

Table 4. Cone calorimetric data acquired from cured resins and UP/VB-novolac resin blends under a 

radiant heat flux of 50 kW/m 

Sample TTI 
/ s 

FO 
/ s 

PHRR 
/ kW/m2 

THR 
/ MJ/m2 

TSR / 
m2/m2 

CY 
/ wt%  

UP 
 

  34 ± 0   144 ±1 1143 ± 15   80 ± 1 3868 ± 89   1.0 

70/30 UP/VB-novolac 
(no additional styrene) 

  32 ± 4   174 ± 2   800 ± 19   70 ± 0 3672 ± 50 11.6 

50/50 UP/VB-novolac 
(15 wt% additional styrene) 

  20 ± 1   154 ± 6   720 ± 80   65 ± 5 3348 ± 210 12.6 

50/50 UP/VB-novolac 
(30 wt% additional styrene) 

  24 ± 6   152 ± 19   895 ± 113   67 ± 9 3624 ± 309 13.3 

VB-novolac 
(no added styrene) 

  29 ± 1   160 ± 8   611 ± 43   52 ± 3 2888 ± 78 32.5 

Note: TTI = time to ignition; FO = time to flame out; PHRR = peak heat release rate; THR = total heat 

released; TSR = total smoke released; CY = char yield 

 

 

In order to compare the flammabilities of VB-novolac and UP/VB-novolac blends with those reported 

previously of the allyl functional phenolic resole (Allyl-resole) [10] and the methacrylate functional 

novolac (Methacrylate-novolac) [13] resins and their blends with UP, the changes in LOI and selected 

cone parameters compared to the UP (∆ parameter = parameter of sample – parameter of UP) are 

reported in Table 5. In each sample the data used for the UP are taken from the respective data 

reported with that series of samples (for VB-novolac in Table 4 and for Allyl-resole and 

Methacrylate-novolac taken from references [10, 13] as also reported in footnote of Table 5). The 

slight differences in cone results for different UP samples, are apart from the usual ±10% variation, 

UP 70UP/30VB_
no styrene

50UP/50VB_
15% styrene

50UP/50VB_
30% styrene

VB-novolac
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also due to different batches of the resin used to prepare samples at different times. Some parameters 

(PHRR, THR, TSR) are also presented as percentage change with respect to the respective parameter 

of the UP. 

 

 It can be seen from these comparative data that cured VB-novolac is signficantly more flame 

retardant than cured Allyl-resole and cured Methacrylate-novolac i.e., bigger reduction in PHRR and 

THR (similar to Allyl-resole), and increase in CY and LOI, although it must be noted that cured 

Methacrylate-novolac was crosslinked with 32 wt% added styrene, a relatively flammable 

component. The TTI, however, is lower for VB-novolac compared to that of the Allyl-resole. The 

70/30 blend of UP with VB-novolac also performs better than the corresponding blends of UP with 

Allyl-resole and Methacrylate-novolac. For the 50/50 UP/VB-novolac blends, the amount of styrene 

added has a small effect on flame retardance, with that containing less added styrene (15 wt% against 

30 wt%) producing a greater reduction in  PHRR and THR as might be expected, given the 

flammability of styrene. The smoke reduction in VB-novolac and blends however is less than those in 

Allyl-resole and Methacrylate- novolac resins and their blends. 

 

The mechanism of flame retardance in these blends is predominantly a condensed phase one in which 

the flammable UP is diluted by a less flammable, char-forming, phenolic-based resin. The 

incorporation of functional groups in the phenolic component capable of readily undergoing free-

radical copolymerization with the crosslinking monomer, styrene, and the maleate unsaturation in the 

UP chains, enables the phenolic component to form a continuous crosslinked matrix with the UP. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 
 

Table 5. ∆ parameter (sample – control, UP) for UP/VB-novolac, UP/Allyl resole (derived from data 

presented in [10]) and UP/Methacrylate-novolac (derived from data presented in [13]) resins blends 

and pure resins. 

Sample ∆ 
LOI / 
vol% 
O2 

Cone calorimetric results 

∆ TTI 
/ s 
 

∆ PHRR / 
kW/m2,  
(%) 

∆ THR / 
MJ/m2, 
(%) 

∆ TSR / 
m2/m2 (%) 

∆ CY / 
wt% 

70UP/30VB-novolac (no 
additional styrene) 

+1.7 -2 -343 (-30) -10.0 (-13) -196 (-5) +10.6 

70UP/30Allyl resole [10] +1.1 +14 -98 (-9) -7.9 (-10) -271 (-7) +10.0 

70UP/30Methacrylate-novolac 
(32 wt% additional styrene) [13] 

+1.2 +1 -198 (-17) -15.0 (-18) -904 (-19) +5.7 

50UP/50VB-novolac (15 wt% 
additional styrene) 

+1.8 -14 -423 (-37) -15.0 (-19) -520 (-13) +11.6 

50UP/50VB-novolac (30 wt% 
additional styrene) 

+2.0 -10 -248 (-22) -13.0 (-16) -244 (-6) +12.3 

50UP/50Allyl-resole (no 
additional styrene) [10] 

+1.7 +17 -225 (-21) -17.9 (-23) -924 (-23) +13.0 

50UP/50Methacrylate-novolac 
(32 wt% additional styrene) [13] 

+1.8 +1 -290 (-26) -19.0 (-23) -1190 (-25) +10.5 

VB-novolac (no styrene) +5.6 -5 -532 (-47) -28.0 (-35) -980 (-25) +31.5 

Allyl-resole (no styrene) [10] +4.3 +32 -249 (-24) -30.9 (-39) -1881 (-46) +26.0 

Methacrylate-novolac (32% 
additional styrene) [13] 

+3.4 +3 -329 (-29) -22.0 (-27) -1301 (-27) +17.8 

Notes:  
1. Various parameters for the UP in reference [10] are as: LOI =17.9 vol% , TTI = 40s, PHRR = 1053 kW/m2, 
THR = 78.9 MJ/m2, TSR = 4090 m2/m2 , CY = 1.0%. In reference [13]: LOI =17.9 vol% , TTI = 38s, PHRR = 
1130 kW/m2, THR = 83.0 MJ/m2, TSR = 4813 m2/m2 , CY = 1.9%. 
 

2. The data in brackets and italic fonts represent the percentage change w.r.t the control sample 
 

3. The (–) and (+) signs represent reductions and enhancements, respectively. 

 

 

4. Conclusions 

 

A phenolic novolac has been successfully functionalized with vinylbenzyl groups (giving VB-

novolac) to the extent of about 45% of the theoretical maximum. This resin spontaneously 

polymerizes when heated, like styrene, and can also be free-radically co-cured with UP using styrene 

as a crosslinking monomer. Co-cured blends of UP with VB-novolac are significantly more flame 

retardant than cured UP itself and than the co-cured blends of UP with an allyl-functional resole 
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previously studied. A 70/30 blend of UP/VB-novolac also outperforms a blend of UP with a 

methacrylate-functional novolac of similar composition. Co-cured blends of UP with both VB-

novolac and Methacrylate-novolac show significant promise as replacements for cured UP as 

matrices for more flame-retardant glass reinforced composite laminates. Studies of the properties 

(flame retardant and mechanical) of laminates based on these new resin blends will be reported 

elsewhere. 

 

Acknowledgements 

 

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for financial 

support of this work (Grant No.EP/H020675/1), Scott-Bader and Sumitomo-Bakelite Europe NV for 

the provision of materials and, in the latter case, also access to SEC facilities, and Dean Bugg, Jan 

Schreurs and Tom De Smedt of the aforementioned companies for technical help and advice. 

 

References 

[1] Stevens MG, Morgan AB. Chapter 23 in: Fire retardancy of polymeric materials, 2nd Edition, ed. 

Wilkie CA, Morgan AB, CRC Press, Boca Raton, 2010. 

[2] Walczak EK, Fire Mater 1998; 22: 253. 

[3]  Kandola BK, Horrocks AR. Chapter 5 in: Fire Retardant materials, ed. Horrocks AR, Price D. 

Woodhead Publishing Ltd, Cambridge, 2001. 

[4]  Hörold S. Polym Deg Stab 1999; 64: 427. 

[5] Zhang C, Huang JY, Liu SM, Zhao JQ. Polym Adv Tech. 2011; 22: 1768. 

[6]  Froehling PE. J. Appl. Polym. Sci. 1982; 27: 3577. 

[7]  La Scala JJ, Sands JM, Orlicki JA, Robinette EJ, Palmese GR. Polymer. 2004; 45: 7729. 
[8] Kandola BK, Deli D, Ebdon JR. Compatibilised polymer blends. UK patent application. 

GB1121498.8. 2012. 

[9] Deli D, Kandola BK, Ebdon JR. J Mater Sci 2013;48:6929. 

[10] Kandola BK, Krishnan L, Deli D, Ebdon JR. Polym Deg Stab 2015;113:154. 

[11] Kandola BK, Krishnan L, Ebdon JR. Polym Deg Stab 2014;106:129. 

[12] Kandola BK, Ebdon JR, Chowdhury KP. Polymers 2015;7:298. 

[13] Kandola BK, Krishnan L, Deli D, Luangtriratana P, Ebdon JR. RSC Advances 2015; 5: 33772. 

[14] Atkins KE. Improved polyester molding compositions and molded articles produced therefrom. 

EP0058740. Union Carbide Corporation. 1982. 

[15] Atkins KE. Poly(vinyl ethers) as shrinkage control agents. EP0390187. Union Carbide 

Corporation, 1990. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 
 

[16] Godschalx JP, Woo EP, Schrader PA, Aldrich PD. Vinylbenzyl ethers of polyhydric halogenated 

phenolic compounds. European patent. 0258695 A1 1991. 

[17] Biswas B; Kandola BK. Polym Adv Technol 2011; 22: 1192. 

[18] Smith BC. Infrared spectral interpretation: a systematic approach. Boca Raton: CRC Press: 

Boca Raton; 1999. p.45. 

[19] Pryor WA, Laswell LD. Adv Free Radical Chem 1975; 5: 27. 

[20] Bhanu VA, Kishore K. Chem Rev 1991; 91: 99. 

 


