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In this paper, we study a family of solid-state, organic semiconductors for visible light communica-

tions. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side

arm lengths which control the photophysical properties. The molecules emit red light with photolumi-

nescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY mol-

ecules were used as a red colour converter for visible light communications. The film enabled colour

conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical

phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off

keying modulation in a free space link with a distance of �15 cm. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953789]

Organic semiconductors have been widely studied in the

last few decades for optoelectronic devices such as transistors,1

lasers,2–4 amplifiers,5 solar cells6,7 explosive sensors,8 and or-

ganic light emitting devices (OLEDs).9 They are broadband

visible emitters whose emission can be tuned by changing the

chemical structure, and can have high photoluminescent quan-

tum yields (PLQY) of up to 90% in undiluted films.5,9,10 This

combined with simple and low cost solution processing techni-

ques make them attractive materials for optoelectronic devices.

An emerging application area for organic semiconductors

is in the field of visible light communications (VLC).

Increasing demand for wireless communications has driven

research into improving data transmission concepts.11–21 The

concept of VLC is to use solid state room lighting to transfer

data. This idea can exploit lighting installations to their full

potential by providing illumination and data communication

simultaneously, in an efficient, safe, and low cost method.

White LED lighting commonly uses blue LEDs coated with a

yellow-emitting phosphor which acts as a colour converter for

some of the blue light. An important consideration is the

excited state lifetime of the phosphor/colour converter. High

data transmission rates require short excited state lifetimes.

Phosphors typically have a microsecond lifetime which

severely limits the data transmission rate, so there is a need

for colour converters with much shorter lifetimes.

Organic semiconductors are attractive alternatives to

using phosphors as colour converters for VLC because they

have faster radiative lifetime and high PLQY. They can also

be modified to emit at any visible wavelength, allowing tune-

able colour converters. The potential of using conjugated

polymers for VLC has recently been demonstrated, using the

commercial polymer Super yellow (Merck) in solution. The

experiment combined the yellow emission of the polymer

with a blue LED to produce white light and a data rate of

1.68 Gbit/s over a distance of 3 cm.22 Improved colour ren-

dering or wavelength division multiplexing requires fast red

colour converters. We have recently shown that boron-

dipyrromethene (BODIPY) molecules in solution can give a

saturated red emission, a modulation bandwidth of 39 MHz

and data rates of �98 Mbit/s.23,24 However, for practical

applications, a compact and solid state structure is required.

In this paper, we study a family of star-shaped BODIPY mol-

ecules in the solid state and demonstrate that they have an

increased bandwidth allowing a data transfer rate of 370 Mb/

s at a distance of 15 cm with simple on-off keying (OOK).

The molecules (shown in Figure 1, top) have a star

shape with boron-dipyrromethene as the core (BODIPY) and

oligofluorene arms in a “Y” shaped arrangement. The size of

the molecule is modified by increasing the number of fluo-

rene units in each arm from 1 to 4, and the corresponding

molecules are labelled as Y1, Y2, Y3, and Y4.25 The oligo-

fluorene arms have a substituent effect on the BODIPY core,

and therefore, the increase in the number of arms influences

the photophysics of the material.

Solid state colour converters were spin-coated from so-

lution to make thin films on quartz substrates for the photo-

physical studies. Films of thickness ca. 100 nm were

deposited from solutions at concentrations of 10 and 20 mg/

ml for photophysical and communications measurements,

respectively. These were spin-coated at 1500 rpm for 60 s.

Figure 1 (bottom) shows the absorption and PL spectra of

the films for each molecule. The absorption spectra show

peaks at 450 and 620 nm for Y1; 350, 473, and 626 nm for

a)Authors to whom correspondence should be addressed. Electronic
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Y2; 350, 477, and 625 nm for Y3; and 366, 480, and 625 nm

for Y4. The absorption band below 400 nm is attributed to

the fluorene arms and increases in intensity with the arm

length. Y1 has a peak in absorption at 450 nm matching well

the emission of the blue LEDs used for lighting, and this fea-

ture shifts slightly to longer wavelengths for longer arms as

seen in Figure 1. The peak emission wavelengths were in the

red region of the spectrum, 663, 679, 682, and 682 nm for

Y1, Y2, Y3, and Y4, respectively. The red PL emission

comes from an extended conjugation across the BODIPY

core and adjacent fluorene units as has been described previ-

ously.24 The bathochromic shift from Y1 to Y2 is also evi-

dent in solution23,24 and indicates that there is a further

delocalisation of the excited state across the BODIPY and

neighbouring fluorene units.

Time-resolved fluorescence measurements were con-

ducted using the time correlated single photon counting

(TCSPC) technique, exciting the materials at 375 nm and

detecting at the corresponding peak PL wavelengths. The

375 nm excitation is absorbed by the oligofluorene arms, and

results in a fast energy transfer to the emitting state that is

delocalised across the BODIPY core. The energy transfer is

very fast and cannot be resolved by the TCSPC apparatus.

The resulting PL dynamics are shown in Figure 2 and have

bi-exponential decays. The lifetime values are given in Table

I for the nanosecond range and show Y3 having the shortest

average decay. The PLQY of the films also differ, showing

lower values compared to solutions. In films, the PLQY val-

ues range from 22% to 56%, whereas in solution form they

were previously measured to be 55%–62%.23

Films of Y3 were selected for bandwidth and data trans-

mission measurements as they have the shortest lifetime and

high PLQY. Samples were encapsulated under glass using the

UV cured epoxy NORLAND 68 on top of the BODIPY Y3

film. UV curing was performed with an 8 W lamp at 365 nm

for 1.5 min. The encapsulation process was conducted in a

nitrogen-filled glove box which had a controlled and inert

atmosphere to avoid exposure to water and oxygen molecules,

thus reducing photo-oxidation effects during measurements.

The photophysical properties of Y3 were not changed by the

encapsulation process.

The capacity of the data link scales with its modulation

bandwidth. To assess the bandwidth of Y3, the experimental

setup presented in Figure 3(b) was used. The fast (broad band-

width) excitation source and detector used were a diode laser

emitting at 450 nm and an avalanche photodiode. To elimi-

nate any residual excitation light at the detector, a reflectance

geometry was adopted in combination with a suitable long-

pass dichroic filter. The excitation source was driven by an

amplified sinusoidal voltage generated by the network

FIG. 1. (a) Molecular structure. (b) Absorption and emission spectra of

Y-BODIPY films.

FIG. 2. Time-resolved fluorescence measurements of Y-BODIPY films

(black) and their fit (red) with the instrument response function (dashed

line).

TABLE I. Photoluminescence quantum yield excited at 375 nm and lifetime

of Y-BODIPY films.

Polymer PLQY % A1 s1 (ns) A2 s2 (ns) savg (ns)

Y1 22.4 0.44 2.35 0.56 5.3 4

Y2 55.9 0.53 5.87 0.47 10.72 8.2

Y3 40.6 0.48 1.9 0.52 4.3 3.2

Y4 49.2 0.26 2.07 0.74 5.08 4.3
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analyser; this was combined with a DC voltage from a power

source using a bias-T. The signal received from the avalanche

photodiode (APD) was recorded by the network analyser. To

measure the bandwidth of the system, the AC amplitude of

the received signal was recorded as a function of the modula-

tion frequency. To factor out the bandwidth contribution of

the different components of the experimental setup, first the

bandwidth of the measuring system was evaluated by direct-

ing the excitation light into the detector. This bandwidth was

subsequently subtracted by the network analyser from the

recorded bandwidth spectrum for the material. Figure 3(a)

shows the results of the bandwidth measurement of the Y3

BODIPY as well as, for comparison, the bandwidth of a com-

mercial phosphor plate CL-840 (Intematix ChromaLit). It is

evident in Figure 3 that the BODIPY material has a much

higher �3 dB bandwidth (75.5 MHz) than that of the phos-

phor (5 MHz). The Y3 film bandwidth is also twice that meas-

ured with the same material in solution.

The data transfer capabilities were also studied using the

same setup as for the bandwidth measurements. The excita-

tion laser was modulated in intensity using a binary On-Off

Keying (OOK)26 modulation scheme, i.e., a binary “one”

was represented by a light pulse of duration 1/Rb, where Rb

is the data rate and a “zero” was represented by the absence

of the pulse. At the receiver, a simple threshold decoding

was used in which the received signal was compared against

a fixed threshold level based on the expected signal level

for “zero” and “one.” If the received signal was above the

threshold level, it was assumed to be “one,” otherwise

“zero.” Figure 4 shows the measured bit error rate (BER) as

a function of transmitted data rate for OOK modulation. The

measurements were taken using a pseudorandom binary

sequence (PRBS) of 214-1, of which �82 000 bits were ana-

lysed at the receiver for errors. Hence, the minimum BER

level is limited to 10�4 to have statistically high confidence

level. By considering the forward error correction (FEC)

floor of 3.8� 10�3 (as recommended by the International

Telecommunication Union (ITU) standard), a data rate of

370 Mb/s was achieved which is 4 times higher than previ-

ously reported for BODIPY colour convertors in solution.

To summarise, BODIPY-cored oligofluorene star-

shaped conjugated systems have been studied in the solid

state to establish their feasibility as a red colour converter

for VLC applications. The solid-state films exhibit PL life-

times shorter than their solution based counterparts and

therefore result in a higher bandwidth, for Y3, of 73 MHz

and a data transmission rate of 370 Mb/s, which are, respec-

tively, two and four times higher than measured for Y3 in so-

lution. This bandwidth is 16 times higher than common

commercially available phosphors and shows that these or-

ganic materials are promising as colour converters for VLC.
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