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Concrete grandstands. Part II: numerical modelling

J. N. Karadelis MPhil(Eng), TEE

This paper outlines the essential theoretical basis upon

which a rigorous finite-element model comprising

material non-linearities and failure criteria for both,

concrete and steel reinforcement, is built. A numerical

algorithm describing the analysis process, based on

recent advances in numerical methods of reinforced

concrete and a finite-element code were developed in

parallel and summarised in a concise flowchart. It was

concluded that the finite-element model captured

successfully the non-linear flexural behaviour of the

terrace units to failure, the formation of a ‘bowl’ at the

centre, the lifting of the free tread ends and the rotation

about a longitudinal axis. The results produced were

rather sensitive to the modulus of elasticity assigned to

concrete as well as the initial and, to a lesser extend,

additional tangent moduli assigned to the reinforcement.

The model was capable of predicting the introduction

and propagation of flexural cracks formed around the

midspan. More rigorous analytical and numerical work is

under way, depicting both static and dynamic conditions,

in an effort to establish suitable FE benchmarks, hence

reducing uncertainties and increasing confidence of the

performance of these structures during their working

life.

NOTATION

Ec modulus of elasticity of concrete

f 9c uniaxial compressive cylindrical stress

fcu characteristic strength of concrete

f t tensile strength of concrete

I1, I2, I3 first, second and third invariant of the stress

deviator tensor

J1, J2, J3 first, second and third invariant of the stress tensor

Pn nth load step (8n: n2@þ)

sij deviator stress

�ij Kronecker delta

� accumulated strain

�ij general strain tensor

�e, �p elastic and plastic strains respectively

�ij general stress tensor

�m hydrostatic mean stress

�1, �2, �3 principal stresses

1. INTRODUCTION: IDENTIFYING THE PROBLEM

Use of the finite-element (FE) method as a supplement to

experiments and especially in situations where experimental

work is either difficult to perform or cumbersome and

expensive (e.g. reinforced concrete (RC) structures) has been

increasing ever since the pioneering work of Ngo and

Skordelis.1 Extensive research has since resulted in significant

advances in the area of constitutive concrete, leading to the

development of a significant number of numerical models,

partially listed in the reports of the American Society of Civil

Engineers (ASCE) Committee on Finite Element Analysis of

Reinforced Concrete Structures.2

The mechanical behaviour of RC as a composite material is not

similar to that of its two basic constituents. Extensive research

has, however, led to a few constitutive models for concrete

based on the principles of continuum mechanics rather than

the micro-mechanics of its molecular structure

(crystallography). These models were based on the theory of

elasticity following a linear or bilinear behaviour, or they

incorporated a plasticity algorithm, or were capable of

simulating plastic fracturing, or even a more general elasto-

plastic behaviour.3 This irregular behaviour of concrete as a

material is attributed mainly to the following4

(a) the distinct non-linearity of its stress–strain path,

especially in the near-peak domain, resulting from the

development, growing and propagation of microcracks and

the subsequent reduction in stiffness

(b) the softening tendency of concrete in the post-peak domain

and the assemblage of these cracks in narrow bands

(c) the elastic stiffness dilapidation (decaying) caused by the

successive opening and closing of cracks due to repeated

loading–unloading

(d ) the irrecoverable volume loss at high compressive loads

resulting in an increase of Poisson’s ratio.

Efforts will be directed in embracing most of the above in the

numerical model presented below.

2. CONSTITUTIVE CONCRETE MODELS: THEORIES

AND CRITERIA

Almost all classical theories of plasticity are based on five key

concepts

(a) decomposition of strain into elastic and plastic parts

(b) yield criteria, determining the level at which yielding is

initiated

(c) plastic flow rule, determining the direction of plastic strain
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flow relative to x, y, z axes and the relationship between

stress and plastic strain under multiaxial loading

(d ) strain hardening rule, describing and controlling the

changes the yield surface undergoes with progressive

yielding, so that the various states of stress, and the way in

which resistance to plastic flow increases with plastic

straining, can be established

(e) the unloading condition, demonstrating the irreversible

behaviour of the solid.

Failure criteria are introduced to assess the possibility of failure

of the material. As plastic strains develop, the yield surface

increases in size while maintaining its original shape (isotropic,

plastic behaviour) or moves to a different location within the

material (kinematic hardening), or both.

Although the behaviour of concrete under complex stress

conditions has been under investigation for many years, there

is as yet no universally accepted constitutive law. Concrete in

tension has been modelled in several ways, the most successful

being a linear elastic and strain softening material—that is, the

principal stresses and their directions are computed initially for

an uncracked concrete. If the maximum principal stress

exceeds a limiting value, a crack is assumed to form in a plane

orthogonal to this stress. After the first crack the behaviour of

that region of concrete becomes orthotropic. Linear and

exponential mathematical models have been used to describe

the descending part of the stress–strain diagram.

Concrete in compression is treated in a similar manner. The

strength parameters, the tensile and compressive strength of

concrete, are used to define the initiation of fracture by means

of a tension ‘cut-off’ condition in the principal stress plane.

When the combination of principal stresses violates this

condition, a crack is initiated.

Failure theories represent states of stress and/or strain at which

concrete can no longer sustain one of the criteria such as,

yielding, load-carrying capacity, crack initiation and

deformation, leading to rather complex failure curves and

failure surfaces. The amount of experimental data needed for

the implementation of such failure envelopes has, however,

been limited until now.

Using index notation and terminology, the state of stress at a

point inside a concrete element can be completely defined by the

stress tensor, �ij , in a three-dimensional (3D) stress system, where

each component of the stress tensor acts on a surface normal to

the i-axis and in the direction of the j-axis. In general, the stress

tensor can be decomposed into two parts: the hydrostatic (mean)

stress, �m, involving only pure tension and compression and the

deviator stress, sij , involving only shear, as follows

�ij ¼ s ij þ �m�ij1

where �ij is the Kronecker delta: �ij ¼
(
1, if: i ¼ j
0, if: i 6¼ j

(e.g. �12 ¼ 0, but �33 ¼ 1).

The condition for failure due to a multiaxial stress state is

actually based on a model developed by Argyris,5 who

suggested a three-parameter criterion involving both stress

invariants. Willam and Warnke6 expanded on the Argyris

model by adding two additional parameters, degrees of

freedom (DOF), for describing meridian sections (surface

generating curves) so that the failure surface model can be

applied to low as well as high compression regions. Hence,

they introduced a five-parameter criterion in which the tensile

and compressive meridians were expressed by

ffiffiffiffiffiffi
I2,t

p
¼ A01 þ A11J1 þ A22

J1
2

fc9

� �

tensile meridian (Łc ¼ 0)

2

ffiffiffiffiffiffiffi
I2,c

p
¼ B01 þ B11J1 þ B22

J1
2

fc9

� �

compressive meridian (Łc ¼ 608)

3

where A01, A11, A22, B01, B11, B22 are constants, f 9c is the

uniaxial compressive cylindrical stress (straight meridians),

J1 ¼ (�1 + �2 + �2), the first invariant of the stress tensor and

I2 ¼ 1
2(s1 + s2 + s3) the second invariant of the stress deviator

tensor

They were able to develop an expression for the failure curve

by modelling it as part of an ellipse in the deviatoric plane. The

five-parameter model was validated by utilising experimental

data from Launay and Gachon.7 It is characterised by a smooth

surface and produces the main features of the triaxial failure

surface of concrete. This is the criterion adopted by Ansys.8

In comparison, little work has been done in treating RC

structures as 3D solids mainly because of the relative lack of

knowledge of the concrete as a material under three-

dimensional stress states. The most successful theory is probably

attributed to Selby and Vecchio.9 Their FE model used the

secant stiffness (as opposed to tangent modulus) thus allowing

for stability of the non-symmetric matrices developed but was

only effective for short-term monotonic loads. Han and Chen10

experimented with elasto-plastic constitutive models for

concrete under triaxial states of stress. They used a hardening

parameter in their non-uniform hardening plasticity model to

simulate inelastic behaviour of concrete including brittle failure

in tension, ductile behaviour in compression and volumetric

dilatation under compressive loading. Their model could fit a

wide range of experimental data, treating them as parameters

such as shape factor, plastic modulus, modification factor and so

on.

An alternative material model based on the theory of plasticity

is that permitting dependence of strain on the loading history

of the material. Hence, based on small strains theory, for multi-

axial stress states and as irreversible material behaviour

governs, the strain tensor can, in general, be decomposed into

elastic and plastic strain increments such as

d�ij ¼ d�eij þ d�pij4
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3. STEEL REINFORCEMENT: ELASTO-PLASTIC

BEHAVIOUR

For metals, including steel, the von Mises yield criterion with

its associated flow rule and work (isotropic) hardening is

adopted. For the case of reinforcement undergoing tension or

compression, uniaxial conditions were assumed and a bilinear

isotropic hardening approach was chosen to simulate the

behaviour of steel. The material is assumed to undergo yielding

when the equivalent stress reaches the yield stress. At the same

time the corresponding yield surface depends solely upon the

amount of plastic work done. It was therefore necessary to

define and input the yield stress and a tangent modulus

(gradient) after yielding, plus the modulus of elasticity and

Poisson’s ratio.

The final solution was obtained by utilising the linear solution,

modified with an incremental and iterative approach. In general

�n ¼ �n(ela) þ ˜�n(pla) þ �n�1(pla)5

where �n is the total strain at the nth iteration, �n(ela) is the

elastic strain for the same iteration, ˜�n(pla) is the additional

plastic strain obtained from the same iteration and �n�1(pla) is

the total and previously obtained plastic strain.

Convergence is achieved when Equation 6, is satisfied11

˜�n(pla)=�n(ela)

� �
, 0:016

This means that very little additional plastic strain is now

accumulating and therefore the theoretical curve, represented

by two straight lines (bilinear approach), is very close to the

actual one.

4. NUMERICAL MODELLING

A step-by-step FE analysis (FEA) algorithm is developed in

which provision is made for cracking and crushing of concrete

(brittle failure) and the elasto-plactic behaviour of both

materials, under static incremental loading conditions. A

summary of the algorithm is shown in Figure 1.

4.1. Cracking and crushing of concrete

Based on the statements in Section 2, and assuming �1 > �2 >

�3, the failure condition of concrete could be divided into four

discrete domains

(a) when 0 > �1 > �2 > �3, (i.e. compressive–compressive–

compressive), crushing occurs

(b) when �1 > 0 > �2 > �3, (i.e. tensile–compressive–

compressive), cracking occurs

(c) when �1 > �2 > 0 > �3, (i.e. tensile–tensile–compressive),

cracking occurs

(d ) when �1 > �2 > �3 > 0, (i.e. tensile–tensile–tensile),

cracking occurs.

As mentioned earlier, five input strength parameters are needed

to define the failure surface, as well as a hydrostatic stress

state. These are summarised in Table 1. The failure surface can

be specified by a minimum of two constants, f t and f c, whereas

the other three constants default to specific values if the

hydrostatic stress component, �m, is low (all five parameters

are needed if �m is high).6

4.2. Shear transfer

The discrete representation of reinforcement within the

framework of the FE method is based on modelling the

concrete and the reinforcing bars as different elements.

Ansys8 recommends a 3D, eight-node, solid, isoparametric

element (Solid65), with three translational DOF per node to

simulate the nonlinear response of brittle materials such as

concrete. For cracking in the tension zone the element includes

a smeared crack analogy allowing cracks to be shown in the

deformed shape. After the formation of the first crack, stresses

tangential to the crack face may cause a second or third crack

to develop and so on. The amount of shear transfer can be

adjusted in the concrete material data table. This allows

additional concrete material data such as tensile and

compressive strengths and ‘shear transfer coefficients’ to be

input in the program. The latter range from 0, representing a

perfectly smooth crack with total loss of shear transfer, to 1,

representing a perfectly rough crack with no loss of shear

transfer. For crushing in the compression zone, it follows a

typical plasticity law—that is, once the section has crushed any

further application of load develops increasing strains at

constant stress.

The element behaves in a linear elastic manner, if the applied

tensile or compressive stress is less than the tensile or

compressive strength of the material. If one of the applied

principal stresses exceeds the tensile or compressive strength,

however, then cracking or crushing of the element starts.

Accordingly, cracked or crushed regions are formed

perpendicular to the relevant principal stress direction. In the

numerical routines the crack formation is achieved by the

modification of the stress–strain relationships of the element,

hence introducing a plane of weakness in the required

principal stress direction.

It is stressed here that the numerical analysis routines

incorporated in the program dictate that cracked or crushed

regions (and single cracks) are formed perpendicular to the

direction of the applied principal stress, which has just

exceeded the corresponding tensile or compressive strength of

the material. Hence, in a typical flexural test and at regions

near the mid-span, cracks should appear vertical (see Figure 10

later) whereas at regions near the supports they should be

inclined at an angle of approximately 458 to the horizontal.

4.3. The problem of smeared reinforcement

The reinforcement could be modelled as an additional smeared

stiffness, distributed through the centroid of the element in 3D

Cartesian system orientation. Up to three different rebar

specifications may be defined this way. They can resist tension

and compression but surprisingly, no shear. The problem does

not seem to be fully alleviated with the usual remedies such as

the introduction of discrete tie-strut (Link8), or beam (Beam4)

elements connected to the solid elements (Figure 2). This is

because the beam elements would allow the reinforcement to

develop shear stresses but, as they are primarily linear

elements, they would not go beyond yielding and therefore no

plastic deformation of the reinforcement is possible. The link
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elements, on the other hand, would allow elasto-plastic

response of the reinforcement to be introduced in the RC

simulation but, like the smeared reinforcement of the solid

elements, no shear stress stiffness modelling is possible.

This problem can be averted by first considering the

mechanism of shear transfer in a cracked concrete beam. This

states that the applied shear stresses are resisted by the

combined action of shear in the uncracked compression zone

(approximately 30%), plus the contribution owing to aggregate

interlock (approximately 45%), plus the dowel action of the

longitudinal reinforcement (25%).12 Taylor12 demonstrated

Steel:

202·2 kN/mm

0·3

E �

�

2

ν

Concrete:

E 32·4 kN/mm

0·15

�

�

�2

ν

START

Input geometry

Input initial
material properties

Input nonlinear
material properties
and failure criteria

Discretise
structure

Apply constraints

Apply loads

Solve

Check
convergence

No

Print results

Yes

STOP

Nonlinear properties and failure
criteria for concrete and steel are
shown in Figure 7 and Tables 7 and 8.

UX, UY, UZ 0 LH-support�

UY, UX 0 RH-support
UZ 0 Front side (see diagram).

�

�

Use incremental procedure. First
increment to cause yield at tension
steel. Then continue as per laboratory.

Check out-of-balance load for any
active DOF.

Print nodal displacements, nodal and
elemental strains and stresses. Show
crack and crush location, size, growth.

Figure 1. Symbolic flowchart representation of the algorithm describing the analysis process
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that, as the applied shear force is increased, the dowel action is

the first to reach its capacity after which a proportionally large

shear is transferred to aggregate interlock.

The contribution the main steel (here modelled with Link8-

elements) would therefore provide to shear resistance could be

credited (passed) to the surrounding concrete and can even be

specified for either both, open and closed cracks or one case

only, as shown in Table 2. When cracking is imminent and the

solution is converging to the cracked state, the modulus

directly normal to the crack is significantly reduced and when

the crack is open it is set to near zero. At this stage, the

stiffness normal to the crack face will also be zero.

4.4. Softening of concrete

Concrete, unlike steel, shows a post-yield, strain-softening

behaviour, obtained from routine tests on specimens such as

cubes, cylinders, prisms and so on. This means that its stress–

strain relationship follows a downward path after yielding. The

traditional nonlinear solutions such as the Newton–Raphson (N–

R), or modified Newton–Raphson (mN–R) techniques cannot

handle such behaviour. This is

because even zero stiffness at

the unstable region (top of the

curve, where the stiffness

matrix changes its sign from

positive to negative),

possesses a problem for the

N–Rmethod. The latter

becomes singular, inputted

constraining equations

become inadequate, the

technique predicts an

unbounded displacement

increment and the model is declared unstable, often preventing

further solution.

More recent advances promise solvers; they can offer

sophisticated solution techniques such as Riks’13 and

Crisfield’s14,15 arc-length method. These solvers are

incorporated in recent Ansys codes but they are bounded by

restrictions such as only being suitable for certain elements

and when the loading is strictly proportional; that is, where the

load magnitudes are governed by a single scalar parameter.

When the above is not the case, they do not obtain good

results.

Attributing strain-softening characteristics to the post-peak

behaviour of concrete seems, however, to be contradicting its

brittle nature, especially when past studies have shown that

strain softening is merely attributed to the interaction between

specimen and loading platens of the apparatus.16–18 In other

words, if edge effects were eliminated, then concrete should be

characterised by a complete and immediate loss of load-carrying

capacity, as soon as its peak strength is reached. Hence, the

well-known descending part of every laboratory-obtained

concrete stress–strain curve is questionable, to say the least.

A series of laboratory tests, in a different research area, are

currently being carried out at Coventry University on concrete

beams and slabs with synthetic reinforcement. Although it is

still too early for any firm conclusions it is, however, worth

mentioning that the phenomenon of strain softening is absent,

indicating that the softening effects may be attributed to the

ductile behaviour of steel reinforcement and the composite

action of the two materials.

4.5. Concrete–steel interaction

The transfer of forces across the interface between concrete and

steel reinforcement by bond is of fundamental importance, as

Parameter Description

f t Ultimate uniaxial tensile strength
f c Ultimate uniaxial compressive strength
f cb Ultimate biaxial compressive strength
�H Hydrostatic stress (ambient)
f1 Ultimate compressive strength for the state of biaxial compression superimposed

on �H

f2 Ultimate compressive strength for the state of uniaxial compression superimposed
on �H

Table 1. Parameters used to define a failure surface (failure criterion by Willam and Warnke6)

Solid65

Link8

Figure 2. An FE model of a single terrace unit, steel elements
are shown exaggerated for clarity. Inset: deformed shape of
the unit, dark regions at the edges are virtually undeformed

Shear transfer contribution
as defined by Taylor12: %

For closed
cracks: %

For open
cracks: %

Ansys input.
Closed cracks: shear
transfer coefficient

Ansys input.
Open cracks:

shear transfer coefficient

Dowel action: 25 25 25 0.25* 0.25*
Aggregate interlock: 45 45 ,45 0.40 + 0.25* 0
Compression zone: 30 30 30 0.3 n/a

Total: 0.95 Total: 0.25

*Coefficient 0.25 (contribution of re-bars to shear transfer) is carried over.

Table: 2. Shear transfer coefficients and percentage of shear transfer attributed to concrete
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flexural and other actions can cause the steel to slip through

the concrete in a direction parallel to the bars. The interaction

between concrete and steel is described by the assumption of a

perfect bond. The latter is rather compatible with the smeared

crack model from the point of view that no detailed description

of the local effects is necessary. Also, as bond failure is a long

process, the concrete material surrounding the reinforcement

would probably have started departing the steel before the

maximum bond stress is reached and any attempt to restrict

these stresses to bond strength would be flawed. In any case,

the detailed representation of the bond mechanism between

steel and concrete is outside the scope of a macro/meso-scale

mechanics model such as the present one.

Nevertheless, Link8 elements were embedded within the solid

mesh by sharing common nodes with the Solid65 elements. In

this case the unaided discrete representation of the reinforcement

by one-dimensional, Link8 elements, connected to 3D, Solid65

mesh, was not made to account for possible displacement of the

reinforcement relative to the surrounding concrete.

4.6. Computer simulation of laboratory tests

A series of comprehensive laboratory tests have been carried

out elsewhere (Part I).19 The aim was twofold. First, to

investigate the behaviour of a family of RC terrace units

supported at three positions and undergoing static, incremental

loading. Second, to estimate the uncracked and fully cracked

stiffness of the units. Two tests per unit were carried out for the

latter aim. Test 1 assumed the section uncracked as it was

transported from the factory and test 2 considered the same

section, this time fully cracked, as received from test 1.

The geometry of the L-section terrace units and their design

features are presented in Figure 3 and Tables 1, 2 and 3 of the

companion part I paper.19

Figure 3 of the current paper shows the behaviour of typical

concrete cylinders in uniaxial compression in accordance with

the BS 1881,20 its initial part being approximated by the ‘best-

fit’ straight line. Softening, in this case, is regarded as a ‘post-

failure’ phenomenon. The slope of the best-fit line was

estimated to be 30.04 kN/mm2.

Clearly, the correlation of test and numerical data depends a

great deal on the assignment of accurate linear and nonlinear

material properties, as appropriate. Hence, Young’s modulus of

concrete was related to its compressive strength by21

Ec ¼ 9100 ( fcu)
1=37

In this case Hughes’21 relationship yields a Young’s modulus of

32.367 kN/mm2 which is just 7.6% out of the average secant

(static) modulus of elasticity value of 30.04 kN/mm2 recorded

in the laboratory. Also, it is less than 12.3% out of the average

value of 28.80 kN/mm2 obtained from ultrasonic laboratory

tests and less than 3.4% out of 33.5 kN/mm2, the value given

by BS 8110.22 These values are tabulated in Table 3. The value

of 30.00 kN/mm2 was adopted for FE modelling purposes.

The same British Standard for RC provides an estimate for its

tensile strength based on its known compressive strength by

ft ¼ 0:36 ( fcu)
1=2 ¼ 0:36

ffiffiffiffiffi
45

p� �
¼ 2:42 Nmm�2

8

The initial input properties for RC are shown in Table 4,

whereas Table 5 was prepared to provide specific failure

criteria for the concrete model.

Following the theory outlined in Section 3, the bilinear

behaviour of deformed high-yield re-bars under tensile

incremental loading was depicted in routine laboratory tests

and is presented in Figure 4. The initial slope of the curve was

taken as the elastic modulus of the material (198 kN/mm2). Up

to this point in the FE model the steel reinforcement is set to

behave in a linear elastic manner. Plasticity is then introduced

at a specified 0.2% proof stress (525 N/mm2). The curve

continues along the second slope defined by a tangent modulus

(1.06 kN/mm2). Failure occurs when the calculated value of

stress reaches the ultimate value (�u¼ 660 N/mm2) of the

material. Failure criteria for steel in the form of stress and

strain values are tabulated in Table 6.

The effect of self-weight of the terrace units was not taken into

consideration when the laboratory tests were carried out—that

is, for zero applied load the displacement was set to zero,

although microcracks tend to develop in concrete at a very

early stage, mainly owing to shrinkage. The same conditions

for the theoretical model ensued.

4.7. Finite-element solution procedure

An essential feature of the nonliner solution strategy is the

incremental application of load and the iterative procedure per

load increment, hence the update of the stiffness matrix. In

rate-independent material models these load steps take the role

of the time steps. The computation of the state of strain and

0·00350·0030·00250·0020·00150·0010·0005
0
5

10
15
20
25
30
35
40
45
50

0

E � 30·04 kN/mm2

Figure 3. Stress–strain behaviour of grade C45 concrete in
compression and estimation of its modulus of elasticity

EHughes Estatic Eultrasonic EBS8110 EFEA

32.367 30.04 28.80 33.5 30.00

Table 3. Moduli of elasticity values for concrete in kN/mm2
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stress at a particular integration point (an interface the system

uses to communicate with another application) is followed by a

check against material failure. If failure is detected, then the

type of failure (cracking–crushing), is established. Ansys8 uses

the smeared crack model for the representation of cracks with

some advantages against discrete models, such as arbitrary

directioning and no need for mesh adaptability and refinement.

A drawback can be their disability to permit reliable

description of the material behaviour in the vicinity of the

crack and therefore only suited in macro-scale mechanics

applications. Most of the smeared crack models reported in

relevant literature are based on the theory of elasticity and

only a small number of studies such as the one by Feenstra and

de Borst23 have reported plasticity models.

As plasticity is path dependent, it necessitates that, in addition

to multiple iterations per load substep, the loads be applied

slowly, in increments, with the presence of convergence tests in

each substep, in order to characterise and model the actual

(laboratory) load history. This is achieved by the NSUBST

(number of substeps) command, defining the number of

substeps to be taken within a load step. Ansys recommends a

practical rule for load increment sizes, such as the

corresponding additional plastic strain does not exceed the

order of magnitude of the elastic strain. This can be achieved

by applying additional load increments not larger than the load

in step one, scaled by the ratio ET/E .0.05. Such as

Pnþ1 ¼
ET

E
Pn 8n 2 N9

where

Pnþ1 is the (n+1)th load step, E is the elastic slope, ET is the

plastic slope and Pn is the (n)th load step.

Load substep one was chosen so as to produce maximum

stresses approximately equal to the yield stress of the material.

The yield stress was taken as 525 N/mm2 from routine

laboratory tests (Figure 4) and the corresponding load of

24.5 kN was noted. Also, the load to initiate yield was selected

by performing a linear elastic analysis with a unit load and by

restricting the stresses to the yield stress of the material. This

was found to be approximately equal to 23.7 kN. The same

design load at serviceability state conditions was 24 kN (Table

2, Part I).19 In an effort to minimise uncertainties the number

and size of successive load substeps were made to approximate

the load history in the laboratory.

5. RESULTS AND DISCUSSION

5.1. Load–deflection

The experimental load-deflection response of unit 1 is

reproduced in Figure 5, plotted along with the FE results. Test 1

represents the uncracked unit and test 2 the same unit cracked.

It is clear from the path of the FE curve that the response of

the model is linear until the first crack has formed at

approximately 24 kN. This compares very well with the

experimental findings. In test 2 (cracked unit) cracks inherited

from test 1 have smoothened the overall behaviour of the unit.

The ultimate measured and predicted loads reached and the

corresponding mid-span deflections are shown in Table 7. A

large number of FE models depicting concrete behaviour

predict deflections that are noticeably lower than the measured

ones. This may be attributed, to a certain extent, to the plastic

properties of the reinforcement, which can be such that

converged solutions cannot be achieved beyond a certain load

step, corresponding to a particular deflection value.

5.2. Strain variation

Figure 6 shows the measured and predicted strain variation at

the lateral (SG1) and longitudinal (SG2) reinforcement at mid-

span (Figure 6, Part I)19 and Table 8 shows the ultimate strain

values for both measured and predicted strains. All strain

values are below the ultimate value of 3330 ��. The strain

Concrete Steel re-bars

Ec 30 kNmm�2 Es 198 kN/mm�2

f cu 45 Nmm�2 fy – N/mm�2

f t 2.42 Nmm�2 0.2% proof stress 525 N/mm�2

�con 0.15 �steel 0.3

Table 4. Initial material properties as derived from design (see Table 3, Part I: experimental
investigation19) and routine laboratory tests

Failure criteria for concrete: stress (N/mm2)

�x (tens) �x (comp) � y (tens) � y (comp) �z (tens) �z (comp) �xy � yz �zx

2.42 �45 2.42 �45 2.42 �45 0.45 0.45 0.45

Failure criteria for concrete: strain

�x (tens) �x (comp) � y (tens) � y (comp) �z (tens) �z (comp) �xy � yz �zx

0.0001 �0.00175 0.0001 �0.00175 0.0001 �0.00175 — — —

Table 5. Failure criteria for concrete as inputted in the FE model
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variation for the uncracked section is not depicted for reasons

discussed earlier (see Section 4.4).

5.3. Flexural strain distribution

The distribution of strain across the depth of the riser at mid-

span is shown in Figures 7 and 8. In order to facilitate a direct

comparison, efforts were concentrated in harmonising, where

possible, the load increments followed in the laboratory with

those chosen by Ansys in the nonlinear analysis. The

resemblance of the results obtained is very satisfactory

(compare Figures 4 and 5, Part I).19

In addition, the experimental crack formation at mid-span,

Figure 9, compares well with the crack formation predicted by

the FE model, shown in Figure 10. Cracking and crushing in

Ansys are displayed by small circles and octahedra at locations

Test 1
(uncracked

unit)

Test 2
(cracked unit)

Measured (W, �): (kN, mm) (72, 10.7) (120, 17.2)
Predicted (W, �: (kN, mm) (73, 9.08) (126, 14.80)

Table 7. Measured and predicted ultimate values of load and
mid-span displacement
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Figure 4. Stress–strain behaviour of type 2 high-yield steel
reinforcement and determination of its modulus of elasticity
and ‘tangent’ modulus

Failure criteria for steel: stress (N/mm2)

�x (tens) �x (comp) � y (tens) � y (comp) �z (tens) �z (comp) �xy � yz �zx

660 �660 660 �660 660 �660 — — —

Failure criteria for steel: strain

�x (tens) �x (comp) � y (tens) � y (comp) �z (tens) �z (comp) �xy � yz �zx

0. 09 �0.09 0. 09 �0.09 0.09 �-0.09 — — —

Table 6. Failure criteria for steel as inputted in the FE model

0

2

4

6

8

10

12

14

16

18

20

0
Load: kN

D
is

pl
ac

em
en

t: 
m

m

Test 1 uncrck (mm) FEA 1 uncrck (mm)

Test 2 crck (mm) FEA 2 crck (mm)

12010080604020

Figure 5. Comparison between measured and predicted
displacements

18 Engineering and Computational Mechanics 162 Issue EM1 Concrete grandstands. Part II: numerical modelling Karadelis



where concrete has cracked, or crushed respectively. If the

crack has opened and then closed it is marked with ‘x’ through

the circle. There is cracking evident in Figure 10, confirming

that tension at the lower parts of the riser has been passed to

the reinforcement.

5.4. Supplementary strain results

Finally, Figure 11 shows a comparison between measured and

predicted strain readings for maximum load (72 kN) at specific

positions on the surface of the terrace unit. It was shown, both

experimentally and theoretically, that there was a gradual

reduction in lateral compressive strain (and hence an increase

in tensile strain) from the extreme support regions to the centre

of the unit. This indicated an independent behaviour of the

tread at the extremes and a similar behaviour to that of the

riser near the middle. It also indicated the tendency of the unit

to ‘sink’ in the middle and rotate about a horizontal

longitudinal axis. In fact, the deformed FE model predicted a

similar ‘bowl’ being deployed around mid-span and displayed

torsional evidence of the unit about its longitudinal axis (inset,

Figure 2). The tendency of the unit in the laboratory to leave

the continuous support at the front and lift its corners has also

been ‘dramatised’ by the computer, as nodal reactions were

found negative (Figure 11).

Ansys provides a series of dedicated Contact elements that can

model opening and closing, or sliding (friction) between two

surfaces. These (nonlinear) elements would suit a condition

such as lifting of the unit near the corners of the tread. If the

emphasis of the analysis were at both the unit and the

supporting medium, then best modelling practice would

probably dictate the use of these elements. As, however, this is

typical plate (slab) behaviour and as lifting can be clearly seen

in the deformed shape of the FE model, it was decided that any

more complex simulation of the interface between the UB-

section, used as support, and the concrete unit should be

unnecessary.

6. CONCLUSIONS

An accurate FE model of an RC terrace unit was developed in

Ansys 7.0, by employing the dedicated concrete Solid65 and

the Link8 elements and data obtained from a parallel

laboratory investigation. The general elasto-plastic constitutive

approach with the cracking and crushing options has captured

successfully the nonlinear flexural behaviour of this composite

unit to failure. The dedicated Solid65, 3D-element has been

developed specifically for RC. No other element, including the

family of powerful Shell (3D) elements, would be able to match

the capabilities of the above and especially the modelling and

prediction of cracks.

In general, 2D and Shell elements are best suited for

‘membrane’ or ‘thin-walled’ structures where the variation of

stresses along the third dimension is either negligible, or of

little interest. This is not the case with the (asymmetric cross-
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Figure 9. Front view detail of the riser at mid-span, showing
cracks developed in the laboratory

Lateral reinforcement Longitudinal reinforcement

Test No: (kN, ��) Test No: (kN, ��)

1 (72, 114) 1 (72, 2058)
2 (120, 940) 2 (120, 2974)
FEA1 (126, 1167) FEA2 (126, 3238)

Table 8. Measured and predicted ultimate values of load and
mid-span strains Figure 10. Isometric and front elevation (translucent view)

details of the riser at mid-span showing predicted cracks by
Ansys
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section) terrace unit as its behaviour (bending and torsional

effects, ‘lifting’ at the edges and ‘sinking’ at the centre) has

shown. The use of solid elements will be reviewed at the next

stage, when the whole grandstand is to be modelled.

The following conclusions can be made.

(a) The mode of failure predicted by the numerical model was

of a flexural nature owing to increasing plastic strains

developing in the tension zone (reinforcement). It was

consistent with the experimental response.

(b) The FE model depicted accurately the formation of a ‘bowl’

at the centre of the unit and a ‘region of inflexion’ (change

of sign of the bending moment values) surrounding it. The

tendency of the tread to lift at the free ends (typical slab

performance, noted during the experimental investigation)

was also depicted by the numerical model, as

corresponding node reactions were predicted negative.

Finally, rotation of the units about a longitudinal axis was

also captured.

(c) The results from the FE model were found to be rather

sensitive to the modulus of elasticity assigned to the

concrete as well as the initial and, to a lesser extent,

additional tangent moduli assigned to the reinforcement.

The various parameters controlling the nonlinear

performance of the model are, however, numerous and

mainly depend on the materials, geometry and the

numerical techniques employed.

(d ) It was found that in order to control the position of the

reinforcement with accuracy and therefore achieve better

results, it is necessary to simulate the latter in a discrete

rather than smeared manner. Also, the inability of smeared

reinforcement to transfer shear stresses discretely is still to

be addressed. Hence, the development of dedicated

elements is recommended. The Solid65 elements and the

numerical models based on them can, however, be

appropriate for simulating the main mode of failure of RC

units.

(e) It is pointed out that although the FE model was capable of

predicting the emergence of flexural cracks initiating at the

bottom and propagating upwards, it was not suitable for

predicting their length within the macro-scale mechanics

domain. It could, however, be possible to estimate the

width of the cracks, based on the elastic and plastic strain

results obtained. Crack prediction and growth should be

accompanied by good-quality graphics as the small circles

used to represent cracks are disappointing and rather

misleading.

( f ) The experimental model was successfully simulated in the

computer using nonlinear FEA and modelling techniques.

In general, it has also been demonstrated that current

methods and procedures of simulating, assessing, analysing

and hence designing in RC can be improved. Further tests

are required, combined with more rigorous analytical and

numerical work and the establishment of benchmarks, in

order to significantly reduce the uncertainties surrounding

its performance during their working life.

The FE method is well suited to dealing with composite

material models. Consequently, a constitutive RC model based

on the theory of plasticity was developed, tested and discussed.

One advantage of the theory of plasticity is the relatively

simple and direct calibration of the state of stress. The latter

results in the yield surface corresponding to a certain stage of

hardening, having a strong physical meaning in relation to the

strength envelop of concrete. Plasticity theory depends greatly

on the existence of a yield surface. This statement is

problematic when applied to concrete, as there has been a

paucity of associated experimental data until now.

Finally, the choice of a well-established constitutive model in

engineering research and practice is important as it affects

accuracy. More experimental results and numerical models

D1: ( 520, 508)� �

D2: (?, 340)�

D3: (� �256, 262)

D4: ( 16, 15)� �

D5: ( 64, 61)� �

D6: (240, 251)

D7: (600, 636)

Symmetry line

D (demec points): (exp, theo)
SG (strain gauges): (exp, theo)

SG1: (114, 118)
SG2: (2058, 2116)

�ve
reactions

X

Figure 11. Unit 1, test 1, comparison between experimental and theoretical strains for maximum load of 72 kN at certain positions
on the unit. D1, D2, D3, D4 are strains in the lateral, y-direction; D5, D6, D7 are strains in the longitudinal, x-direction. SG1 and
SG2 are lateral and longitudinal strains developing on the reinforcement. Negative reactions, predicted by the FE model, are also
shown in the inset, as lifting at the corners. All strains in ��
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dealing with complex stress states are necessary for research

and general engineering applications in the future.
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