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Abstract 

The hydraulic conductivity (permeability) is one of the most significant transport properties of 

concrete and measuring it is a key step in predicting the performance of concrete as a barrier to the 

movement of fluids and ions.  The transport properties are critical for the performance of the cover layer 

in protecting embedded reinforcement as waste containments barriers (which are considered in this 

paper) and other applications such as dams.   The measurements are difficult to interpret due to 

experimental effects of sample size and changes of flow with time and the chemistry of the fluid used. 

The intrinsic permeability to water and synthetic leachate was determined and the relationship 

between the eluted volume passing and permeability was established for mortar mixes having 

compressive strengths ranging from 5 to 20 MPa. Two mortar mixes containing Portland cement and one 

with no Portland cement and incorporating Cement Kiln Dust, Lagoon ash and Ferrosilicate slag were 

tested.  The effects of sample size were also investigated.  

The results indicate a decrease in hydraulic conductivity for lower strength mixes and a slight 

increase in permeability coefficient for the higher strength mixes with increasing permeating volumes. 

Increasing the testing specimen size also slightly increases the coefficient of permeability in lower 

strength mixes and decreases the coefficient in higher strength mixes. The permeability coefficient does 

not change significantly with pore solution pressure. 
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1. Introduction 

The cementitious chemical barrier is one of the main engineering features of the current research on 

novel composite landfill liners [1 and 2]. The novel multi-layer barrier concept is based on the theory 

that the pollution of soils and watercourses by the release of leachate may be prevented by adoption of 

a composite-barrier liner, which not only chemically conditions the waste, but is designed to be self-

sealing through secondary mineralisation and will retain heavy metal ions through ion exchange, 

surface sorption, filtration and precipitation. 

A landfill liner (barrier) must be physically strong enough to allow vehicular access during the 

operational phase, and provide adequate containment of leachate during the post-closure period. In 

order to satisfy both these operational and long-term requirements, a range of composite barrier 

materials have been evaluated. These include: low cost, chemically conditioning, cementitious media  

(like concretes containing metallurgical slags, spent foundry sands and/or demolition waste as an 

aggregate, blended cements containing waste materials such as fly ash, cement kiln dust and slag) and 

non-swelling clays. 

The properties of an ideal barrier system are: 

• Low permeability.  This must be less than 10-9 ms-1.  

• High cation exchange capacity 

• The ability to chemically condition leachate through sacrificial action 

• Construction from inexpensive materials 

• Tolerance of deformation during service without barrier failure through brittle cracking 

• The ability to promote self-sealing of cracks 

• Ease of construction 

• Sufficient strength to support a refuse vehicle during operation. A cube strength of 5 N/mm2 is 

adequate.  

In the design considered in this work, three layers are envisaged such that the clay-based hydraulic 

barrier is sandwiched between two layers of cementitious materials. These concretes for the liners are 

made with a range of waste materials which would otherwise have to be disposed of in the landfill [1 

and 2].   

The basic principles of physical containment with concrete are well understood and documented [3, 4 

& 5].  The degree of containment will depend on the transport properties of the barrier.  The properties 
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considered for modelling purposes are the permeability, diffusion coefficient and capacity factor.  The 

capacity factor is used to give an approximation for the chemical containment, the diffusion coefficient 

measures ion transport but the most significant property has been found to be the permeability which 

measures fluid transport.  The permeability of concrete and mortar must be measured in a cell which 

prevents flow around the sides of the sample and for this work a modified Hoek cell [6] has been used. 

Containment has been studied in detail for nuclear waste [7].  For a nuclear waste repository in which 

a cementitious barrier is used the main mechanism of loss of radionuclides is caused by flowing 

groundwater. This flow may be present in the area before the repository is built or it may be caused by the 

heat generated in the repository. In order to operate for a long time the chemical barrier depends on other 

barriers to limit the flow of groundwater through it. This is normally achieved by positioning the 

repository in a geology with a very low permeability. In this situation the permeability of the repository 

itself can be shown not to have a significant effect on the flow of water through it.  In the non-nuclear 

landfills which are considered in this paper the hydraulic head on the barrier is caused by standing 

leachate in the bottom of the cell.  European guidelines require leachate extraction in order to limit this to 

a depth of 1m above the liner but, in order to guarantee effective containment, a possible head of 10m has 

been considered in the design. 

In the literature limited research has been carried out into effect of confining pressure, pore pressure 

and specimen dimension on permeability of rocks and heterogeneous soil mixtures [8-12] but no works 

have been found on cementitious mixes carried in this work. 

The work reported here forms part of a major industry-based project on a novel composite barrier 

system, which uses the metallurgical waste materials for the cementitious liners in the landfill barriers  

[1, 2, 13 & 14].  This work includes carrying out large-scale site trials to demonstrate the construction 

of the system.  The trials consist of cells approximately 8 m wide, which are designed to contain 

leachate to a depth of 1 m maximum allowable leachate level in current landfill practice and are made 

with the candidate barriers [2]. In this paper the results of an extensive laboratory investigation into the 

intrinsic coefficient of permeability of potential multi-layer barrier mixes using various mineral wastes 

are presented and discussed. 

The permeability is one of the most significant transport properties of concrete and measuring it is a 

key step in predicting the movement of fluids and ions in the cover layer for protecting embedded 
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reinforcement in structures and calculating pore pressures in dams in addition to the waste 

containments barriers which are considered in this paper. 

 

2. Experimental programme 

The broad objectives of the experiments were to establish a permeability for the different concretes 

and mortars to provide a result which could be used in calculations of the performance of barriers in 

which they are used.  In order to do this an investigation has been carried out into the evolution of bulk 

permeability with increased sample volume and different pore pressure and specimen size. In all tests 

the confining to pore pressure ratio was kept constant. 

The specific objectives were to measure the following: 

1. The permeability of the specimens to water. 

2. The change in permeability in the presence of leachate. 

3. The relationship between numbers of sample volumes passing and changes in permeability. 

4. The effect of different residence times in the sample by running the test at different pressures 

and/or sample thicknesses.  This determines the sensitivity of the observed permeability to changes 

in pressure. 

5. The effect of sample size and boundary effects by testing samples in a larger cell. 

 

2.1 Eluted liquids 

Both deionised water and a synthetic (acetogenic) leachate have been eluted through the materials 

to examine their effects on permeability evolution of the mixes. The composition of the synthetic 

leachate used in this work was obtained by comparing the composition of various natural and synthetic 

leachates and is given in table 1. This solution was chosen as it represents a leachate from the early 

(acetogenic) phase of a landfill and is therefore the most aggressive solution to which a cementitious 

barrier would be likely to be exposed. The evolution of leachate chemistry during the service life of a 

landfill, normally shows a decrease both in acidity and ionic strength as the landfill matures, so 

experiments using this solution are thought to be conservative. 

 

Mix designs 
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The mixes were designed with consideration for requirements for strength, permeability, chemical 

conditioning capacity (“through pH”) and cost benefit analysis. The results of a screening programme 

on a large number of mixes [1 and 2] lead to the selection of three candidate mixes which satisfied the 

criteria. Two samples from each selected mix design were tested with leachate and two more were 

tested with water to give a programme of over 200 permeability tests.  

The designs of the three mixes are given in Table 2. Two of these mixes were Portland cement 

mortar mixes with different strengths and permeability coefficients and one other mix was one of the 

several trial cell mixes used for site trials. For one of the mixes a low strength of about 5 MPa was 

deliberately engineered to find the effect of applied pore pressure and number of sample volumes 

eluted on the coefficient of permeability. 

 

2.2 High pressure test  

The permeabilities of the specimens were determined using a continuous high-pressure flow 

experiment in which solution is eluted through the cylindrical specimens at pressures up to 10 MPa 

depending on the compressive strength of the particular specimen.   These high pressures were chosen 

in order to give results in a practical timescale and measurements of the effect of pressure on the results 

were made to relate them to the site application. 

The confined leach test cells [6] are a modification of the Hoek cell, in which a solution is eluted 

through a sample of barrier material under a pressure gradient. To maintain the structural integrity of 

the sample, and prevent flow past its sides, a confining (triaxial) pressure is applied around an 

impermeable sleeve surrounding the sample. By maintaining the pore solution pressure below that of 

the confining pressure, the internal structure of the barrier material is maintained.  

The apparatus is shown schematically in figure 1.  The high pressures (up to 10MPa, i.e. 100 bar) 

are provided by a pump driven from the compressed air supply.  The pressure is controlled by adjusting 

a pressure relief valve which re-circulates fluid back to the reservoir.  This method was chosen because 

the pump maintained a more constant pressure when some flow was permitted and also it ensured safe 

operation.  All of the components and pipework were made with stainless steel to permit the use of 

corrosive leachates in the experiments.  

Details of the modifications to the Hoek cells are shown in Figure 3.  The cell itself simply provides 

radial containment to samples and is intended for use in a compression frame for measurement of 
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mechanical properties of rocks under tri-axial containment.   The modifications are designed to provide 

a fluid supply to and drain from the sample and to contain the axial load to permit use without a 

compression frame.  On the downstream (top) face of the sample this load could have caused spalling 

from the surface of the sample due to the high pressure in the pores so it was carried through a thick 

perforated disc.  A porous (sinter) disc was placed against the sample to permit free flow across the 

face.  From the perforated disc the load was carried by the end pieces and then through load bearing 

spacers to a substantial (20mm thick) end plate with tie bars around the circumference. 

Measurements were normally made after one sample volume of liquid had passed through the 

mortar specimens.  Assuming an average permeability of 10-9 and a maximum leachate head of 1m 

above the liner, this corresponds to 16 years of exposure in service.   

The specimens were cylindrical with either 54 mm diameter and about 30 mm thickness or 100 mm 

diameter and 55 mm thickness and were cured for one month before testing.  

 

3. Results 

The effect of eluted volume on the coefficient of permeability at different pore solution pressures is 

shown in figures 4 to 6. The effect of permeating a volume of liquid equal to seven times the sample 

volumes are shown in these figures. One sample volume shown on the graph represents a volume of 

fluid passing through the sample equal to the total overall volume of the sample itself, not just its 

porosity.  For low strength materials such as materials being used in the novel liner mixes i.e. 

compressive strength of up to 5 MPa, increased eluted sample volumes slightly decrease the coefficient 

of permeability but this is contrary to higher strength materials in which the permeability increases. The 

authors suggest that the reason for this is that high strength materials are rigid whereas low strength 

materials are compliant and weak bonding fine particles cause blockage of the pore routes in these 

types of materials by “silting”.  Claisse and Unworth [15] have found a slight decrease in intrinsic 

permeability coefficient after permeating 30 times the sample volumes for higher strength OPC mixes. 

This may be due to using concrete, which contains coarse aggregate, however they had not determined 

the permeabilities for intermediate number of sample volumes passing so that a more detailed 

comparison can be made. In this investigation the results clearly indicate a decrease in hydraulic 

conductivity for lower strength mixes and a slight increase in permeability coefficient for the higher 

strength mixes with increasing number of permeating sample volumes. 
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The effect of specimen size on the coefficient of permeability at different pore solution pressures is 

shown in figures 7 to 9. Increasing the specimen size slightly increases the coefficient of permeability 

in lower strength mixes and decreases the coefficient in higher strength mixes. This trend is in 

agreement with findings from figures 4 to 7 and as high strength materials are rigid bigger volumes 

would reduce the permeability. From the figures 4 to 9, it can also be seen that the permeability 

coefficient does not change significantly with pore solution pressure. 

 

Discussion 

The following differences between the test conditions may make the test results conservative: 

1. The samples were tested at early ages (normally 28 day).  It is well known (Neville  ) that 

the permeability of concrete reduces substantially with age as the hydration progresses. 

2. The simulated leachate used for the experiments was free of all particulate matter.  A 

typical leachate on site contains a large fraction of material with the potential for siltation 

in pores. 

The following may make the conclusions unsafe: 

1. The results are to be used in a system with a leachate head up to 10m.  The applied 

pressure of up to 10MPa in the testing represents a head of up to 1000m.   The calculations 

automatically assume that the flow will reduce linearly with pressure (i.e. the permeability 

will not change).  While the present results do not prove that it will not change they do not 

indicate any trend to show that it would. 

2. The area of a typical disposal cell is 1-2 Hectares while the experimental samples are six 

orders of magnitude smaller.  The possibility of defects (which are a main consideration 

when modelling HDPE) must therefore be considered.  The main defect in a concrete liner 

will be a crack and this problem is addressed with the use of a clay layer which will 

extrude into and seal the cracks.  The reason why larger laboratory samples appeared more 

permeable is not clear but it is not indicated that this trend would be likely to continue up 

to site scale samples. 

And the following appear to be well represented in the experiments: 

1. Each sample volume of fluid passing through the liner corresponds to at least 16 years of 

operation.  The test have been run for up to 7 sample volumes, i.e. the equivalent of  just 
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over 100 years.  Nuclear repositories are designed for very much longer periods but for 

normal landfill design this is currently typical.  Most current designs are based on a High 

Density Polyethylene (HDPE) membrane with a design life no greater than this.  The 

membrane is used with a mineral barrier (e.g. bentonite enhanced sand) but most 

modelling relies substantially on the membrane itself. 

2. The temperature of the trial cells has been monitored and did not deviate by more than a 

few degrees from typical room temperatures which were measured during laboratory 

testing. 

In addition to all of the above Neville states “it is important to note that the scatter of permeability 

test results made on similar concrete at the same age and using the same equipment is large.  

Differences between, say, 2 × 10-12 and 6 × 10-12 are not significant”.   While laboratory trials are a 

necessary first step in work of this kind (in particular for mix selection) these results indicate that 

large site trials are a necessary second step. 

 

4. Conclusions 

• Depending on the strength, the cementitious mortar mixes behave differently with permeating 

number of sample volumes at the same pore pressure and age.  For low strength materials such 

as Controlled Low Strength Materials, which are increasingly being used nowadays, increased 

eluted sample volumes slightly decrease the coefficient of permeability but this is contrary to 

higher strength materials in which the coefficient of permeability increases. 

• Increasing the testing specimen volume slightly increases the coefficient of permeability in 

lower strength mixes and decreases the coefficient in higher strength mixes. 

• Variation in pore solution pressure during high-pressure permeability test does not significantly 

affect the permeability coefficients in low strength cementitious mixes.  

• Large site trials are a necessary step in establishing the performance of concrete barriers. 
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Table 1: Composition of synthetic leachate, per litre of solution (pH=5.1) 

 

2.043g Concentrated Sulphuric acid 

4.48g Acetic acid 

1.897g Potassium chloride 

7.755g Calcium acetate 

1.186g Ammonium chloride 

0.91g Sodium chloride 

2.588g Sodium hydroxide 

 

 

 

 

 

Table 2: Mix proportions and strength of the mortar mixes used for hydraulic conductivity study. 

 

Mortar 
mix 

Cementitous 
material 

% 
 by 
mass 

Pozzolanic 
ash 

% 
 by 
mass 

Fine 
aggregate 
(<5mm) 

% 
 by 
mass 

W/C 28 
days 
Str. 
(Mpa) 

Cement/ 
Quartz 

OPC 11.8 _ _ Quartz 88.2 0.92 15 

Cement/ 
Quartz 

OPC 16.7 _ _ Quartz 83.3 0.75 20 

Typical 
site trial 
mix 

CKD 20.7 Lagoon 
ash 

13.6 Ferrosilicate 
slag 

65.9 0.39 5 
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Figure captions: 

Figure 1: Schematic view of high-pressure permeability apparatus. 

Figure 2: High-pressure apparatus at Coventry, showing two small cells (for 54 mm diameter samples) 

and one big cell (for 100 mm diameter samples) together with liquid pump and pressure gauge. 

Figure. 3  Modifications to Hoek Cell for Concrete Permeability Measurements 

Figure 4: Permeability Vs. eluted sample volume for 5 MPa. Mix.   

Figure 5: Permeability Vs. eluted sample volume for 15 MPa. Cement mortar mix. 

Figure 6: Permeability Vs. eluted sample volume for 20 MPa. Cement mortar mix. 

Figure 7: Coefficient of permeability Vs. Sample size for 5 MPa. mix. 

Figure 8: Coefficient of permeability Vs. Sample size for 15 MPa cement mortar mix. 

Figure 9: Coefficient of permeability vs. sample size for 20 MPa cement mortar mix. 
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Fig. 1: Schematic view of high-pressure permeability apparatus. 

 

 

Fig. 2: High-pressure apparatus at Coventry, showing two small cells (for 54 mm diameter samples) 

and one big cell (for 100 mm diameter samples) together with liquid pump and pressure gauge. 

Eluent reservoir 

Eluent outlet 

Modified Hoek cell.  See figure 3 for detail 

Pump operated from compressed air supply 

Adjustable pressure 
relief valve 

Pressure gauge 
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Fig. 3  Modifications to Hoek Cell for Concrete Permeability Measurements 

 

 

Tie  Bars 

Hoek cell end cap Hoek cell end cap 

Eluent outlet to volume measurement and 
analysis 

Eluent inlet 

Hydr-
aulic 
Oil 

Concrete 
 

End Plate 

Hydr- 
aulic 
Oil 

End Plate 

TieBars 

Load Bearing 
Perforated disc 

End pieces 
sealed with O 
rings 

Load 
bearing 
spacer rings 

Sealing 
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Fig. 4: Permeability Vs. eluted sample volume for 5 MPa. Mix.   

 

 

 

Fig. 5: Permeability Vs. eluted sample volume for 15 MPa. Cement mortar mix. 
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Fig. 6: Permeability Vs. eluted sample volume for 20 MPa. Cement mortar mix. 

 

 

Fig. 7: Coefficient of permeability Vs. Sample size for 5 MPa. mix. 
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Fig. 8: Coefficient of permeability Vs. Sample size for 15 MPa cement mortar mix. 

 

 

Fig. 9: Coefficient of permeability vs. sample size for 20 MPa cement mortar mix. 
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