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Abstract  Many jurisdictions around the globe have well developed regulatory frameworks 

for the derivation and implementation of water quality guidelines (WQGs) or their equivalent 

(e.g. environmental quality standards, criteria, objectives or limits). However, a great many 

more still do not have such frameworks and are looking to introduce practical methods to 

manage chemical exposures in aquatic ecosystems. There is a potential opportunity for 

learning and sharing of data and information between experts from different jurisdictions in 

order to deliver efficient and effective methods to manage potential aquatic risks, including 

the considerable reduction in the need for aquatic toxicity testing and the rapid identification 

of common challenges. This paper reports the outputs of an international workshop with 

representatives from 14 countries held in Hong Kong in December 2011. The aim of the 

workshop and this paper was to identify ‘good practice’ in the development of WQGs to 

deliver to a range environmental management goals. However, it is important to broaden this 

consideration to cover often overlooked facets of implementable WQGs, such as 

demonstrable field-validation (i.e., does the WQG protect what it is supposed to?), fit for 

purpose of monitoring frameworks (often an on-going cost) and finally how are these 

monitoring data used to support management decisions in a manner that is transparent and 

understandable to stakeholders. It is clear that regulators and the regulated community have 

numerous pressures and constraints on their resources. Therefore the final section of this 

paper addresses potential areas of collaboration and harmonisation. Such approaches could 

deliver a consistent foundation from which to assess potential chemical aquatic risks, 

including, for example, the adoption of bioavailability-based approaches for metals, whilst 

reducing administrative and technical burdens in jurisdictions.  

 

Keywords Water quality guidelines · International collaboration · Harmonisation · Water 

quality management · Environmental quality standards 
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Introduction 

 

This synthesis paper is aimed at identifying ‘good practice’ in the development of water 

quality guidelines (WQGs). Furthermore it details critical aspects which are often overlooked 

during the implementation WQGs. In this paper, WQGs, water quality criteria, water quality 

objectives, environmental quality standards and other such titles are used to encompass 

numerical limits of a particular pollutant or group of pollutants in water, sediment or biota 

which should not be exceeded in order to protect human health and the aquatic ecosystem.  

Some jurisdictions around the world such as North America, Europe, Australia and New 

Zealand have mature, well developed regulatory frameworks for the management of 

chemicals in the aquatic environment. Other jurisdictions like China, Hong Kong, Korea, 

Japan and South Africa have recently embarked on developing their own WQG system (An et 

al. 2008; Jin et al. 2009; Wu et al. 2010; Wepener and Chapman, 2012). Whilst specific 

details of these frameworks differ between jurisdictions, key elements are generally 

conserved (i.e., chemicals are prioritised), WQGs are derived and monitoring in the 

environment is then undertaken to ensure that guidelines are not exceeded, or identify 

instances where regulatory intervention are required (e.g. Stephan et al. 1985; US EPA, 1985; 

ANZECC and ARMCANZ 2000a; CCME 2007; EC 2011).  These jurisdictions not only 

have extensive experience in WQG derivation, but often the processes of derivation and 

implementation have been refined over many years based on practical experience (e.g. 

CCME 2007). This process has often involved research into the various methods of setting 

and implementing WQGs (Environment Agency 2009). Importantly, not all these methods 

have been successful due to a number of scientific and technical reasons (Environment 

Agency 2008). These experiences and lessons can be beneficial to other less experienced 

jurisdictions.  
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There is potential for collaboration and sharing best practice among jurisdictions. A clear 

example of such collaboration would be the use of common, quality-rated ecotoxicity data 

(e.g. OECD’s Safety Information Data Sheets). In addition, there remain considerable 

challenges common to both mature and developing WQG jurisdictions, such as setting limit 

values for poorly water-soluble chemicals (and associated monitoring in biota), handling 

different responses to chemical exposure observed between temperate and tropical aquatic 

species and between native and non-native species, as well as issues associated with mixture 

toxicity or the management of breakdown/degradation products.  

To address these issues, a special workshop was organized during the first International 

Conference on Deriving Environmental Quality Standards for the Protection of Aquatic 

Ecosystems (EQSPAE-2011) which was held in December 2011 in Hong Kong. It was 

attended by over 150 representatives from academia, industry and government from 14 

different countries. The objectives of the workshop were to identify best practice methods for 

the development of WQGs so as to deliver a range of environmental management goals, as 

well as to identify and discuss associated activities required for successful WQG derivation 

and implementation, including:  

 Validation of the chemical WQGs - How might this be undertaken and what data would 

be needed in order to fulfil scientific and regulatory requirements?  

 Monitoring requirements - What to monitor, to what analytical limit of detection? Where? 

When and for what purpose? 

 Compliance assessment - What do we do with the WQGs and the monitoring data once 

we have created them? 

 Harmonisation - How can the technical resource invested in the derivation process and 

the lessons learnt in implementation of WQG be readily shared? 
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Deriving WQGs for ecosystem protection 

 

When comparing and appraising the various different methodologies used to derive WQGs, a 

key consideration is the ultimate protection goal of the WQG as these often differ greatly 

between jurisdictions and can therefore reflect genuine differences in methodological 

paradigm required to derive a WQG. Arguably, the choice of protection objective is up to the 

policy makers of a given jurisdiction (e.g. Directive 2000/60/EC). However, once the 

protection goal is set, the method for deriving a guideline should reflect this. For instance, a 

management goal to protect aquatic organism populations would likely require different data 

inputs and methodology to derive than a management goal to protect aquatic community 

function. It is often believed that the goal should be protection of aquatic ecosystem services, 

although this goal lacks a clear and explicit definition. However, the environmental laws in 

many nations require protection of aquatic ecosystems, irrespective of their services to 

humans (Directive 2000/60/EC).  

A great deal of guidance already exists on the derivation of WQGs from many 

jurisdictions (e.g. CCME 2007; EU 2011). Many similarities exist between the various 

methodologies used for the identification, collation and quality assessment of relevant 

ecotoxicity data (e.g. CCME 2007 and ANZECC and ARMCANZ 2000a) and those used for 

the assessments of residual uncertainty (e.g. CCME 2007 and EC 2011).  

What is very clear is that comparisons between methods should not become hampered by 

terminology and nomenclature. Terms such as ‘standard’, ‘criterion’, ‘objective’, ‘limit 

value’, and ‘guideline’ do not have unique globally accepted definitions and will be defined 

in different jurisdictions by legal terminology and in relation to management goals. Often 

different terminology will have consistent meaning across jurisdictions. Given this there is 
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clearly a need to have statements on the meaning of the terms and the context in which they 

have been derived (Ministry of the Environment, New Zealand 2003).  

At present, probabilistic approaches for the treatment of ecotoxicity data, such as species 

sensitivity distributions (SSD), are generally the preferred tool for regulators to derive WQGs 

rather than deterministic approaches using assessment or safety factors to account for residual 

uncertainty. SSDs provide a relatively simple and understandable means of converting the 

large body of species-level ecotoxicity data into a single community metric (i.e., the 

hazardous concentrations 5%, HC5), which corresponds to a concentration at which 5% of 

species would be expected to be adversely affected after exposure to a chemical (Posthuma et 

al. 2001; Wheeler et al., 2002). However, SSD methodologies tend to only deal with 

interspecies differences and they make a number of assumptions. A summary of the 

assumptions made and the potential implications of these on the results of SSDs is presented 

in Warne (1998) and the references therein.  

Though it is possible to apply an SSD approach with relatively small datasets, they are 

generally only considered to generate robust summary statistics when minimum criteria for 

the number of species and taxonomic groups are met, which vary between jurisdictions. The 

criteria for a robust SSD approach used in the EU and the US are based on the conclusions of 

the London Workshop, an expert working group that met in 2001 (London Workshop, 2001). 

Where it is not acceptable to apply an SSD approach in a particular jurisdiction, normally due 

to the lack of data from an appropriate number of species and/or taxonomic groups, 

jurisdictions generally fall back on the applying the use of assessment/safety factors 

(generally ranging from 10 to 10,000) on the most conservative ecotoxicity data for a 

chemical. This approach offers benefits when used in an iterative risk assessment process, as 

it is simple and transparent, and permits expert judgement with an aim of protecting all 

species. However, the assessment factor approach can present difficulties if used for deriving 
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limits that are to be enshrined in legislation because the resulting guidelines tend to be 

relatively precautionary when compared to probabilistic approaches and dependent on the 

size of the assessment/safety factor applied. As such, there have been recent discussions in 

Europe as to the use of weight-of-evidence approaches, including field and higher tier data, 

and the need to have larger minimum ecotoxicity datasets for deriving WQGs (SCHER 

2010).   

Whilst SSDs require larger amounts of ecotoxicity data than the deterministic methods, 

there is a strong regulatory desire, across many jurisdictions, to reduce the amount of 

ecotoxicity testing, especially for vertebrates due to ethical reasons. One way to reconcile 

these contradictory aspirations is to extract more ecologically relevant information from 

SSDs, including: better use of the confidence limits (FMWQ Working Group 4. 2010), 

weighting of ecological keystone species (Forbes and Forbes 1993) or the relevance or 

prevalence of species (Hose 2005), and adopting approaches where the entire concentration-

response curve and its associated uncertainty can be captured in the analysis and ultimate 

derivation of a WQG (e.g., hierarchical Bayesian approaches; see Gronewold and Borsuk 

(2010) for example).  

In parts of the world, it is now recognised that the most relevant approach is to define no-

effects concentrations (NECs) (Fox 2010). As long ago as 1998 (Warne, 1998) the proposed 

method for deriving the Australian and New Zealand WQGs highlighted the limitations of 

NOEC data and that their use in deriving WQGs be replaced by ECx type data as the latter 

data becomes available. Subsequently, there was strong agreement within the Working Group 

Revising the Australian and New Zealand WQGs for toxicants and sediments (FMWQ 

Working Group 4. 2010) to continue moving away from using NOECs, to EC10 or IC10 in 

the short term, but in the longer term to change to using NECs, providing methods of 

sufficient rigour, robustness, accuracy and ease of use can be developed. At the moment, a 
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combination of ECx with NOECs is recognised as the best transitional option, as these tend to 

be the most common forms in which chronic ecotoxicity data are expressed. This move away 

from NOECs is consistent with the many authors who have criticised their use since the 

1980s with some and even calling for their use to be banned (e.g. Newman 2008; Warne and 

Van Dam 2008; Landis and Chapman 2011; Jager 2012). 

In moving to EC, IC and NEC data, there may be the need to modify the experimental 

design of ecotoxicity tests, with more treatments at the bottom end of concentration-response 

relationships. The extra effort required by these changes can be offset by reducing the degree 

of replication (Stephan and Rogers 1985; Moore and Caux 1997), although some indication 

of an adequate level of repeatability is still desirable. For pre-existing data, the ultimate 

preferred order of estimates for Australia and New Zealand is recommended to be NEC > 

EC10 > BEC10 > EC15-20 > unconverted NOECs > converted NOECs from maximum 

acceptable toxic concentrations (MATC = geometric mean of NOEC and lowest observable 

effect concentration (LOEC)), LOECs or median lethal concentrations (LC50s) (FMWQ 

Working Group 4. 2010). It was also agreed that NOECs would be discarded once sufficient 

NEC or ECx values (n ≥ 8) were available for use in SSDs, but the effect of this might need 

to be examined if the original dataset was much larger and more representative. 

Field-based and functionality-based SSDs may be used to derive WQGs or to provide 

lines of evidence in weight-of-evidence based approaches (Peters et al. 2010; Peters and 

Simpson 2012). Field-based methods have been developed in the U.S. and Great Britain 

(Linton et al. 2007; Peters et al. 2010; Peters et al. 2011), but they are new and have not been 

widely adopted and perhaps should play a greater role in WQG derivation or validation. In 

Australia and New Zealand (ANZECC/ARMCANZ, 2000a,b), unlike in other jurisdictions 

the highest quality WQGs are considered to be those derived directly using field, meso- or 

microcosm derived data, although, as yet, there are no such instances of guidelines being 
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derived on this basis. Yet in Alberta (Chambers et al. 2006) and the UK (Peters et al. 2011) 

guidelines have been derived in this way. However, field, meso- or microcosm derived data 

have been used to determine if the WQGs derived using laboratory-based data provide 

adequate protection (ANZECC and ARMCANZ, 2000). This is a similar process by which 

higher-tier data are used in Europe.  

A pragmatic suggestion to efficiently use data is to adopt tiered WQGs with associated 

levels of known uncertainty or reliability. For example, for screening assessments less 

reliable (but conservative) WQGs could be used, whereas for compliance assessments 

potentially leading to prosecution or other regulatory intervention, robust, relatively definitive 

WQGs are needed. The Australian and New Zealand WQGs (ANZECC and ARMCANZ, 

2000a,b) adopt a screening approach and where a guideline trigger value is exceeded, further 

studies will be undertaken to identify the biological impact. This may include chemical 

measurements of bioavailability, modelling, or ecotoxicity testing. For such screening 

purposes, three levels of WQGs are derived with high, moderate and low reliability based on 

the type (acute/chronic), quantity and taxonomic representativeness of the data (i.e., no. of 

species and taxa at the phyla level). This concept, while helpful, needs to more adequately 

address the reliability of the WQGs and will be developed further as part of the current 

review of the Australian and New Zealand WQGs (FMWQ Working Group 4, 2010). The 

Canadian WQGs now also have three categories (previously two), based on data quality and 

quantity and preferentially employing an SSD approach. However, the Canadian and the 

Australian and New Zealand guidelines are not enshrined in legislation, perhaps providing 

flexibility not available to other jurisdictions.  

Finally, a clear need for guidance has been identified on the use of non-native species 

(and implicitly species from other climatic zones) when deriving WQGs. SSDs are models of 

the distribution of sensitivities of taxa (i.e., an assembly of tested species), not descriptions of 
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a particular community. However, regulatory concerns have led to the exclusion of non-

native test species which could perhaps serve as surrogates for native species for which data 

are lacking and help to define the distribution (e.g. Alberta Environmental Protection 1996). 

Numerous studies have investigated this issue, but most have had limited applicability due to 

either the small number of species or chemicals used in the comparisons. The larger studies 

have indicated that there are differences in the sensitivity of species, but it appears to be 

species and chemical specific (e.g., Hobbs et al. 2004; Chapman et al. 2006: Kwok et al. 

2007). Chapman et al. (2006) concluded that sensitivity data from one region will not be 

universally protective of other regions. A synthesis of studies that have looked at this issue 

would be useful, i.e., are there geographic patterns of sensitivity or is it possible to generalise 

on some other basis? 

 

 

Validation of water quality guidelines 

 

It is clear that many existing WQGs, derived exclusively from laboratory ecotoxicity data, 

have not been assessed under field conditions to establish whether they are indeed protective 

of the ecosystems which they are intended to protect and not overly conservative. This 

benchmarking of the WQG against the biological response in the field is what is considered 

here to mean ‘validation’.  

Other than for the data-rich metals (e.g., Cu, Ni) and some historic, but extensively 

monitored biocides (e.g. tributyltin) and pesticides (e.g. cypermethrin) the data needed to 

demonstrate the protectiveness of WQG in the field are seldom available. These validation 

data could come from microcosm and mesocosm studies or from multi-species, field-based 

studies. In Europe, mesocosm data are used in a weight-of-evidence approach on decisions in 
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relation to the selection of appropriate assessment factors (EC, 2012). The Environment 

Agency of England and Wales has also used field-based data to derive a WQG for iron, for as 

well as having both a physical and chemical effect the associated laboratory ecotoxicity data 

are of limited quality (Peters et al. 2011). In addition, mathematical (focussing on population-

level and community-level effects), direct toxicity measurements and ecosystem models (e.g., 

food web models) could help to explain the relationship between data derived from the 

laboratory and field (Liney et al. 2006). All have potential drawbacks, but used in weight-of-

evidence approaches or as part of a ‘tool box’ of methods and approaches, they could deliver 

increased understanding of the links between chemical and biological metrics to reduce the 

uncertainty associated with management decisions. Also, there is a need to account for 

additional pressures and confounding factors when considering field data (e.g. through the 

use of limiting functions, such as piece-wise or quantile regression; Crane et al. 2007). The 

derivation, validation, and acceptance of WQGs is further complicated through the 

conundrum that WQGs are generally derived using laboratory toxicity tests by exposing a 

species or a group of species to a single chemical stressor, while in reality, various species in 

a community are simultaneously exposed to multiple toxicants and stressors (although often 

field-based data will reflect multiple exposures and stressors; Leung et al. 2005; Peters et al. 

2011). 

It is likely that for some jurisdictions, biological data, appropriate for validation exercises, 

have been collected in order to fulfil other regulatory requirements. For example, in Europe, 

the Water Framework Directive requires Member States to use several well developed 

classification tools to assess ecological status of aquatic habitats (e.g., benthic invertebrates, 

macrophytes, diatoms, fish, etc.) and these may be appropriate for WQG validation exercises. 

There are several examples of using these types of data to validate WQGs (Crane et al. 2007; 
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Linton et al. 2007; Peters et al. 2010). The applicability of such tools and approaches outside 

Europe and the US, however, requires further investigation. 

In addition to the validation of WQGs, there is also a need to validate those tools and 

models used to aid the interpretation of monitoring data or to increase the relevance of 

WQGs, such as those that account for bioavailability. For metals, this generally means biotic 

ligand models (BLMs) or empirical or operationally defined relationships, such as those that 

account for the mitigating effects of dissolved organic carbon (e.g. the proposed 

environmental quality standard of lead for the Water Framework Directive, EC 2012) or 

hardness (USEPA, 1985; ANZECC and ARMCANZ, 2000a,b). Indeed, BLMs have largely 

been developed and validated for application to metals in freshwaters in Europe and North 

America, but with most applications to acute effects and only in limited cases to chronic 

effects. Applicability outside these regions, e.g., in subtropical and tropical waters, will 

therefore require additional validation to ensure that predictions remain within acceptable 

limits. Research projects to validate the Ni BLM in Australia (Chris Schlekat, NiPERA, pers. 

comm.) and the Cu BLM in China (Z.T. Liu, Chinese Academy of Environmental Science, 

pers. comm.) are currently being conducted. 

If similar bioavailability models exist for organic chemicals in waters, there is a need to 

demonstrate that the applicability of the models is suitable outside the original development 

range. Finally, it is clear that whatever approach is taken to validate a WQG, a clear set of 

unambiguous success criteria for the validation should be established prior to the exercise 

being undertaken. For example, is it enough to demonstrate that the WQG is protective in the 

field for the most sensitive species identified from the laboratory data?  
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Considerations in establishing and running monitoring programs 

 

A great deal of the focus often falls upon the scientific derivation of a WQG, but the utility of 

WQGs in supporting management decisions is equally a function of the quality and quantity 

of the monitoring data to which it is compared. The clear aims and data quality objectives 

(e.g., US EPA 1994) of the environmental monitoring program need to be determined at an 

early stage and perhaps the experience of jurisdictions with mature monitoring programs 

could be useful in establishing best practices. Furthermore, the monitoring statistic associated 

with the WQG (e.g. annual average) must match the monitoring regime. Where monitoring 

data will be compared to a WQG, an exceedence (e.g., any single value above or 20% of 

monthly averages more than 10% above) and its consequence (e.g., does an exceedence 

trigger management action, further investigation?) should be defined (Crane et al. 2010). 

Whilst biological and chemical sampling is to be undertaken as part of a monitoring 

program, it is useful if samples are collected as close together as possible, both in space and 

time. This may seem odd, but historically this has not always been the case as locations for 

chemical and ecological sampling are not always mutually compatible (e.g., Environment 

Agency of England and Wales; Graham Merrington, WCA, per. comm.). Further, supporting 

(and relatively cheap) abiotic parameters may also be determined, such as pH, dissolved 

organic carbon (DOC), alkalinity, hardness, etc., in order to facilitate interpretation of 

contaminant data (especially for metals) in terms of bioavailability. If data are lacking, 

provisional screening exercises may be undertaken using surrogates (e.g., DOC predictions 

from dissolved iron; Peters et al. 2011), other site data (e.g., FOREGS for EU waters) and 

defaults based on historical data for the same locations (Environment Agency 2009). 

Sampling location is often defined on the basis of “purposive selection”, i.e., sampling is 

undertaken where an issue may be expected. Effectively, these ‘hazard-based’ assessments 
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can be expanded to ensure effective use of resources. Often this is realized using tiered 

approaches, i.e., starting from relatively simple but ecologically less relevant, towards more 

complex but ecologically more relevant methods. For example, for metals, precautionary 

monitoring programmes may initially sample ‘total’ trace element concentrations, 

undertaking dissolved measurements as a first refinement step and only initiating 

bioavailability measurement, modelling and/or direct toxicity assessments at sampling sites 

where potential risks are identified (ANZECC and ARMCANZ 2000a; Figure 1).  

 A pragmatic approach to account for ambient background concentrations (ABCs) is the 

so-called ‘added risk approach’ (Crommentuyn et al. 1997). Ideally, local sampling sites 

beyond the immediate area of anthropogenic or geogenic enrichment need to be sampled to 

provide data from which estimates of ABCs can be made (International Organisation for 

Standardisation 2005a,b). Other possible methods for the estimation of ABCs could also be 

useful, such as trace metal concentrations in deep groundwater, or the use of databases of 

concentrations of chemicals in waters from relatively pristine sites (e.g. FOREGS database). 

Alternately, modelling methods used to estimate ABCs in soils (Hamon et al. 2004; Zhao et 

al. 2007) could, with modification, offer potential. It is, arguably, a policy-based approach to 

deliver a pragmatic fix for local assessments and management decisions.  A tiered approach 

for metals which accounts for both bioavailability and ABCs has been developed under the 

EU WFD (Van Sprang et al. 2008) and for soil quality guidelines in Australia (NEPC, 2011). 

Moreover, it is also important to verify if organisms that are naturally exposed to elevated 

concentrations of chemical contaminants have developed tolerance. 

Having defined the purpose of monitoring it is imperative to establish the sampling 

frequency. This should include accounting for both seasonal factors such as rainfall, but also 

the usage pattern of the contaminant being monitored. For example, if a plant protection 

production (i.e., using pesticides) is only conducted at certain periods in the cropping cycle, 
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then monitoring should attempt to capture these peak potential exposure periods. The 

frequency of monitoring and how these monitoring data should be used are discussed in the 

next section.  

 

 

Assessment: the use of monitoring data and WQGs to support decisions on water 

quality management 

 

Irrespective of the maturity of the regulatory regime, there are some clear issues that arise 

when assessing whether a WQG has been exceeded.  

Collecting and analysing water samples is a relatively expensive process. However, if 

some of these data are reported as less than the limit of detection or below the minimum 

reporting value, then it can be difficult to derive a meaningful summary statistic for the 

environmental concentration. Commonly, a value of ½ the minimum reporting value is 

substituted for these values when calculating the mean or other summary statistics from such 

data. However, this leads to substantial bias on any subsequently calculated statistical values 

(Singh and Nocerino 2002) and represents a significant loss of information (Helsel and Cohn 

1988). Despite the clear limitations of such data substitution, it is specified in the European 

QA/QC Directive (EC 2009) as an appropriate data manipulation. An alternative to 

substitution is to use a statistical technique to calculate a dataset’s descriptive statistics (i.e., 

mean, standard deviation and percentiles) incorporating censored data (Helsel 2005). In 

medical and industrial statistics, the standard method for calculating descriptive statistics 

from censored data is the Kaplan-Meier (KM) method (Klein and Moeschberger 2003, 

Meeker and Escobar 1998). This is a non-parametric method designed to incorporate data 

with multiple censoring levels and does not require an assumed data distribution (e.g. log-
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normal), unlike similar maximum likelihood (MLE) techniques. KM estimates percentiles 

(including the median) and the mean of the complete dataset, including the censored data, 

from a cumulative distribution function. Despite the availability of these methods, Newman 

(1995) considers that the use of datasets comprised of ≥ 40% censored data as unreliable and 

possibly meaningless.  

“Face-value” compliance assessment is where the average concentration of a chemical in 

grab samples taken over one year is compared directly with the WQG. In Europe, the annual 

average is calculated as the arithmetic mean of 12 monthly samples taken over the period of 

one year. However, such a comparison is relatively crude in that it does not provide any 

statistical confidence in assigning a failure or exceedance of the WQG. Some Member States 

in the EU address this by accounting for the variation in the monitoring data (i.e. the standard 

deviation of the data) to provide a measure of the statistical confidence of failure (e.g., 

ISO/WD 5667-20. 2005). This is especially important when critical management decisions 

are to be made based on a WQG exceedance (i.e., only exceedances of > 95% confidence 

result in regulatory intervention).  

In addition, monitoring data are not equal in terms of quality. While schemes exist to 

assess the quality and reliability of effects data, there are fewer schemes that are available for 

the assessment of monitoring data. An example of one of these schemes is reported by 

ANZECC and ARMCANZ (2000b) which gives guidance on quality assurance and quality 

control protocols, involving field blanks, standard additions, certified reference materials, etc.  

 

 

Opportunities for harmonisation? 

 

During this EQSPAE 2011 workshop, several facts became clear:  
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 There are countries with well-established and long-running WQG programmes; 

 Many countries have recently established WQG programs; 

 Priority substances lists for WQG development are very similar across jurisdictions;  

 Manpower and financial resources for WQG development are limited in every 

jurisdiction; 

 Terminology differs across jurisdictions, but the underlying meaning is often comparable; 

and 

 Toxicity data evaluation and categorization criteria are similar across many jurisdictions.  

 

Therefore, jurisdictions are duplicating each other’s efforts, and more could be achieved 

through co-operation in WQG development. There is interest and potential for collaboration 

and the sharing of information, expertise, experience, and best practices between 

jurisdictions.  Ideally, jurisdictions would work together to derive international WQGs for 

priority substances.  While this is recognized as the ultimate goal, different jurisdictions have 

different legal requirements, regulatory settings and environmental protection goals 

precluding the derivation of universally accepted WQGs in the near future. Superimposed 

upon the political and technical challenges of WQG derivation are also the different 

regulatory speeds at which jurisdictions move towards prioritising environmental protection 

and accounting for changes in scientific understanding of chemical fate and behaviour.  

However, this should not prevent collaboration and harmonisation of frameworks, or parts 

thereof, for deriving WQGs.   

For example, the first element in this process could be a central repository for sharing 

data from WQG-developing jurisdictions. Preferably an international agreement could be 

developed to ensure that data are contributed and centrally managed. A less effective means 
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would be to do this on a voluntary basis. The information collected in the data repository 

should probably include (but not be limited to): 

 Participating jurisdictions and their relevant contact information;  

 WQG derivation techniques (i.e., jurisdictional protocols); 

 Findings and information related to WQG derivation methods (i.e., supporting studies to 

methods, summaries of development and derivation experiences, validation studies, etc.); 

 Established WQGs from participating jurisdictions; and 

 Standardised ecotoxicological studies suitable and used in the derivation of the respective 

WQG for a substance with jurisdictional evaluation report, and also those data rejected as 

not being suitable and reasons for the rejection (e.g. UK Technical Advisory Group on the 

Water Framework Directive 2008).  

 

Participants in this workshop suggested that a mixture of people from government, 

academia, industry, and consultants from various backgrounds related to water quality 

management would be required to develop international links and facilitate sharing of ‘best 

practice’ on how to develop WQGs.  An International Expert Working Group could also be 

formed to enhance capacity building and develop a universal agreeable protocol for deriving 

international WQGs.  Members of the team would need to have extensive experience in 

WQG development and, ideally, in jurisdictional protocol development. 

The first step could be an international workshop on Protocol Development to discuss 

issues such as (1) the choice of approaches and methods (e.g. probabilistic verses 

deterministic); (2) suitable toxicity studies (i.e., field, mesocosm and laboratory based 

studies); (3) toxicity data evaluation; (4) choice and representativeness of ecosystem-specific 

and region-specific species and (5) ecosystem-specific WQG development protocols for 
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different aquatic ecosystems (e.g. coastal and marine, estuary, freshwater lakes, rivers, man-

made reservoirs, inland saline systems etc.).  

The second step could be to setup a web-based database system (for example, that might 

be called ATERA – Aquatic Toxicology and Ecological Risk Assessment) which would 

resemble the GenBank® and enable the International Expert Working Group to collect all 

publicly available ecotoxicological data through voluntarily uploading information by the 

data producers and, at the same time, to allow users to download relevant information for 

WQG development or ecological risk assessment.  The deposited information should include, 

but not limited to, the toxicity test descriptions (e.g. test types [i.e., lab-based acute/chronic 

tests or mesocosom- or field-based tests], species name, species origin and its geographical 

range, test duration, toxicity endpoints, test solution system [i.e., static, semi-static-renewal or 

flow-through system], test conditions [i.e., temperature, hardness, salinity, pH, photo-period 

etc.], single vs. mixture chemical exposure, quantification of chemical concentrations in test 

solutions, references to the standard protocols adopted etc.), all raw toxicity data in a standard 

format, and quality assurance or quality control procedures if any.  After submission of the 

data, the producers of the data will be formally recognised and acknowledged in the database 

system, for example, users can cite the reference number assigned to each dataset and authors 

of a particular dataset downloaded from the database.  Since the data limitation represents a 

major bottleneck for WQG derivation especially for newly emerged chemicals, this novel 

web-based platform if established, will facilitate rapid advancement in ecotoxicology and 

water quality management around the globe. To further provide more incentives to 

researchers, it is also possible to consider concurrently establishing a peer-reviewed 

electronic journal (for example that might be called Ecotoxicological Resources) which will 

primarily publish ecotoxicology data and new methods for toxicological data analysis. Such 

datasets will also be uploaded onto the ATERA database. A relevant example of such kind of 
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data-resource based journals would be Molecular Ecology Resources.  However, it is 

important to acknowledge some of the clear challenges associated with such a voluntary 

exercise (cf. Costa Silva and Dubé, 2013) and to understand that even with clear guidance 

and the same starting point (in terms of data) very different WQGs can be generated by 

different jurisdictions (Junghans et al. 2012).  

Ultimately, the International Expert Working Group should decide how far international 

harmonization is possible. While the ultimate goal would be the development of international 

Eco-region/Geo-region WQG values accepted and used by the appropriate jurisdictions in the 

respective Eco-/Geo-regions (i.e., internationally binding values), this might currently not be 

possible.  Therefore, the International Expert Working Group may have to develop a protocol 

that allows the harmonized WQG development up to a certain point (e.g., data compilation 

and evaluation [= dataset development], and outlining recommended methods for WQG value 

setting), while the final step is left to the respective jurisdictions (i.e., selecting the derivation 

method and setting the actual guideline value).  Or, the protocol outlines the derivation of 

internationally recommended WQG values, while the respective jurisdictions are free to 

adopt or modify the recommended values.  Although some notable advancement of 

international collaboration in this important endeavour have been seen in Europe, the 

Association of Southeast Asian Nations (ASEAN), and Australia and New Zealand, more 

international collaborative efforts are urgently needed in other parts of the world (e.g. East 

Asia, Africa and South America) to improve the rate of progress in the derivation and 

application of WQGs for better management of both legacy and emerging chemicals in 

aquatic ecosystems worldwide.   

The movement towards enhanced international harmonisation will of necessity lead to 

increased standardisation of methodologies.  This has a number of advantages such as 

increased comparability of results, data having a certain minimum level of scientific rigour 
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and increased scientific benefit for reduced effort.  But, conversely standardising 

ecotoxicology methods and the development of organisations that control, regulate and 

develop approved methods can have a perverse outcome.  Increased standardisation has the 

potential to actively discourage the development of new methods (as they are not 

standardised and therefore cannot be used to derive WQGs) and it is likely to dramatically 

slow down the adoption and implementation of new advances.  Standardisation is thus 

analogous to the movement of glaciers compared to that of running water.  At the same time a 

high degree of certainty is required before adopting new developments into the derivation of 

WQGs because failing to provide an adequate degree of protection could have major and 

potentially irreversible implications for the affected environments.  It is therefore crucial 

when developing frameworks for deriving WQGs that the right balance is achieved between 

caution and adopting new scientifically rigorous studies and data. 

 

Conclusions  

 

Many regulatory jurisdictions have well developed protocols and guidance for the derivation 

and implementation of WQGs for chemicals. While terminology often differs between 

jurisdictions, the majority of the process, types of ecotoxicity data used and the methods of 

WQG derivation are very similar. Nevertheless, it is imperative that these protocols and 

guidance are regularly reviewed in order to account for developments in our understanding of 

the behaviour and fate of chemicals in the aquatic environment across a global scale. For 

example there is a need for better and more appropriate use of available data, including the 

choice of summary statistic from test data to use in the derivation process, to the inclusion of 

higher-tier data in weight-of-evidence approaches. Some jurisdictions avoid the use of these 
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latter types of data because of complexity of interpretation, but these data often represent a 

step towards the ecosystem reality that is the protection objective.  

Through validation of the WQG, we can ensure that it achieves the desired level of 

protection in the field that is imperative especially if the WQG is enshrined in legislation. 

However, such a validation is currently rarely undertaken and if it becomes mandatory, there 

is a need for a clear and unambiguous set of criteria by which to make the assessment of 

success. Methods for interpreting monitoring data for setting discharge permits and 

compliance assessments are well developed across many jurisdictions. Nonetheless, dealing 

with censored datasets and the requirements of biota monitoring to meet compliance needs 

for hydrophobic and bioaccumulative chemicals should be areas of cross jurisdictional 

development in near future.  

Our understanding of managing the challenges chemicals in the aquatic environment has 

developed greatly over the last 10 years. Nevertheless, it is often the case that our WQG 

derivation practices and guidance do not reflect these changes (e.g. incorporation of 

bioavailability for metals). Through closer working practices between jurisdictions and 

international harmonisation of WQG derivation methods or parts thereof, it is possible that 

knowledge can be shared and efforts and data pooled in order to minimise duplication of 

effort and thus permit the tackling of more recent challenges in WQG derivation and 

implementation, such as dealing with validation, endocrine disrupting chemicals, mixtures 

and chemical metabolites. However, the challenges of harmonising approaches should not be 

underestimated.  
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Figure 1.  Hierarchical decision tree for metals in surface waters (modified from ANZECC 

and ARMCANZ, 2000a).  
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