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This paper considers the stability of liquid metal drops subject to a high-frequency AC
magnetic field. An energy variation principle is derived in terms of the surface integral
of the scalar magnetic potential. This principle is applied to a thin perfectly conducting
liquid disk, which is used to model the drops constrained in a horizontal gap between
two parallel insulating plates. Firstly, the stability of a circular disk is analysed
with respect to small-amplitude harmonic edge perturbations. Analytical solution
shows that the edge deformations with the azimuthal wavenumbers m = 2, 3, 4, . . .

start to develop as the magnetic Bond number exceeds the critical threshold
Bmc = 3π(m + 1)/2. The most unstable is m =2 mode, which corresponds to an
elliptical deformation. Secondly, strongly deformed equilibrium shapes are modelled
numerically by minimising the associated energy in combination with the solution
of a surface integral equation for the scalar magnetic potential on an unstructured
triangular mesh. The edge instability is found to result in the equilibrium shapes of
either two- or threefold rotational symmetry depending on the magnetic field strength
and the initial perturbation. The shapes of higher rotational symmetries are unstable
and fall back to one of these two basic states. The developed method is both efficient
and accurate enough for modelling of strongly deformed drop shapes.

Key words: fingering instability, magnetohydrodynamics, variational methods

1. Introduction
In several metallurgical processes such as, for example, the levitation melting and

cold crucible, where the induction heating is used, the surface of liquid metal is
subject to AC magnetic field. In such a way, the metal can be not only molten but
also evaporated provided that the heating power is high enough (Baptiste et al. 2007).
Induction heating is accompanied with a pinch effect, which can significantly deform
the surface of liquid metal. When a sufficiently strong magnetic field is applied,
surface sometimes becomes asymmetric and even strongly irregular (Fautrelle, Sneyd
& Etay 2007). This phenomenon is of primary importance for the induction heating
of liquid metals because it may have an adverse effect on the heating efficiency and
eventually limit the power density the liquid metal can dissipate. Such a surface
instability has been observed first by Perrier, Fautrelle & Etay (2003) on a circular
layer of Gallium in a mid-frequency AC magnetic field. Analogous instability was
studied also by Mohring, Karcher & Schulze (2005) on the free surface of InGaSn
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melt in the annulus placed under a ring-like circular coil and fed by an alternating
current with the frequency in the range of 20–50 kHz. As the current amplitude
exceeds a certain critical value, which depends mainly on the annulus width, an
initially flat surface acquires a static wavy deformation. At a higher critical current,
the deformation rapidly increases and becomes unsteady. In contrast to Perrier et al.
(2003), who observe only static deformations, Kocourek et al. (2006) find a circular
sessile drop of InGaSn melt first to squeeze radially with various shape oscillations
to set in as the strength of a 20 kHz AC magnetic field is gradually increased.
In the former experiment, the surface of liquid metal was exposed to the air and,
thus, heavily oxidised that constrained its motion. In the latter experiment, oxidation
was prevented by covering the drop by a diluted HCl solution. Later on Conrath,
Kocourek & Karcher (2006), Conrath (2007) found static shape deformations when
the drop was constrained in a horizontal gap between two parallel plates. Irregular
static surface shapes have been observed also by Hinaje, Vinsard & Dufour (2006a)
on a layer of PbSn alloy covering the bottom of a cylindrical container. The metal
layer, which was constrained by the lateral walls of the container and heavily oxidised
at the top, broke up revealing the bottom of the container as the strength of a 4 Khz
AC magnetic field exceeded a certain critical value. The authors also attempted to
model this process numerically using a surface integral equation derived from Green’s
third identity. This approach, however, is not applicable to thin sheets, for which
the double layer contribution vanishes. In a subsequent paper, Hinaje, Vinsard &
Dufour (2006b) devised a simplified electrotechnical model, which provided a rough
estimate of equilibrium shapes. A simple theoretical model for this type of instability
was introduced by Priede, Etay & Fautrelle (2006), who analysed the linear stability
of the edge of liquid metal layer, which was treated as a perfectly conducting thin
liquid sheet in a transverse AC magnetic field. This allowed the authors to determine
the wavenumber of the most dangerous perturbation and the critical field strength
at which the instability develops in a reasonable agreement with the observations of
Mohring et al. (2005).

In this paper, an energy variation principle is derived for the equilibrium
shapes that develop from the edge pinch instability of flat liquid metal drops,
which are modelled as thin perfectly conducting liquid sheets. Firstly, the stability
of a circular disk is analysed with respect to small-amplitude harmonic edge
perturbations. Analytical solution shows that the edge deformations with the
azimuthal wavenumbers m =2, 3, 4, . . . start to grow as the magnetic Bond number
exceeds the critical threshold Bmc = 3π(m + 1)/2. The most unstable is m =2
mode, which corresponds to an elliptical deformation. Secondly, strongly deformed
equilibrium shapes are modelled numerically by minimising the associated energy.
The electromagnetic problem is formulated in terms of the surface integral equation
for the scalar magnetic potential, which is solved numerically on an unstructured
triangular mesh covering the surface of the drop. The edge instability is found
to result in the equilibrium shapes of either two- (m = 2) or threefold (m = 3)
rotational symmetry depending on the initial perturbation and the magnetic field
strength. Although the associated energy of m = 3 shapes is higher than that of
m = 2 ones at the same magnetic field strength, both shapes are separated by a
positive energy barrier. This, however, is not the case for equilibrium shapes of
higher order symmetries. Although these shapes can be obtained numerically, they
turn out to be unstable with respect to small amplitude perturbations of two- or
threefold rotational symmetries, which make them fall back to one of the two basic
states.
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Figure 1. Sketch to the formulation of problem.

This paper is organised as follows. In § 2, the problem is formulated and the energy
variation principle is derived in terms of the integral of the scalar magnetic potential
over the drop surface. This principle is applied in § 3 to obtain an analytical solution
for the stability of a circular disk with respect to small-amplitude harmonic edge
perturbations. Specific mathematical details of the solution are given in Appendix.
In § 4, numerical method is described and validated against the previous analytical
solution. Numerical results are presented in § 4. The paper is concluded with a
summary and discussion in § 5.

2. Formulation of problem
Consider a drop of liquid metal with the characteristic size R0, electrical conductivity

σ, surface tension γ and density ρ submitted to an AC magnetic field with the spatial
amplitude distribution B(r), as shown in figure 1. The AC frequency ω is assumed
so high that the penetration depth of the magnetic field into the drop δ ∼ (µ0σω)−1/2,
where µ0 is the vacuum permeability, is negligible with respect to R0. In this perfect
conductor approximation, the magnetic field is tangential to the drop surface S,

Bn|S = 0, (2.1)

and the electromagnetic force effectively acts on the surface as the time-averaged
magnetic pressure,

pm =
B2

4µ0

.

Equilibrium shape of the drop is determined by the normal stress balance

ph − pc − pm|S = 0, (2.2)

where ph = ρg · r and pc = γ ∇ · n are the hydrostatic and capillary pressures,
respectively, n is the outward surface normal and g is the gravitational acceleration.
Multiplying (2.2) by n · ξ , where ξ (r) is a virtual displacement field conserving the
volume, and integrating over S, we obtain

Wg + Ws + Wm =0, (2.3)

where Wg = ρ
∫

s
(g · r)ξ · ds, Ws = −γ

∫
s
(∇ · n)ξ · ds and Wm = − 1

4µ0

∫
s

B2ξ · ds are the

virtual works done by the gravitational, surface tension and magnetic forces,
respectively. Since all of these forces, including the magnetic one in the perfect
conductor approximation, are conservative, the corresponding works can be expressed
as the variations of the associated potential energies. Using the divergence theorem
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to change from the surface to volume integrals and taking into account the
incompressibility constraint ∇ · ξ = 0 as well as the Lagrangian variation ξ · ∇f = δf,

we obtain Wg = −δEg, Ws = −δEs, and Wm = −δEm, where

Eg = −
∫

V

ρg · r dV, (2.4)

Es = γ S, (2.5)

Em = − 1

4µ0

∫
V̄

B2dV , (2.6)

are the associated potential energies. The minus sign at the last integral is due to the
integration over the outer volume V̄ . For an equilibrium shape, (2.3) implies δE = 0,
where

E = Eg + Es + Em (2.7)

is the total associated energy. This derivation of the energy variation principle appears
more straightforward than the original one by Sneyd & Moffatt (1982). Equilibrium
shape of the drop corresponds to a stationary point of E, which, as usual, has to be
a minimum for the equilibrium to be stable (Chandrasekhar 1961).

2.1. Magnetic energy in a homogeneous external field

Further, the external magnetic field Be is assumed homogeneous, which supposes the
drop to be small compared to the inductor generating the field. This allows us to
express the magnetic energy (2.6) by an integral over the drop surface as follows. The
total magnetic field is a superposition of the external and induced fields B = Be + Bi .

Outside the drop, we have Bi = −µ0∇Ψi, where Ψi is the scalar potential of the
induced magnetic field. Then (2.6) can be represented as

Em = E0 + E1, (2.8)

where

E1 = − 1

4µ0

∫
V̄

B · Bi dV =
1

4

∫
S∞

Ψi Be · ds, (2.9)

and S∞ is a remote surface enclosing the drop at r → ∞. The part of the integral
over the drop surface S vanishes because of the boundary condition (2.1). Since
the induced magnetic field is supposed to fall off at large distances r → ∞ as the
dipole field with Ψi ∼ 1/r2, the last integral converges to a non-zero value. The other
contribution to the magnetic energy is

E0 = − 1

4µ0

∫
V̄

B · Be dV = − 1

4µ0

∫
V̄

B2
e dV − 1

4µ0

∫
V̄

Bi · Be dV, (2.10)

where the first integral represents the energy of the external magnetic field, which is
constant, and thus negligible, however, formally it is infinite. Therefore, retaining only
the second term in (2.10), we obtain

E0 =
1

4

∫
V̄

∇ · (BeΨi)dV = −1

4

∫
S

Ψi Be · ds + E1, (2.11)

where the integral is taken over the drop surface S with the outward normal direction.
Now it remains to evaluate the integral in (2.9), which is determined by the dipole
component of the induced field

Ψi(r) =
1

4π

m · r
r3

, (2.12)
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where m = 1
2

∫
S

r × Jds is the dipole moment of the drop and J is the surface current
density. The latter is related to the magnetic field by Ampere’s integral current law,
which applied to a small surface element results in

J =
1

µ0

n × B|S = ∇Ψ × n|S , (2.13)

where Ψ = Ψe + Ψi is the full scalar magnetic potential including also that of
homogeneous external field

Ψe = − 1

µ0

r · Be. (2.14)

Substituting these expressions into (2.9), after some algebra we obtain

E1 =
1

12
Be · m =

1

12

∫
S

Ψ Be · ds. (2.15)

The integral above can be represented as

E1 =
1

12

(∫
S

Ψi Be · ds − V B2
e

µ0

)
, (2.16)

where the second term, which is related to the energy of homogeneous external
magnetic inside the drop of fixed volume, is constant and, thus, negligible again. By
the same argument, Ψi in (2.11) can be substituted by Ψ. Then the magnetic energy
(2.8), apart from a constant contribution of the external field, can be written in terms
of Ψ as

Em = −1

4

∫
S

Ψ Be · ds + 2E1 = −E1, (2.17)

where E1 is given by (2.15).

2.2. Scalar magnetic potential

There are two alternatives how to find the magnetic potential. First, the solenoidality
constraint ∇ · B = 0 for a free-space magnetic field B = −µ0∇Ψ results in

∇2Ψ = 0, (2.18)

which together with the boundary conditions,

∂nΨ |S = 0, and Ψ |r→∞ → Ψe = −µ−1
0 r · Be, (2.19)

governs Ψ outside the drop. This formulation is used in § 3 for analytical treatment of
small amplitude deformations of a circular disk by using a singular Taylor-series-type
expansion around the basic state. Second, for efficient numerical solution, instead
of (2.18), which has to be solved in the whole space outside the drop, it is more
advantageous to use Biot–Savart law

B(r) = B0 − µ0

4π

∫
s

r − r ′

|r − r ′|3 × J(r ′) d2r ′, (2.20)

where the prime denotes the integration point. Then the boundary condition (2.1)
applied to (2.20) results in the surface integral equation defining Ψ on S

µ0

4π

∫
s

r − r ′

|r − r ′|3 · ∇Ψ (r ′) ds ′ = −n · Be, (2.21)
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Figure 2. A model of liquid layer confined in the gap between two horizontal plates
in a transverse AC magnetic field.

which has to be solved for a given shape of the drop to obtain the surface distribution
of Ψ, which, in turn, defines the magnetic energy (2.15). Then equilibrium shape is
found by minimising the total associated energy (2.7).

2.3. Thin-drop model

In the following, we focus on the case of a thin drop confined in a horizontal gap
between parallel insulating plates, as shown in figure 2. The drop is modelled by a
perfectly conducting liquid sheet with the virtual displacements constrained to the
plane of the sheet. The external magnetic field Be is perpendicular to the sheet.
The surface enclosing the sheet consists of the top and bottom parts S+ and S−,

both with the same area S0 but opposite normals. Taking into account also that
the potential of the induced field changes the sign discontinuously by crossing the
sheet, contributions from both surfaces in (2.15) are the same. This results in a
factor of 2 at the front of the integrals in (2.15) and (2.21) when the integration is
carried out only over the upper part of the sheet. Subsequently, we identify S0 and
Ψ with the top surface and the potential at that surface, respectively. Note that the
contribution of the transverse homogeneous field, whose potential (2.14) is constant
along the sheet, vanishes in (2.15). For the layer of fixed thickness, gravitational
energy is constant and, consequently, irrelevant in the variation of the total energy.
Due to the volume conservation and fixed thickness, the horizontal area S0 is fixed,
too. Then the variation of surface is caused only by the stretching of the perimeter
P =

∮
L

dl, which determines the effective edge area Se = P l0 and the corresponding
surface energy Es = γ Se, where the arclength l0 over the edge is assumed to be fixed
similar to the layer thickness itself (see figure 2).

Subsequently, all variables are non-dimensionalised by choosing R0, B0, R0B0 and
γ l0R0 as the length, magnetic field, potential and energy scales, respectively. Then the
dimensionless associated energy, which comprises a capillary contribution of the edge
and the magnetic energy, can be written as

E =

∮
L

dl − 1

3
Bm

∫
S

Ψ ds, (2.22)

where Bm= B2
0R

2
0/(2µ0γ l0) is the magnetic Bond number based on the amplitude

of AC magnetic field. Note that there is no difference between the induced and full
magnetic field potentials in (2.22) when that of homogeneous field (2.14) is set to be
zero along the sheet by a proper choice of additive constant. Actually, this difference
is irrelevant because the contribution of homogeneous field in (2.14), as discussed
in the previous section, is constant for incompressible liquid. For a flat sheet, (2.21)
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takes the following dimensionless form:

1

2π

∫
s

r − r ′

|r − r ′|3 · ∇Ψ (r ′) d2r ′ = −1. (2.23)

For no electric current (2.13) to cross the edge L, τ × n · J |L = ∂τΨ |L = 0 is required,
which implies Ψ |L= const, where τ and τ × n are the tangent and normal vectors to
the edge, respectively, and n is the normal vector to the sheet. As discussed above,
we can set

Ψ |L = 0, (2.24)

which ensures a zero potential for the homogeneous external field in the plane of the
sheet.

3. Analytical solution for the stability of circular disk
Here the approach developed above will be applied to the stability analysis of a

circular liquid disk with the radius R =1 + R1 + R2 + . . . , where R1 = R̂1 cos(mφ) is a
small perturbation with the amplitude R̂1and the azimuthal wavenumber m, and R2

is a higher-order small correction to be determined later on. The potential is sought
as Ψ = Ψ0 + Ψ1 + Ψ2 + . . . , where

Ψ0(η, ξ ) = − 2

π
η [1 + ξ arctan(ξ )], (3.1)

is the potential of circular disk presented in the angular and radial oblate spheroidal
coordinates, 0 � η � 1 and 0 � ξ < ∞ (Li, Kang & Leong 2002), which are related
with the cylindrical coordinates by

r =
√

(1 − η2)(1 + ξ 2), (3.2)

z = ηξ. (3.3)

Note that ξ =0 corresponds to the plane of the disk z = 0, where r =
√

1 − η2 with
η = 0 corresponding to the edge of a circular disk at r = 1. The first-order perturbation
of the potential vanishing away from the disk and satisfying the edge condition (2.24),
which takes the form

Ψ1|r→1 = −R1

∂Ψ0

∂r

∣∣∣∣
r→1

= − 2

π
R1η

−1
∣∣
η→0

, (3.4)

can be written as

Ψ1(r) = R1Ψ̂
m
1 (η, ξ ), (3.5)

where

Ψ̂ m
1 (η, ξ ) = − 2

π

(
1 − η2

1 + ξ 2

)m/2
η

η2 + ξ 2
. (3.6)

The details of the solution above, which apart from slightly different notations are
similar to those in Priede et al. 2006, can be found in Appendix. Since the energy
variation about the equilibrium state is expected to be quadratic in R1, we need
to consider also the next-order radius perturbation R2, which results from the area

conservation S =
∫

2π

∫ R

0
r dr dφ = π(1 + R̂2

1/2 + 2R2 + · · ·) as

R2 = −R̂2
1/4. (3.7)



Edge pinch instability of oblate liquid metal drops 225

The second-order potential perturbation, for which the edge condition (2.24) takes
the form

Ψ2|r→1 = −R1

∂Ψ1

∂r
− R2

∂Ψ0

∂r
− R2

1

2

∂2Ψ0

∂r2

∣∣∣∣
r→1

=
2

π
R2(1 + cos(2mφ)) (mη−1 + η−3)

∣∣
η→0

,

(3.8)

can be written as Ψ2(η, ξ ) = R2(Ψ̂
0
2 (η, ξ ) + Ψ̂ 2m

2 (η, ξ ) cos(2mφ)). Subsequently, we will
need only the first term of this expression

Ψ̂ 0
2 (η, ξ ) = mΨ̂ 0

1 (η, ξ ) + Ψ̂ 0
3 (η, ξ ), (3.9)

which satisfies (A 1) with m =0, where Ψ̂ 0
1 (η, ξ ) is defined by (3.6). The second term

above is obtained similarly to the first one by applying ∂2
z to (3.1), as described in the

last paragraph of Appendix, which yields

Ψ̂ 0
3 (η, ξ ) = − 2

π

η[η2 − ξ 2(ξ 2 + 3(1 − η2))]

(η2 + ξ 2)3
. (3.10)

At the disk surface, we have

Ψ0(r) = − 2

π

√
1 − r2, (3.11)

Ψ̂ m
1 (r) = − 2

π

rm

√
1 − r2

, (3.12)

Ψ̂ 0
2 (r) = − 2

π

m + (1 − r2)−1

√
1 − r2

. (3.13)

It is important to note that (3.12) and (3.13) are singular at r = 1, which is the edge
of the unperturbed disk. At the same time, the edge condition (2.24) implies the
potential to be regular (zero) at the actual edge of the deformed disk. This implies
that the solution above can be regularised by representing it in the radial coordinate
r̃ stretched with the radius of the deformed disk. Using the substitution

r = Rr̃ = (1 + R̃)r̃ , (3.14)

where R̃ = R1 + R2 + · · · is the radius perturbation, and expanding the solution in
power series of R̃ up to the second order in R1, we obtain a solution of the same
asymptotic accuracy, which is free of edge singularities

Ψ (r, φ) = Ψ (r̃(1 + R̃), φ) ≈ Ψ (r̃ , φ) + R̃r̃
∂Ψ

∂r̃
+

(R̃r̃)2

2

∂2Ψ

∂r̃2
+ · · · = Ψ̃ (r̃ , φ), (3.15)

where Ψ̃ (r, φ) = Ψ0(r) + R1Ψ̃
m
1 (r) + R2(Ψ̃

0
2 (r) + Ψ̃ 2m

2 (r) cos(2mφ)) + · · · and

Ψ̃ m
1 (r) = − 2

π

rm − r2

√
1 − r2

, (3.16)

Ψ̃ 0
2 (r) = − 2

π

[
(m − 1)(1 − 2rm) − r2

√
1 − r2

− 2(rm − 1)

(1 − r2)3/2

]
. (3.17)

Then the magnetic energy term in (2.22) can be evaluated up the first order in R2 as∫ 2π

0

∫ R

0

Ψ (r, φ)r dr dφ =

∫ 2π

0

R2

∫ 1

0

Ψ̃ (r̃ , φ)r̃ dr̃ dφ ≈ − Ēm − R2Ẽm, (3.18)
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where Ēm and R2Ẽm are the magnetic energies of circular disk and its leading-order
perturbation defined by

Ēm = −2π

∫ 1

0

Ψ0(r)r dr =
4

3
, (3.19)

Ẽm = −2π

∫ 1

0

[
Ψ̃ 0

2 (r) − 4Ψ̃ m
1 (r)

]
r dr = 4(m − 1). (3.20)

The surface energy term in (2.22) is evaluated as∮
L

dl ≈ 2π(1 − R2(m
2 − 1)) = Ēs + R2Ẽs. (3.21)

Then the total energy variation is

δE =
1

2
R2(Ẽs + Ẽm) = −R2(m − 1)

(
π(m + 1) − 2

3
Bm

)
. (3.22)

Note that there is no energy variation for m =1 mode, which corresponds to the shift
of the disk as whole. Circular disk is stable with respect to small perturbation with
m > 1 as long as its energy is at minimum, i.e. δE > 0. Since according to (3.7) R2 < 0,

the stability condition for m = 2, 3, . . . . is satisfied as long as

Bm � 3(m + 1)π/2. (3.23)

The first unstable mode with m =2, which corresponds to an elliptical deformation,
appears as Bm exceeds the critical value

Bmc =
9

2
π. (3.24)

This critical value is by a factor of 3 greater than the one found by our previous
linear stability analysis (Priede, Etay & Fautrelle 2006). The cause of this discrepancy
is discussed in the conclusion of the paper.

4. Numerical solution
This section introduces the numerical method which will be used subsequently to

find equilibrium shapes of thin drops by the approach described in § 2. Numerical
solution will also be verified against the analytical results obtained in the previous
section. To solve (2.23) with the edge condition (2.24), which define Ψ over the
drop surface S, the latter is tiled into triangular elements as shown in figure 3(a).
Triangulation is carried out as follows. Firstly, we take a regular hexagon inscribed
in the unit circle and tile it using equilateral triangles with the side length 1/N.

Secondly, the hexagon is stretched radially to fit the unit circle. Then six points are
discarded from the perimeter and the remaining 6(N − 1) points are redistributed
uniformly against the midpoints of the previous radial level. This produces a more
regular triangulation at the edge, which yields a slightly higher numerical accuracy. As
a result, we obtain a triangular mesh with 6N2−6 elements and 3N×(N+1)−5 vertices.
Following the finite element approach, Ψ is sought at the vertices and interpolated
linearly within the elements. To determine Ψ at the vertices, we need a corresponding
number of equations, which are obtained by numerically approximating (2.23) at the
inner points and applying the edge condition (2.24) at the peripheral points. The
integral in (2.23) is represented as a sum of integrals over separate elements, which



Edge pinch instability of oblate liquid metal drops 227

–1.0

–0.5

 0

 0.5

 1.0

–1.0

–0.5

 0

 0.5

 1.0

–1.0 –0.5  0  0.5  1.0

y

x

(a) (b)

–1.0 –0.5  0  0.5  1.0  1.5
x

Figure 3. Triangulation of the unit circle with N = 16 elements along the radius
(a) and a radially stretched mesh fitting the drop shape (b).
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Figure 4. The relative error in the magnetic energy of circular disk (3.19) against the radial
number of elements N for four different Gaussian quadratures: (1) linear quadrature using
only the centre point with the weight factor 1; (2a) and (2b) quadratic quadratures using
three symmetric points with the barycentric coordinates (2/3, 1/6, 1/6) and (1/2, 1/2, 0),
respectively, and the weight factors 1/3; (3) four-point cubic quadrature using the centre point
with the weight factor −27/48 and three symmetric points with the barycentric coordinates
(3/5, 1/5, 1/5) and weight factors 25/48 (Cowper 1973).

are approximated by the Gaussian quadratures for triangles. Thus, for a given mesh
r i =(xi, yi), we obtain a system of linear equations with a dense matrix for unknown
Ψi = Ψ (r i), which are found by the LU decomposition method.

The convergence of the magnetic energy for circular disk, Ēm defined by (3.19),
is shown in figure 4 against the radial number of elements N for four different
quadratures. Accuracy is lower for the Gaussian quadratures with the evaluation
points located closer to the mesh points. This is because of the integrand singularities
encountered when the observation point belongs to the element over which the integral
is evaluated. Subsequently, we use a quadratic quadrature with three evaluation points
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the radial direction. The vertical dashed line shows the theoretical threshold value (3.24).

located at the side midpoints of the element (curve 2b in figure 4), which provides
the highest accuracy. For the linear elements used here, the integral in (2.23) can,
in principle, be evaluated exactly. However, such an approach is not applicable
because the singularities between adjacent elements do not cancel out when the
current distribution is a piece-wise constant, as in this case, rather than continuous.
Nevertheless, Gaussian quadratures still provide a reasonably accurate result also in
this case.

To verify the analytical solution obtained in the previous section, we first restrict
the drop shape to an ellipse defined parametrically by the mesh point coordinates

r i = (x0
i Rx, y

0
i /Rx), (4.1)

where (x0
i , y

0
i ) = r0

i are the mesh points for a circular disk and Rx is a parameter
defining the x-radius of ellipse. For a given Bm, equilibrium shape is found by using a
Powell-type algorithm (Press, Teukolsky & Vetterling 1996) to minimise the associated
energy (2.22) with respect to Rx. For each Rx, firstly, Ψi is found by solving the system
of linear equations for the corresponding distribution of mesh points (4.1). Secondly,
integrals in (2.22) are evaluated numerically for the given distributions of r i and Ψi.

As seen in figure 5, which shows the major radius of ellipse versus Bm, the critical
value of Bm, by exceeding which the drop starts to deform, is slightly above its
theoretical value (3.24). For N = 16 elements in the radial direction, the major radius
slightly varies depending on whether the ellipse is stretched (Rx > 1) or squeezed
(Rx < 1) along the x-axis. Although these two cases differ only by the orientation of
the major axis of ellipse along the x- or y-axis, which are both theoretically equivalent,
this small difference is due to the sixfold rotational symmetry of the mesh, which is
invariant upon rotation by 60◦ but not by 90◦. For N = 24, no difference is noticeable
between the Rx > 1 and Rx < 1 cases.

Subsequently, we search for the disk radius in the following area-conserving form:

R2(φ) = 1 +

M+1∑
m=2

[Rc
m cos(mφ) + Rs

m sin(mφ)], (4.2)
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2 of the radius perturbation versus the magnetic Bond number Bm for

the drops squeezed along either the y-axis (Rc
2 > 0) or the x-axis (Rc

2 < 0) with N = 16, 24, 32
elements in the radial direction. The vertical dashed line shows the theoretical threshold value
(3.24).

where Rc
m and Rs

m are unknown amplitudes of cosine and sine terms in the Fourier
series expansion of R2(φ). Due to the area conservation and the mass centre fixed
at the origin, (4.2) does not contain m =0 and m =1 terms. Moreover, owing to the
rotational invariance, we can set Rs

2 = 0, which fixes the orientation of the drop up to
a rotation by 90◦ provided that Rc

2 
= 0. This leaves 2M − 1 unknown coefficients in
(4.2) for the minimisation of the associated energy (2.22). The number of azimuthal
modes M is chosen to ensure the convergence of equilibrium shapes. In this case, the
mesh of unit circle is deformed radially to fit the disk

(ri, φi) = (r0
i R(φ0

i ), φ
0
i ), (4.3)

where (r0
i , φ

0
i ) and (ri, φi) are the polar coordinates of the mesh points for circular

and deformed disks, respectively.
For comparison with the case of ellipse considered above, we start with M = 1,

which leaves only one coefficient, Rc
2, in (4.2) to be determined. As seen in figure 6,

which shows Rc
2 versus Bm for three numerical resolutions and two perpendicular

orientations of the drop determined by the sign of Rc
2, the radial deformation of the

mesh (4.3) results in a reduced numerical accuracy of the critical value of Bm, which
for N = 24 elements in the radial direction is about 6% lower than its theoretical
value (3.24). There is also a small difference in the shape depending on whether the
drop is squeezed along the y- or x-axis (see figure 7a). Figures 7(a) and 7(b) show
that the shape changes very little as the number of azimuthal modes and that of the
elements in radial direction reach M = 15 and N = 24, respectively. In the following,
we will be using these values unless stated otherwise.

The equilibrium shapes found as the magnetic field is gradually increased are shown
in figure 8(a). At Bmc ≈ 13.6, which due to the numerical approximation is slightly
below the theoretically predicted stability threshold (3.24), the drop turns noticeably
elliptic and rapidly elongates with a further increase in Bm. For Bm � 15, the drop
starts to tighten around the middle part. No equilibrium shapes of this type can be
found for Bm � 25. This implies that the drop may split up into two as the narrowing
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of the middle reaches a certain critical value. The splitting of the drop is not captured
by this numerical method, which breaks down as the neck between two parts of the
drop becomes too thin.

Alternatively, when the magnetic field is applied instantly with Bm ≈ 20 to a drop
with some initial m =3 perturbation, equilibrium shapes with a threefold rotational
symmetry shown in figure 8(b) are obtained. As seen in figure 9, the associated energy
of m =3 mode is higher than that of m = 2 mode, which is also possible at the same
Bm. Nevertheless, the shapes with threefold symmetry are stable because they are
separated from the twofold symmetry shapes by a finite energy barrier.

This, however, is not the case for the m = 4 and m =5 symmetry shapes shown in
figures 10(a) and 10(b), which can be obtained only when the corresponding symmetry
is explicitly imposed in series (4.2) by ignoring all other modes. As seen in figure 11,
the associated energy of four- and fivefold symmetries, in contrast to that of two-
and threefold symmetries, decreases upon m =2 and m =3 radius perturbations. This
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implies that four- and fivefold symmetry shapes are indeed unstable with respect to
these perturbations.

5. Summary and conclusions
In this study, we have numerically modelled strongly deformed equilibrium shapes

of a flat liquid metal drop subject to a transverse high-frequency AC magnetic
field. The drop was treated as a thin liquid layer confined in a horizontal gap
between two parallel insulating plates. AC frequency was assumed high so that the
magnetic field was effectively expelled from the drop by the skin effect. Equilibrium
shapes of the drop were found by using a variational principle for the associated
energy involving the surface and magnetic contributions. Using Biot–Savart law,
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the associated electromagnetic problem was formulated in terms of a surface integral
equation for the scalar magnetic potential. This equation was solved numerically on an
unstructured triangular mesh covering the surface of the drop. Numerical method was
validated against analytical solution for the stability of circular disk with respect to
small-amplitude azimuthally harmonic edge perturbations. According to the analytical
solution, the edge deformations with the azimuthal wavenumbers m =2, 3, 4, . . . start
to grow on circular disk as the magnetic Bond number exceeds the critical threshold
values Bm(m)

c = 3π(m + 1)/2. The most unstable is m =2 mode, which corresponds to
an elliptical deformation at the critical Bond number Bm(2)

c =9π/2 ≈ 14.1.
This result agrees surprisingly well with the experimental findings of Conrath et al.

(2006), Conrath (2007) for a drop of Galinstan (GaInSn eutectic alloy) with the
diameter of 2R0 = 65 mm confined in a horizontal gap between two parallel glass
plates separated by h = 3 mm. The drop was submitted to the AC magnetic field
generated by a 10-winding (n= 10) coil with the inner and outer radii of R1 = 48 mm
and R2 = 81 mm, respectively, which were roughly in the plane of the drop. For the
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AC frequency of f ≈ 43 kHz, which was the highest one applied in the experiment, an
originally circular disk became elliptical as the effective current in the coil exceeded
I ≈ 75 A. This corresponds to the r.m.s. magnetic field in the centre of the coil

B0√
2

≈ µ0nI

2

lnR2 − lnR1

R2 − R1

≈ 7.5 mT, (5.1)

which yields the critical Bond number Bm= B2
0R

2
0/µ0πhγ ≈ 14, where γ =

0.718 N m−1 is the surface tension of Galinstan and the effective arclength of the
edge l0 ≈ πh/2 is approximated by a half circle. The critical currents are higher at
lower frequencies and appear to saturate as the frequency is increased, which is
consistent with the saturation of the electromagnetic force in the perfect conductor
limit. Shapes with a rough threefold rotational symmetry are observed above the
critical current I ≈ 100 A, which corresponds to Bm ≈ 25. This is by about a third
greater than the theoretical value Bm(3)

c =6π ≈ 19 for m =3 mode. Note that also the
shapes with a fourfold rotational symmetry are observed in the experiment though
the numerical simulation showed them to be unstable. These discrepancies between
the theory and experiment may be due to two effects. First, the size of the drop is
comparable to that of the coil, which makes the applied magnetic field non-uniform
over the drop radius. Second, to prevent the oxidation the drop is submerged in a 6 %
solution of HCl, which may affect the surface tension. Given all these experimental
uncertainties and deviations from the idealised theoretical model, the agreement of the
instability threshold for the m =2 mode seems too good and perhaps even incidental.

Note that the critical Bond number resulting from the energy variation approach
is by a factor of 3 greater than that supplied by our previous linear stability analysis
(Priede et al. 2006). There seem to be no obvious errors in either approach except
for the factor of 2 missed in the final expression for the time-averaged force F0

above equation (24) of Priede et al. (2006). This factor taken into account results in
Bm(m)

c = π(m+1)/2 which increases the actual difference from 1.5 to 3 times. The only
questionable point is the determination of electromagnetic force on the edge, where
the magnetic field becomes singular, by the integration of Maxwell stress tensor over
a small cylindrical surface enclosing the edge (Priede et al. 2006). It is important to
notice that the local magnetic field at the edge used in the integration is entirely due
to the currents induced in the sheet. Using Ampere’s force law, it can be shown that
such an approach accounts only for the interaction between the induced currents
while it misses out any interaction of the induced and external currents. This is
because the latter act via the external magnetic field, which is opposite to the induced
one, but not taken into account by the local field distribution. As a result, the force
on the edge is overestimated and, consequently, the magnetic field strength necessary
for the instability underestimated. Obviously, the semi-infinite sheet model used by
Priede et al. (2006) is not able in principle to account for the interaction with external
magnetic field, which requires the consideration of finite size system. This is implied
also by the energy variation approach, which does not work for a semi-infinite sheet
model. On the one hand, the energy of the magnetic field, which falls off as ∼ 1/

√
r

from the edge, diverges for semi-infinite sheet. On the other hand, this energy does
not vary with the variation of the edge position because this variation is equivalent
to the offset of the origin of coordinate system. This makes the force on the edge
of semi-infinite sheet undetermined. Such ambiguities do not arise when the energy
variation approach is applied to finite-size drops, as done in this study. Moreover,
difficulties due to the edge singularity disappear altogether when smooth drops are
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considered, which, however, significantly increases the numerical complexity of the
problem.

I would like to thank Y. Fautrelle for stimulating discussions.

Appendix. The magnetic potential for harmonically deformed disk
In the oblate spheroidal coordinates, (2.18) for the azimuthal mode m of the

potential defined by (3.5) takes the form

∂

∂η

(
(1 − η2)

∂Ψ̂ m
1

∂η

)
+

∂

∂ξ

(
(1 + ξ 2)

∂Ψ̂ m
1

∂ξ

)
− m2(η2 + ξ 2)

(1 − η2)(1 + ξ 2)
Ψ̂ m

1 = 0. (A 1)

The potential perturbation, which is supposed to vanish with the distance from the
disk Ψ̂ m

1 |ξ→∞ → 0, is related with the radius perturbation by (3.4), which now reads
as

Ψ̂ m
1

∣∣∣
r→1

= − 2

πη

∣∣∣∣
η→0

. (A 2)

Although (A 1) admits the variable separation, such a solution is complicated by
the edge singularity (A 2). Nevertheless, a compact analytical solution can be found
similarly to the construction of spherical solid harmonics from the fundamental
solution of the Laplace equation (Batchelor 1973) as follows. Firstly, note that if Ψ

is a solution of the Laplace equation and ε is a constant vector, then (ε · ∇)Ψ is
a solution, too. Secondly, if Ψ satisfies a homogeneous boundary condition and ε

is directed along the boundary, then (ε · ∇)Ψ satisfies that boundary condition, too.
Thirdly, the operator (ε · ∇) changes the radial dependence of Ψ from ∼ (r − 1)α

to ∼ (r − 1)α−1, while the azimuthal dependence is changed from the mode m to
m + 1. Algebra becomes particularly simple when ε is taken in the complex form
as ε = ex + iey = eiφ(er + ieφ). Then each application of (ε · ∇) is accompanied by the
multiplication with eiφ. Thus, the solution for m = 1 is obtained straightforwardly
from the axisymmetric base state (3.1) as

Ψ̂ 1
1 (η, ξ ) = −e−iφ (ε · ∇) Ψ0 = −π

2

(
1 − η2

1 + ξ 2

)1/2
η

η2 + ξ 2
. (A 3)

Higher azimuthal modes can be obtained similarly as Ψ̂ m
1 = e−imφ (ε · ∇)m Ψ̂ m

0 , where

Ψ̂ m
0 is an axisymmetric solution satisfying (A 1). The edge condition (A 2)

(ε · ∇)m Ψ m
0 ∼ Ψ m

0

η2m
∼ 1

η
(A 4)

yields Ψ m
0 ∼ η2m−1 for η → 0. Moreover, the perturbation vanishes far away from the

disk when Ψ̂ m
0 |ξ = 0 = cm

0 η2m−1 along the whole disk, where cm
0 is a constant. Then the

corresponding axisymmetric solution of (A 1) can be written as

Ψ m
0 (η, ξ ) = cm

0

m∑
k=1

cm
k P2k−1(η)Q2k−1(iξ ), (A 5)

where Pn(x) and Qn(x) are the Legendre polynomials and functions of the second
kind, respectively (Abramowitz & Stegun 1972); the expansion coefficients are found
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as cm
k = (4k − 1/Q2k−1(0))Im

k , where

Im
k =

∫ 1

0

η2m−1P2k−1(η) dη =

√
π21−2m(2m − 1)!

(m − k)!Γ (m + k + 1/2)
. (A 6)

Then the solution for the perturbation amplitude can be written as

Ψ̂ m
1 = D+

m−1D
+
m−2 · · · D+

1 D0Ψ
m
0 , (A 7)

using the operator

D±
m ≡ r

η2 + ξ 2

(
ξ

∂

∂ξ
− η

∂

∂η

)
± m

r
, (A 8)

which is defined by D±
m ≡ e−i(m±1)φ

(
ε± · ∇

)
eimφ, where ε+ = ε, and ε− = ε∗ is the

complex conjugate of ε. The calculation of (A 7) is algebraically complicated but
can be done by the computer algebra system Mathematica (Wolfram 1996), which
requires considerable computer resources and practically can be carried out only for
m � 5. But this suffices to deduce the general solution (3.6).

The axisymmetric solution (3.10) with ∼η−3 edge singularity can be obtained
in a similar way directly from the axisymmetric base solution (3.1) by applying
(ε− · ∇) (ε+ · ∇) ≡ D−

1 D+
0 . This operator is equivalent to −∂2

z because it represents the
transversal part of the Laplace operator while (3.1) satisfies the Laplace equation.
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