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Abstract 7 

The Suomi National Polar-orbiting Partnership satellite was launched in 2011. On-board this satellite 8 

is the Visible Infrared Imaging Radiometer Suite (VIIRS) with thermal infrared detection capabilities 9 

similar those of the earlier Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors of the 10 

National Aeronautics and Space Administration Earth Observation System. Fire detection products 11 

have been developed using the thermal infrared data for both VIIRS and MODIS and, although having 12 

the observation of fire as their main objective, such products are also sensitive to the radiant 13 

emissions of active volcanic surfaces, but a comparison of their capabilities in this regard remains 14 

outstanding. Here, this comparison is conducted, with a focus on the volcanoes of Indonesia, and 15 

findings are initially promising, suggesting that the VIIRS fire detection capability is an improvement 16 

over that of its predecessor. For example, between 3 April 2012 and 14 July 2014, volcanic activity 17 

was detected on 519 days by the VIIRS product, as compared with 308 days for the MODIS-Aqua 18 

product (MYD14). Causes of this apparent enhanced sensitivity are explored and, with the 19 

examination of additional data from the MODIS-Terra product and the MODVOLC system, are shown 20 

to be the combined influence of spatial resolution, data processing steps, imaging scan width and the 21 

fire product algorithm used. As greater quantities of data become available, a more comprehensive 22 

comparison of these observations will be possible and will be undertaken at a global scale. 23 

 24 

Introduction 25 

In October 2011 the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched. It was 26 

to be an introductory, data collecting satellite for the National Aeronautics and Space Administration 27 

(NASA) and the National Oceanic and Atmospheric Administration (NOAA), as part of their Joint Polar 28 

Satellite System (JPSS) Mission. With five sensing instruments, including the Visible Infrared Imaging 29 
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Radiometer Suite (VIIRS), S-NPP was to provide a continuation in the environmental satellite data 30 

record. This record commenced in the late 1970s with NOAA’s Advanced Very High Resolution 31 

Radiometer (AVHRR) satellites and was most recently added to in 1999 and 2001 by NASA’s 32 

Moderate-Resolution Imaging Spectroradiometer (MODIS) on-board the Terra and Aqua spacecraft 33 

(Schroeder et al. 2014). These sensors each possess infrared detection capabilities which have been 34 

harnessed to identify terrestrial thermal anomalies. Although commonly used in observing the 35 

characteristic thermal signatures of active fires, such data also have utility in the observation of active 36 

volcanic surfaces, and this has been utilised in various applications (e.g. Harris et al. 1998, Wright and 37 

Flynn, 2003; Webley et al. 2008, Blackett, 2014). For MODIS, a fire detection algorithm has been 38 

developed which utilises its infrared data to produce the Thermal Anomaly/Fire products: MOD14 (for 39 

MODIS Terra) and MYD14 (for MODIS Aqua) (Justice et al. 2002, 2006; Giglio et al. 2003). An Active 40 

Fire Product (AFP) has also been developed for infrared VIIRS data and using this, and the 41 

MOD14/MYD14 algorithm, it also identifies active fires and, as such, any terrestrial thermal 42 

anomalies, including those of volcanic origin (Justice et al. 2013; Csiszar et al. 2014).  43 

 44 

Volcanic context 45 

Given the huge utility of fire detection products for hazard management agencies on the ground, both 46 

MODIS and VIIRS have been compared in terms of their observation of active fires, and initial 47 

comparisons have shown consistency in near coincident data, even at varying view angles (e.g. Justice 48 

et al. 2013; Csiszar et al., 2014; Schroeder et al. 2014). However, given the higher nominal spatial 49 

resolution of the VIIRS, and its enhanced scanning and sampling techniques, a higher sensitivity to 50 

thermal anomalies would be expected and indeed, has been confirmed for fires (Csiszar et al. 2014; 51 

Schroeder et al. 2014). What is absent in the literature however, is a comparison of the volcanic 52 

observational capabilities of the MODIS and VIIRS thermal anomaly products, and that is what this 53 

paper seeks to undertake. The chief differences between observing active volcanic surfaces, as 54 

compared with fires, are that: 1) the temperature ranges are likely to be higher (with both fresh and 55 

cold, or cooling, lava present), 2) the heat sources are likely to be more pervasive and, 3) there is 56 

likely to be a greater temperature contrast between hot surfaces and surrounding non-volcanic, high-57 

altitude surfaces. 58 
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 59 

The comparison conducted here focuses on observations of the volcanoes of Indonesia. This 60 

archipelago consists of 78 historically active volcanoes which formed as a result of subduction along 61 

the Sunda Arch (Smithsonian Institution 2013). Since the launch of the S-NPP satellite in October 62 

2011, many Indonesia’s volcanoes have been particularly active (see Figure 1). In 2012, Mount 63 

Semeru erupted and generated multiple pyroclastic flows that warranted a ban on visitors, and 64 

Mount Soputan emitted an ash plume that extended 9000 m into the atmosphere (CVGHM, 2012; 65 

Darwen VAAC, 2012). Mount Paluweh commenced a period of prolonged activity in early 2013, killing 66 

six and forcing evacuations throughout the year and later, in the same year, the eruption of Mount 67 

Sinabung forced flight cancellations and the evacuation of 17,000 people (Jakarta Post, 2013; 68 

International Business Times, 2013). In 2014, Mounts Kelud and Sinabung erupted, killing tens of 69 

people and forcing the rerouting and cancellation of flights (National Geographic 2014; Jakarta Post, 70 

2014); Mount Sangeang Api also erupted, displacing thousands and forcing flight diversions (The 71 

Guardian, 2014). The extreme vulnerability of Indonesia to the volcanic hazard is reflected by the fact 72 

that two-thirds of the global population exposed to the volcanic hazard are concentrated in Indonesia 73 

(UNISDR, 2015).  74 

 75 

Sensors and algorithms 76 

The MODIS instruments possess mid- and thermal-infrared bands with a spatial resolution of 1 km at 77 

nadir, a swath width of 2330 km and a twice-daily repeat period (Table 1 shows the bands of MODIS). 78 

The MODIS Thermal Anomaly/Fire products (MOD14 and MYD14) extract pixels that display the 79 

characteristics of thermal anomalies at the surface. These characteristics are based on data from 80 

bands 21 or 22 (3.929–3.989 µm), band 31 (10.780–11.280 µm) and the application of a fire detection 81 

algorithm initially developed by Justice et al. (2002) and enhanced by Giglio et al. (2003). The 82 

algorithm applies background and contextual threshold tests to identify those pixels representing 83 

potential thermal anomalies, although the precise algorithm differs marginally between day and 84 

night-time applications. The rationale for this difference is that all objects of ambient temperature 85 

(including the Earth’s surface) emit detectable levels of infrared radiation, even in the absence of 86 

solar heating and sunlight. Planck’s Law however, determines that emissions from ambient objects 87 
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will be greater in the thermal infrared (i.e. band 31) than in the mid-infrared (i.e. bands 21 and 22); 88 

the reverse will be true for hotter surfaces. These facts mean that the contrast between hot and 89 

ambient surfaces is lower in the daytime, thereby requiring stricter steps to differentiate them from 90 

the background. As such, an initial screen is applied in the algorithm whereby thermally anomalous 91 

pixels in daytime imagery are identified where the MIR brightness temperature exceeds 360 K, as 92 

compared with just 320 K in night-time imagery (Giglio et al. 2003; Justice et al. 2002; Schroeder et al. 93 

2014). 94 

 95 

The MODIS fire products are made available in the Hierarchical Data Format (HDF), with its Scientific 96 

Data Sets (SDS) listing, amongst other characteristics, the longitude and latitude of anomalous pixels, 97 

and the associated fire radiative power (FRP) (Giglio, 2010). The performance of the MODIS algorithm 98 

for observing thermal anomalies has regularly been validated by comparison with corresponding 99 

Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) fire observations both in 100 

terms of anomaly detection (Giglio et al. 2003; Morisette et al. 2005; Csiszar et al. 2006) and emission 101 

quantification (Giglio et al. 2008). 102 

 103 

The VIIRS was developed for cloud and Earth surface observations and initial calibration and 104 

validation steps have shown it as performing very well, producing high-quality data comparable with 105 

that of MODIS (Cao et al. 2013; Cao et al. 2014). It consists of a panchromatic day-night band and two 106 

collections of other bands: five high resolution imagery (I) bands (of 375 m at nadir) and sixteen 107 

moderate (M) resolution bands (of 750 m at nadir); the VIIRS bands are compared with each other, 108 

and with those of MODIS, in Table 1. Each collection of bands has a 3040 km swath width, providing 109 

twice daily global coverage. The I-bands cover the visible spectrum and also include medium and 110 

longwave infrared bands. The M-bands cover approximately the same portion of the spectrum (with 111 

some shorter wavelength bands) but also possess higher spectral resolution i.e. narrower bandwidths 112 

and, with a better signal to noise ratio, are more appropriate for quantitative applications. 113 

 114 

Table 1. The bands of MODIS and VIIRS, compared in terms of their spectral characteristics (*dual gain 115 

band; † low gain band). The bands outlined are those of relevance to this research. 116 
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 118 

The AFP, which has been developed for the VIIRS, is categorised as an Application Related Product 119 

(ARP). An ARP is produced by the S-NPP Ground System’s Interface Data Processing Segment (IDPS) 120 

which converts the Raw Data Records into geolocated calibrated measurements, or Sensor Data 121 

Records (SDRs), and then into Environmental Data Records (EDRs) of geophysical parameters, of 122 

which ARPs are a subcategory (Csiszar et al. 2014; Justice et al. 2013). Using the same algorithm as its 123 

MODIS forerunner (although Collection 4, as opposed to the Collection 5 currently used in MODIS 124 

data), it utilises the suite’s mid-infrared and thermal infrared bands (M13: 3.970–4.130 µm and M15: 125 

10.260–11.260 µm), to identify pixels representing thermal anomalies on the surface. Details of the 126 

full algorithm, and its similarities and differences to the equivalent MODIS algorithm, are summarised 127 

in the product’s Operational Algorithm Description (JPSS, 2013). Data from M13 are particularly useful 128 

for such studies given its high saturation temperature (634 K) when set in low-gain mode, whereas 129 

those of M15 are suitable for characterising the background thermal conditions (although these have 130 

the potential to saturate for moderate/large thermal anomalies). Similarly to the MODIS fire 131 

algorithm, and with the aim of reducing false alarms, the precise algorithm applied in the daytime is 132 

more stringent than the corresponding night-time product. At the current time, only the longitude 133 

and latitude of those pixels identified as potential fires are listed within the associated HDF file of the 134 

VIIRS AFP, thereby preventing complete comparison with the MODIS data products. However, by the 135 

time the first JPSS satellite is launched in 2017, the product will be upgraded to a full Environmental 136 

Data Record, with the requirement of a fire mask and FRP data; plans are also in place for updating 137 

the algorithm used to the most up to date MODIS Collection 6 version (Csiszar et al. 2014; Schroeder 138 

et al. 2014). To date, only one attempt at quantifying thermal emission data retrieved from VIIRS has 139 

been made: the Nightfire algorithm (Elvidge et al. 2013). This examines VIIRS Sensor Data Records for 140 

anomalies and quantifies the associated thermal emissions, in terms of megawatts, for comparison 141 

with MODIS-derived FRP and, using it, a high correlation between MODIS derived FRP data, and VIIRS 142 

thermal emissions, has been shown (Elvidge et al. 2013). 143 

 144 

Despite the similarity in bands, one important difference in the processing steps between MODIS and 145 

VIIRS data is that, prior to being incorporated into a data product, different approaches are taken to 146 
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handle the ‘bow-tie’ effect. This effect is the pixel footprint enlargement and distortion that occurs 147 

towards the ends of an image obtained by scanning radiometers such as MODIS and VIIRS. Not only 148 

does the ‘bow-tie’ effect reduce the reliability of pixel comparisons (both within and between scenes) 149 

but, by resulting in pixel enlargement towards the end of scan widths, the sensitivity of pixels, for 150 

example to fires and thermal anomalies, also degrades towards the scan edge (Wolfe et al. 1998; Cao 151 

et al. 2013). To reduce this effect in VIIRS data, a novel approach has been taken which incorporates 152 

both the deletion of overlapping pixels, and aggregation of those remaining, based on their distance 153 

from the nadir. This approach results in spatial resolutions that are more comparable (to within a 154 

factor of two, as opposed nearly five for MODIS), and pixels that approximate a square, across the 155 

whole scan (Wolfe et al. 2013; Cao et al. 2014).  156 

 157 

Methods 158 

Using the Smithsonian Institution’s Global Volcanism Program (GVP) database (available at: 159 

http://www.volcano.si.edu/), all Indonesian volcanoes reported to have displayed activity since the 160 

availability of the VIIRS AFP (3 April 2012) were identified. These volcanoes, 21 in total, are shown in 161 

Figure 1 and all data encompassing elements of this region, for the period 3 April 2012 – 14 July 2014 162 

(835 days and 6754 files), were downloaded from NOAA’s Comprehensive Large Array-data 163 

Stewardship System (CLASS, www.class.noaa.gov/). For comparison, MYD14 data for the same region 164 

and period (6885 files) were downloaded from NASA’s Earth Observing System Data and Information 165 

System (Reverb, reverb.echo.nasa.gov/). Only MODIS Aqua data were used as its local overpass times 166 

(~1.30am and ~1.30pm) are similar to those of S-NPP, thereby facilitating comparison (Csiszar et al. 167 

2014). However, to assist in comparing the performance of the MODIS and VIIRS products, two other 168 

datasets were also obtained: 1. MODIS Terra Thermal Anomaly/Fire Product data (MOD14) for the 169 

same period and 2. Data from the MODVOLC volcanic detection system (Wright et al., 2004). With 170 

regard to MOD14, the differing acquisition times (~10.30am and ~10.30pm), and the rapidly varying 171 

nature of volcanic activity and atmospheric conditions, mean its data cannot be directly compared 172 

with MYD14 or VIIRS data, but it is included to assist in identifying the causes of any MODIS-VIIRS 173 

discrepancies. Data from the MODVOLC system, which uses both Aqua and Terra data, are similarly 174 

included to assist in identifying the causes of any such discrepancies. 175 
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 176 

 177 

Figure 1. All Indonesian volcanoes recorded as displaying activity according to the GVP database, in 178 

the period: April 2012 – 14 July 2014. Asterisks refer to volcanoes which displayed thermal anomalies 179 

that were detected in either, or both, the MYD14 and VIIRS fire product files. 180 

 181 

The geolocation accuracy of MODIS has been confirmed as around 50 m (Wolfe et al. 2002), and for 182 

VIIRS it is comparable, at around 70 m nadir (Wolfe et al. 2013; Cao et al. 2014). Given these small 183 

values, extracting data from the respective thermal anomaly product using the longitude and latitude 184 

of each volcano will provide the corresponding pixel-level data. However, as thermally anomalous 185 

volcanic phenomena may extend far from the crater of a specific volcano (e.g. via lava flow or 186 

pyroclastic density current), all thermal anomalies recorded within ±0.02° longitude and latitude of 187 

each volcano were identified and extracted to ensure no loss of volcanic signal, while also minimising 188 

the possibility of including nearby non-volcanic thermal sources. The signals were organised into daily 189 

observations and where there was more than one scene observing the surface on the same day, only 190 

data from the scene with the highest summed per-pixel thermal anomaly emission (in the case of 191 

MODIS data) or the greatest number of identified anomalous pixels (in the case of the VIIRS AFP and 192 

MODVOLC) were considered, so as to avoid compounding the instantaneous daily sum value. To 193 
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determine the type of volcanic activity potentially responsible for the thermal signals noted, the GVP 194 

database was queried for each detected anomaly.  195 

 196 

Results 197 

Thermal anomaly detection  198 

An initial comparison of the volcanic-observational capabilities of both the MODIS and VIIRS fire 199 

detection algorithms must consist of an examination of their thermal anomaly detection capabilities. 200 

Of the 21 volcanoes reported within the GVP database as displaying volcanic activity during the period 201 

in question, 15 exhibited thermal anomalies that were detected by either, or both, the MYD14 and 202 

VIIRS fire product files (see Figure 1). In many cases, detected anomalies related directly to activity 203 

reported in the GVP database, whereas in others, no activity was reported (see Figure 2 for this 204 

comparison). Where thermal activity was detected but with no corresponding activity reports, it is 205 

likely that either the activity had gone unobserved on the ground or that the thermal activity had a 206 

source other than volcanism; conversely, where no thermal anomaly detections were made during 207 

periods of reported activity, it is likely that cloud, or volcanic emissions, obscured the surface from 208 

view. These discrepancies between observations and recorded activity highlight the relative 209 

sparseness of reported volcanic observations in the region which is largely a function of the 210 

remoteness and inaccessibility of many of Indonesia’s volcanoes.  211 

 212 

In the absence of other truly quantitative data from the VIIRS product, comparison between the 213 

MYD14 and VIIRS algorithms can only be extended by examining the presence or absence of 214 

anomalies, and by counting the numbers of anomalous pixels identified. Throughout the period, the 215 

VIIRS AFP detected 923 anomalous pixels, 62% more than MYD14, which detected 569. The VIIRS AFP 216 

also detected anomalies on more days than MYD14 (519 versus 308) and of these days, 26% were 217 

also identified as displaying anomalies by MYD14 while in reverse, of the daily MYD14 detections, 45% 218 

were also identified by the VIIRS AFP. These data (displayed in Figure 2) suggest a superior detection 219 

capability i.e. higher sensitivity to thermal anomalies, for the VIIRS AFP. The discrepancy in detections 220 

between these products could be attributed to a number of factors discussed in due course, ranging 221 
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from activity type and time of day of observation, to the characteristics of the sensors themselves and 222 

how their shared algorithm functions.  223 

 224 

 225 

Figure 2. Temporal comparison of GVP reported activity at the volcanoes detailed in Figure 1, with 226 

thermal anomalies at them, as detected by MYD14 and the VIIRS AFP, for a period of 835 days (1 April 227 

2012 – 14 July 2014). The interval between minor tick marks on the x-axis is 28 days. 228 

 229 

The detection capability of both sensors appears, to some extent, to be dependent on the volcano 230 

being observed. At Sengeang for example, of 29 days of VIIRS AFP detections, 86% had corresponding 231 

MYD14 detections and, of 30 days of MYD14 detections, 83% had corresponding VIIRS AFP 232 

detections; at Paluweh, of 130 days of VIIRS AFP detections, 43% had corresponding MYD14 233 

detections and of 81 days of MYD14 detections, 69% had corresponding VIIRS AFP detections. In 234 

other cases however, the VIIRS AFP was shown as much more sensitive for example, at Sirung volcano 235 

over the entire period, no MYD14 detections were made, as compared with 6 days of anomaly 236 

detection for the VIIRS AFP. Extending this analysis to examine volcanic activity type, Table 2 237 

compares the number of days on which GVP reports of specific types of volcanic activity were made, 238 

with the number of days on which thermal anomalies were detected, by product. Confirming a 239 
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common theme, the VIIRS AFP more regularly detected thermal anomalies than MYD14, for all 240 

activity types. Overall, those types of activity associated with intense heat (i.e. pyroclastic flows, lava 241 

flows or explosions) are more comprehensively detected than other activity types, although 242 

detections remain low, with only 10.3-16.9% of GVP reports detected by the VIIRS AFP, as compared 243 

with 0.0-11.9% for MYD14. 244 

 245 

Table 2. The number of days that the VIIRS and MYD14 fire products detected thermal anomalies at 246 

Indonesia’s volcanoes, as compared with volcanic activity type derived from the GVP database. 247 

 Plume Seismicity Incandescence Lava dome PF Fumarole Lava Explosion Ashfall 

Days of recorded activity 1276 418 350 297 118 35 29 19 13 

VIIRS AFP detected days 135 22 36 37 20 1 3 2 0 

Proportion detected (%) 10.6 5.3 10.3 12.5 16.9 2.9 10.3 10.5 0.0 

MYD14 detected days 69 19 17 14 14 1 1 0 0 

Proportion detected (%) 5.4 4.5 4.9 4.7 11.9 2.9 3.4 0.0 0.0 

 248 

The difference in VIIRS and MODIS thermal detections between day and night (between which the 249 

algorithm used changes) can also be examined. It was found that 64% (n = 364) of all pixels identified 250 

by MYD14 as anomalous and 65% (n=601) of all pixels identified as anomalous by the VIIRS AFP, were 251 

detected in imagery obtained at night. The significance of this is that there is a comparable, reduced 252 

sensitivity of both algorithms during the day-time. This is a function of the higher (and identical) MIR 253 

temperature threshold applied within the daytime algorithm. 254 

 255 

Thermal anomaly quantification 256 

The detection of volcanic activity, as is possible with both the MODIS and VIIRS fire detection 257 

algorithms, is important. Of often greater utility however, is the quantification of such activity so as to 258 

provide an indication of the activity type and intensity. For both MODIS and VIIRS products, such 259 

quantification is possible by virtue of the number of anomalous pixels identified, as this effectively 260 

quantifies the spatial extent of an anomaly; in the case of MYD14 however, quantification is more 261 

usefully also is additionally provided by the associated total FRP data. For MYD14, the relationship 262 

here between the number of anomalous pixels and total FRP per scene however, is not particularly 263 
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strong (r2 = 0.57). This is because there is a range of FRP values that a pixel identified as anomalous 264 

might display. For example, the smallest pixel FRP identified within the dataset was 7.5 MW (for Ibu, 265 

14 June 2012, with no GVP-reported activity) and the largest was 992.3 MW (for Soputan, 18 266 

September 2012, with eruptive activity, including volcanic plumes, reported). The daily sum FRP for all 267 

volcanic activity detected is plotted in Figure 3, along with the corresponding daily numbers of 268 

anomalous pixels as identified by both MYD14 and the VIIRS AFP. Although in many cases peaks and 269 

troughs do coincide, there is only a small positive relationship between both the numbers of pixels 270 

identified as anomalous by both sensors (r2 = 0.28) and between the number of pixels identified as 271 

anomalous by the VIIRS AFP and the corresponding MYD14 FRP retrievals (r2 = 0.15). It is unfortunate 272 

therefore, that until upgraded to an EDR, accurately quantifying the emissions detected from the 273 

more sensitive VIIRS sensor will remain troublesome. 274 

 275 

To assist in determining the cause of the discrepancy in detections between the VIIRS and MODIS fire 276 

products, corresponding daily numbers of anomalous pixels, as identified by the MODIS Terra product 277 

(MOD14), are also displayed in Figure 3. Although there are similar trends, given the difference in 278 

image acquisition time, little relationship exists between either of the variables derived from the Aqua 279 

and Terra products (anomalous pixels: r2 = 0.06, FRP retrievals: r2 = 0.03) or between the Terra-280 

derived anomalous pixel numbers and those from VIIRS (r2 = 0.26). MODVOLC detections for the same 281 

volcanoes and time period are fewer than those from the MODIS fire products (these data are also in 282 

Figure 3). Summed, the number of days that both the MYD14 (308) and MOD14 (386) products made 283 

detections is 694 as compared with 520 for MODVOLC (which utilises both MODIS sensors). This 284 

difference reflects an acknowledged reduced sensitivity of the MODVOLC algorithm (e.g. Vaughan and 285 

Hook, 2006; Blackett, 2013). However for one volcano, Batu Tara, the reverse was found to be true, 286 

with MODVOLC making thermal anomaly detections on 145 days, as compared with just 10 for 287 

MYD14, 16 for MOD14 and 24 for VIIRS.  288 

 289 



13 
 

290 
Figure 3. MODIS-derived FRP, and corresponding numbers of pixels identified as anomalous by the 291 

MODIS (both MYD14 and MOD14) and VIIRS fire detection products, and also the MODVOLC system. 292 

 293 

Discussion  294 

A number of comparable MYD14 and VIIRS fire product detections of volcanic activity have been 295 

highlighted however, equally, a number of occasions have been shown with little similarity. Overall, 296 

the data suggest an enhanced sensitivity of the VIIRS AFP to smaller and/or more subtle thermal 297 

anomalies, as compared with the MYD14 Product. Given that the algorithm used for both products is 298 

the same, differences in thermal anomaly detection capabilities must be, primarily, due to variations 299 

in pixel size – both physically (i.e. 1000 m compared with 750 m) and by virtue of the data processing 300 

(i.e. VIIRS pixel aggregation and sampling scheme). This suggestion is confirmed by the fact that both 301 

MODIS Fire Products (MYD14 and [MOD14]), which use the same algorithm and share the same 302 

spatial resolution, show a significant anomalous pixel under-detection (i.e. 569 [570]) as compared 303 

with the VIIRS AFP (923). Csiszar et al. (2014) showed how the observed differences between the 304 

MODIS and VIIRS fire products, in relation to counts of fire pixels, are consistent with those expected 305 

due to the differences in spatial sampling i.e. given that any terrestrial thermal anomaly will 306 

constitute a greater proportion of the footprint of a smaller pixel, the smaller VIIRS pixels would be 307 
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expected to detect more, and smaller, thermal anomalies than MODIS, when using a comparable 308 

detection algorithm. In relation to the pixel aggregation and sampling scheme that is used in the VIIRS 309 

data, it also results in smaller pixel footprints towards the scan edge, further improving spatial 310 

resolution here as compared with MODIS (Cao et al. 2013; Justice et al. 2013; Schroeder et al. 2014).  311 

 312 

To represent the influence of spatial resolution, Figure 4 shows a range of possible volcanic surface 313 

configuration simulations and, based on the infrared emissions that each would produce, the 314 

corresponding limits of unsaturated detection (both maxima and minima) for the MODIS and VIIRS 315 

sensors (detection will be possible above the maxima but saturation will mean the associated data 316 

cannot be reliably quantified). The range of volcanic scenarios that the VIIRS can detect is greater in 317 

all respects (up to its pixel size) than for MODIS. The implications of this are that: for a given 318 

temperature, the thermal anomaly must be larger to be detected by MODIS; VIIRS can detect cooler 319 

anomalies of the same size; and, for anomalies smaller than the pixel size, VIIRS will be able to 320 

quantify them up to a greater temperature before saturation (634 K as compared with 500 K for 321 

MODIS). Csiszar et al. (2014) confirms that work is on-going to customise the algorithm used in the 322 

VIIRS AFP for the specific characteristics of this sensor. An enhanced VIIRS fire detection algorithm 323 

has, in fact, already been developed which uses the sensor’s 375 m I-bands (bands I4 and I5). This 324 

new product shows improved detection performance over the 750 m product (with, for example, a 325 

25× factor increase in absolute numbers of night-time fire pixels detected) (Schroeder et al. 2014). 326 

The challenge posed by these smaller pixels however, is that saturation will be more regular 327 

(occurring at only 367 K), meaning that it will be quantitatively useful only for smaller and/or cooler 328 

thermal anomalies (Schroeder et al. 2014).  329 

 330 

The requirement of a VIIRS-specific thermal detection algorithm is confirmed when the MODIS Fire 331 

Product data are compared with MODVOLC data. For all volcanoes except Batu Tara, the MODVOLC 332 

algorithm predictably underestimated the number of anomalous pixels. For Batu Tara however, the 333 

MODVOLC algorithm identified thermal anomalies on 135, 129 and 121 more days than MYD14, 334 

MOD14 and VIIRS, respectively. Throughout this period, Batu Tara was persistently active, regularly 335 

erupting ash plumes into the atmosphere and displaying Strombolian and effusive activity (BGVN, 336 
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2014). The reason for this large difference relates to the water-masking procedure used, and how it is 337 

applied in the thermal detection algorithm of the MODIS and VIIRS products. The algorithm requires, 338 

in most cases, at least six-valid pixels neighbouring a candidate thermal anomaly; pixels masked as 339 

water are invalid (Justice et al. 2006). Given that Batu Tara forms an island (Pulau Komba) of only 4.7 340 

km2
, even when particularly radiant, the MODIS Fire Product algorithm rarely detects a thermal 341 

anomaly there as only rarely are there adequate valid pixels; those detected by VIIRS number slightly 342 

more as the smaller pixel size means a smaller area of land is required to fulfil the valid pixel 343 

requirement. The MODVOLC algorithm in contrast, does not apply this requirement, hence retrieving 344 

a larger number of detections. There is clearly therefore, room for improvement in the application of 345 

the MODIS and VIIRS fire detection algorithms. 346 

 347 

Added to the spatial resolution explanation, one other factor needs to be considered to more fully 348 

understand the differing sensitivities of the MODIS and VIIRS fire products: the view scan angle. For 349 

the VIIRS sensor, this provides for a swath width of 3040 km, as compared with 2330 km for MODIS. 350 

The significance of this difference is two-fold. Firstly, being 30% larger than the MODIS swath, it 351 

would be expected that 30% more detections would be made by the VIIRS sensor, thereby explaining 352 

a good deal of the 62% increase in VIIRS AFP detections, as compared with MYD14. Secondly, the 353 

larger swath means there are no gaps between orbits (i.e. complete global coverage twice daily), as 354 

compared with MODIS which experiences gaps in coverage around the equator (Cao et al. 2014). 355 

Given that the Indonesian islands are within 10° of the equator, such gaps will have reduced the 356 

capability of the MODIS products to view and detect all Indonesian volcanic activity and, as such, will 357 

also be partly responsible for the smaller numbers of anomalous pixels detected.  358 

 359 
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 360 
Figure 4. Here, a range of two-component volcanic surfaces are modelled: a hot volcanic component 361 

and a cooler, non-volcanic component (this simulated surface is depicted in the inset). The hot 362 

component is simulated with a range of temperatures (up to 1500 K, x-axis) and sizes (up to the pixel 363 

footprint size, y-axis). Based on the minimum thresholds as prescribed by the fixed threshold fire-364 

detection algorithms, and the maximum unsaturated detection limits of the sensors, points within the 365 

envelopes delineated relate to scenarios that, based on the corresponding thermal emissions, the 366 

respective sensors and algorithms would be capable of detecting. Above the upper limits represented 367 

by these envelopes, thermal activity will still be detected, but saturation will prevent accurate 368 

emission quantification. The temperature maxima used here relate to the maximum FRP levels of 369 

detection for VIIRS (5100 MW), as compared with MODIS (3500 MW). 370 

 371 

Conclusion and the future 372 

It has been shown that comparing the volcanic observational capabilities of two remote sensors is no 373 

simple task. The characteristics of the sensors themselves render precise comparison as impossible, 374 

and as volcanic activity is sporadic, it is easily missed if the short period of activity is not captured, or 375 

if observing conditions are sub-optimal (Csiszar et al. 2014). Equally, the sparseness of reported 376 

volcanic observations in Indonesia against which, remote observations might be compared, is 377 
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unfortunate and a function of the remoteness and inaccessibility of many of the country’s volcanoes. 378 

Fortunately, the fact that remote detections have, in some cases, confirmed recorded activity and, 379 

indeed in others, have isolated activity not recorded elsewhere, evidences the utility of remotely 380 

sensed data, either from VIIRS or MODIS, in filling in the gaps in our knowledge of volcanic behaviour 381 

globally and, given its optimal performance, the VIIRS AFP appears most capable in this task. 382 

 383 

The data presented have shown that the VIIRS AFP constitutes an improvement over the comparable 384 

MODIS product(s) in terms of its sensitivity to, and detection frequency of, volcanic thermal 385 

anomalies. This corroborates the findings of a number of other fire-observation studies and should be 386 

seen by the thermal remote sensing community as confirming VIIRS as a satisfactory follow-on to the 387 

MODIS-era dataset. We are, in fact, lucky to have an extended period of MODIS and VIIRS 388 

observations which coincide and against which such comparisons can be made, and from which the 389 

influences of the different characteristics of both can be analysed. Users need only wait until 2017 for 390 

quantitative VIIRS AFP data to be available against which more thorough comparisons may be made 391 

with MODIS. And the future does indeed look promising based on the findings presented here, with 392 

VIIRS appearing more sensitive than MODIS and, with a much higher saturation temperature, able to 393 

detect and observe a greater range of volcanic scenarios. Researchers additionally have the prospect 394 

of an increasingly rich set of new thermally-sensitive satellite sensors to look forward to, with two Sea 395 

and Land Surface Temperature Radiometers (on board the European Space Agency’s Sentinel-3 396 

satellites) also planned to be operational by 2017. As such, 2017 is likely to be a significant year for 397 

the thermal remote sensing community who should, in turn, be optimistic about what it is set to bring 398 

in terms of terrestrial thermal anomaly observation. 399 

 400 
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 499 

List of figure captions 500 

Figure 1. All Indonesian volcanoes recorded as displaying activity according to the GVP database, in 501 

the period: April 2012 – 14 July 2014. Asterisks refer to volcanoes which displayed thermal anomalies 502 

that were detected in either, or both, the MYD14 and VIIRS fire product files. 503 

 504 

Figure 2. Temporal comparison of GVP reported activity at the volcanoes detailed in Figure 1, with 505 

thermal anomalies at them, as detected by MYD14 and the VIIRS AFP, for a period of 835 days (1 April 506 

2012 – 14 July 2014). The interval between minor tick marks on the x-axis is 28 days. 507 

 508 

Figure 3. MODIS-derived FRP, and corresponding numbers of pixels identified as anomalous by the 509 

MODIS (both MYD14 and MOD14) and VIIRS fire detection products, and also the MODVOLC system. 510 

 511 

Figure 4. Here, a range of two-component volcanic surfaces are modelled: a hot volcanic component 512 

and a cooler, non-volcanic component (this simulated surface is depicted in the inset). The hot 513 

component is simulated with a range of temperatures (up to 1500 K, x-axis) and sizes (up to the pixel 514 

footprint size, y-axis). Based on the minimum thresholds as prescribed by the fixed threshold fire-515 

detection algorithms, and the maximum unsaturated detection limits of the sensors, points within the 516 

envelopes delineated relate to scenarios that, based on the corresponding thermal emissions, the 517 

respective sensors and algorithms would be capable of detecting. Above the upper limits represented 518 

by these envelopes, thermal activity will still be detected, but saturation will prevent accurate 519 

emission quantification. The temperature maxima used here relate to the maximum FRP levels of 520 

detection for VIIRS (5100 MW), as compared with MODIS (3500 MW). 521 
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