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Abstract  

Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic 

components. It is applicable to most metal alloys used for aerospace applications. The method is relatively 

expensive in application, and therefore development studies often rely heavily on Finite Element Modelling 

to simulate the entire process, with a high computational cost. A different approach has been used recently, 

the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain 

method for prediction of the residual stress in a sample that contains curved surface features. The 

eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to 

predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a 

curved edge, and for different values of material thickness, have been studied. The research has 

demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when 

both the thickness and the geometry of the peened surface is altered. 

 

 

 

1 Introduction 

 
Laser Shock Peening (LSP) is a relatively new surface treatment technique which has been shown to 

improve fatigue life in several metal alloys including titanium alloy [1], steel [2] and several aluminium 
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alloys for aerospace applications like AA2024 [3] and AA7050 [4,5].  In LSP a pulsed high-energy laser 

beam is fired onto a sample surface that is covered by a transparent layer (usually water): an opaque 

ablative layer (such as thin aluminium tape, or paint) is also often applied. When the beam hits the sample 

surface, the opaque layer turns into vapour, and the laser energy increases both its temperature and 

pressure and generates a plasma. The plasma is confined between the water layer and the sample surface, 

generating shock waves that propagate into the sample. As the shock waves propagate into the material, a 

value of stress greater than the Hugoniot Elastic Limit value (HEL or Shock Yield Strength) is reached and 

the material deforms plastically at the surface. This permanent deformation generates surface compressive 

residual stresses [6] which greatly improve the fatigue life of a component as well as its corrosion 

behaviour [7]. 

One of the keys to understand and quantify the effects of LSP on fatigue life is a clear knowledge of the 

residual stress state. The Finite Element (FE) simulation technique is widely recognised as an effective tool 

to gain an understanding of the induced residual stress state and of the LSP process itself. It was first 

applied to the problem by Braisted and Brockman in 1999 [8] and, in the past decade, several researchers 

have simulated the laser-generated shock waves propagating into different metal materials through this 

method [9]. Although some of these simulations produce a close match with experimentally measured 

residual stresses, the process complexity and the high number of variables involved mean that each new 

application requires starting the modelling process from scratch. In particular, to simulate correctly the 

shock waves, it is critical to model the plasma pressure accurately, in terms of its magnitude as a function 

of time, in a way that correctly represents the physics of the process, for a given LSP treatment. 

Furthermore, in the FE method, the high-strain-rate deformations of the material under a shock impact are 

simulated with constitutive models that describe the material behaviour [10]. However, they may be hard 

to calibrate and involve a large number of parameters that are required to be determined from material 

tests. Additional difficulties in modelling the LSP process by the use of the FE approach could be 

encountered when dealing with complex geometries, owing to the high computational cost required for 

such simulations. 

1.1 The Eigenstrain Approach 

The eigenstrain approach to predict residual stresses has aroused considerable interest in recent years. 

This is due to the fact that it is possible to reconstruct the complete residual stress field of a component, 

starting with a set of residual stress measurements on a baseline sample, with reasonable computational 

time.  

The term eigenstrain was suggested for the first time by Mura [11] and indicates any permanent or non-

elastic strain generated inside a component after a non-elastic process. In the literature it is possible to find 

several terms indicating eigenstrain like inelastic strain [12], inherent strain [13] and equivalent 

transformation strain [14].  The eigenstrain term can incorporate creep strain, phase transformation strain, 

thermal strain and so on. These different non-elastic strain components cannot be separated and this 
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property is actually an advantage when we apply eigenstrain into an FE model. Although the eigenstrain 

approach is mathematically complicated and it is feasible only for simple geometry samples, with limited 

engineering application, as has been shown in [15,16], recently some interesting results from the 

application of eigenstrain prediction have been presented for applications such as friction stir welding 

[17], shot peening [18], and LSP [19]. All these results were completely or partially based on the model 

proposed by Korsunsky called Eigenstrain Reconstruction Method (ERM) and a complete analysis of the 

method can be found in [20]. With the ERM is possible to know the whole residual stress field within a 

body when only a bunch of measurements of them are available. It is usually divided into three steps: the 

measurement of the residual stress field in a certain area of the sample; the calculation of the eigenstrain 

values and the application of the eigenstrain to the same sample in order to know its entire residual stress 

field. The latter procedure is called Simple Triangle (SIMTRI) method. Although the method showed its 

versatility in different fields, the calculation of the eigenstrain is strictly dependent on the researcher’s 

experience in making the correct choice of the polynomial fit used to predict the eigenstrain distribution 

and/or, as in the case of Achintha et al., high confidence is required in the ability of the FE modelling of the 

LSP simulation to obtain a correct set of eigenstrain values. Whilst we agree that the derivation of 

eigenstrain from experimental residual stress data is indeed indirect, it is nonetheless more physically 

accurate than that extracted from an FE model that may not accurately reproduce either the residual stress 

or the plastic strain field that led to it. A further different approach was published by DeWald et al. [21]. 

The method was applied to four samples of four different basic geometries and it is not based on the 

eigenstrain derived from the FE modelling of LSP but the eigenstrain are calculated from an RS field 

previously measured on a real sample. 

Our goal in this paper is to apply the eigenstrain approach proposed by DeWald & Hill to an entire sample 

where different geometries are present at the same time in order to verify the independency of the 

eigenstrain from both the thickness and the geometry as was previously verified by Korsunsky with a 

different approach.  

The eigenstrain approach proposed by DeWald & Hill consists of three different steps: first, a stress-free 

simple geometry sample (Fig. 1a) is laser peened over the entire surface. The residual stress measured as a 

function of position along the y direction (σTOT) can be seen as the superposition of two different 

components: the laser-peening-induced residual stress field (σLP); and the balancing elastic stress field 

generated by the material to balance the externally-induced component, formally called the equilibrium 

residual stress (σEQ). The total residual stress field is the summation of these two components. The first 

term, σLP, depends only on the LSP parameters [22] and is geometry-independent [11]; while the latter is 

dependent on the geometry of the peened component. This can be expressed as in Eq.  1: 

 

𝜎𝑇𝑇𝑇𝑧𝑧(𝑦) = 𝜎𝐿𝐿𝑧𝑧(𝑦) + 𝜎𝐸𝐸𝑧𝑧(𝑦) 

Eq.  1. Superposition of laser-peen-induced (LP) and equilibrating (EQ) stresses 
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a) 

 

 
b) 

Fig. 1 a) a simple geometry sample, peened on the top surface; b) separation of the stress components 

Since the residual stress profile through the entire thickness is needed, the components of the stress must 

typically be measured either with the contour method or with neutron diffraction [23]. The equilibrium 

stress can be identified beyond the LSP-affected depth as an elastic balancing field as can be seen in Fig. 1 

b). Achintha [19] measured the plasticity depth in an aluminium sample after LSP treatment using the full-

width-half-maximum (FWHM) technique, confirming the higher dislocation density within the LSP-affected 

depth. By extrapolating the equilibrium stress component first and then by rearranging Eq.  1, it is possible 

to calculate the LSP stress component. 

As reported in [21], since eigenstrains can be considered as an elastic strain distribution that produces 

the post-process residual stress field, we can easily calculate them from σLP using the following linear 

system: 
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Eq.  2. Linear equations to calculate the eigenstrain values 

 
We obtain three eigenstrain components for each depth location (according to the coordinate system in 

Fig. 1 a). By introducing the eigenstrain into the FE model of the sample and by solving for equilibrium, the 

model will generate a residual stress field. The process of introducing the eigenstrain inside the FE model 

imposes that every eigenstrain is introduced in the new FE model at exactly the same distance from the 

surface it was taken from. This is because the plasticity distribution must be the same in the two models: 

the one that the eigenstrains were calculated from and the new model used to predict the residual stress 

profile.  The process is described more in detail in section 2.2.2 and was named by Korsunsky as the 

Principle of Transferability of Eigenstrain [18]. 

 

2 Materials 

2.1 Sample 

The sample studied is a stepped coupon made of aluminium alloy AA7050-T7451, milled from a rolled 

plate by EADS Innovation Works for fatigue testing with a Young’s modulus of 72 GPa and a Poisson’s ratio 

of 0.33. The material composition is listed in Table 1. 

 

Element Al Cu Mg Zn Zr 
Weight % 89.0 2.3 2.3 6.2 0.12 

 

Table 1 AA7050-T7451 composition 

The sample is shown in Fig. 2. A complete description of all the samples involved in the broader research 

programme can be found in [5]. Two samples with the same geometry were laser shock peened by Metal 

Improvement Company (MIC), Earby, UK, with the same laser parameters but different patterns: the first 

one was laser peened over the upper face including the blend curved area and the lateral side as shown 

in Fig. 2, while the second sample was not peened on the lateral side; Fig. 3 shows the laser pattern used for 

this second sample. The following laser parameters were chosen to keep the distortions as low as possible: 

the power density was 4GW/cm2; the duration of each shot was 18ns; and three successive layers of 

treatment were done with a 33% geometrical shift from each other. This level of coverage was expected to 

produce a homogeneous distribution of residual stress at the surface of the sample: low levels of coverage 

have previously been shown to introduce oscillatory stress fields [3]. The laser used a square spot size of 4 

× 4 mm2. The LSP process generated a maximum deflection of 0.2 mm as measured by [24] and was not 

taken into account 



6 
 

during the simulation with the eigenstrain approach.  

 

 
Fig. 2 The stepped coupon sample, with the axis system used and the area subject of this research. The red areas and the laser 

peened areas. 

 

The sample provided three different areas for study: the central planar area from where the eigenstrains 

were derived; the curved edges at the extremes in the y-direction, where the effect of geometry change 

could be studied; and the curved blend between the two ends of the sample along the x-direction where the 

effect of thickness change could be studied. 

Since the sample was to be subjected to neutron diffraction measurements, a microstructure analysis was 

carried out. As it is possible to see in Fig. 4, the coupon is textured in the z-direction which corresponds to 

the rolling direction of the original plate. Furthermore, a duplex grain structure is present. Grain size 

ranges from 2-3 µm up to 200 µm. 

 

Flat side
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Curved edge
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Fig. 3. Laser peening pattern: each square indicates the location of the laser shot. 

 
Fig. 4. Microstructure of the material measured at the curved edge. It is possible to see how the grains are elongated along the 

rolling direction. 

 

3 Finite Element Analysis 

3.1 Geometry 
The sample was modelled with ABAQUS software [25]. Some changes were made from the real sample 

geometry to facilitate both the construction of the model and the application of the eigenstrains: while the 

forward part of the real sample is slightly divergent to assure a thinner section where the step is present, 

this divergence was not taken into account in the FE model since it would have complicated the modelling 

of the sample without bringing any benefit. Also, the material beyond the step was truncated since this 

material is present for clamping reasons only. The final model has 234,208 mesh elements.  

z 

y 

x 
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3.2 Eigenstrain Application 
Common methods to apply eigenstrains in an FE model are either to create several layers of materials 

which have the same elastic properties – same elastic modulus and same Poisson’s ratio – but different 

thermal expansion coefficients; or to impose to each single node of the model the initial thermal strains: in 

the present study, the former option was chosen. As said before, eigenstrain can be seen as a mixture of 

inelastic strains of different origin, with no possibility to separate them into their single components. For 

this reason, modelling eigenstrain as thermal strains even if they are not actually of thermal origin will give 

the same result. 

Based on the process to calculate the eigenstrain described in §1.1, the residual stress profile was 

measured in the middle section of the sample through the contour method. This method measures only one 

component of stress (σyy according to Fig. 6) but assuming that the LSP process generates a biaxial 

distribution of stress when applied over an area, the σxx component is considered to be the same as σyy, 

and σzz is considered to be 0 near the surface to meet plane stress criteria. Full details of the application of 

the contour method for this sample can be found in [24]. Once the entire profile of residual stress was 

obtained, it was smoothed in order to remove artefacts and noise in the data, as advised in [21]. The final 

smoothed residual stress profile was used as input in Eq.  2 to calculate the eigenstrain values. The 

smoothing process is concluded by polynomial fitting of the data to give the σLP profile as a function of the 

y coordinate. Data were extracted in 0.5 mm steps, thus, according to Eq. 2, every 0.5 mm we obtained 

three values of eigenstrain, one in each direction of the co-ordinate system.  

The subsequent step regards the design of the FE model. Once the external geometry is set, as many 

sections as y positions have to be created in the same position where the eigenstrains are to replicate the 

plasticity behaviour of the LSP treatment. Each section has to be as thick as the step of the measurements. 

Once the different sections are created, the material of each section has to be assigned. Each material has to 

have two different properties: elastic and thermal. The elastic property is given by the Young’s modulus 

(72 GPa) and the Poisson’s ratio (0.33). The thermal properties are inserted in the model through the 

thermal expansion coefficients. The values of these coefficients are the eigenstrains calculated previously. 

It is worth noting that, since the thermal coefficient are not isotropic, a coordinate system has to be set for 

each area of interest. In particular as shown in Fig. 5, the material coordinate system at the round edge is 

inclined of 45° since the LSP treatment was done with the same inclination.  

Fig. 5 shows the front section of the stepped coupon as was modelled for the FE analysis. This particular 

mesh was optimized for three different areas: the two rounded edges and the centreline of the sample. In 

these three areas, the different sections with different eigenstrains are 0.5 mm thick. Finally the sample 

was subjected a difference of 1˚ in temperature and solved for equilibrium. 
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Fig. 1 FE model of the front section of laser shock peened sample. The area where eigenstrains were applied is clearly visible with 

different colours. 

 

The different materials generate strains owing to the increment of temperature and, since the model is 

purely elastic, stress arises in the sample. The lack of clamping avoids any further generation of stress. 

 
Fig. 2 The four arrows indicate the areas where comparisons between measured and eigenstrain-modelled data were made. From 

the top surface two different comparisons were made: in the plane area and the blended curve. On the lateral side two 
comparisons were made: one perpendicular to the lateral area and one at the curved edge (see Fig. 2 for clarification of the 

nomenclature). 

4 Residual stress measurement methods 

Three residual stress measurement techniques were applied. One sample was subjected to the contour 

method (1) to determine the Syy stress component in the central area, Fig. 6. Then, since the contour 

method is a destructive method, a second sample was used to characterize the residual stress distribution 

in the curved area and at the round edge. In the first case, the neutron diffraction technique (2) was used 

while in the second both the contour method and incremental hole-drilling (3) were used to validate the 

data. 

 

  S,Syy 
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4.1 Contour Method 
The contour method is a destructive residual stress measurement method introduced for the first time by 

Prime [26] in 2000 that is based on Bueckner’s principle [27]. The process involves cutting the sample in 

the area of interest; subsequently, the relaxed surface profile is measured with a co-ordinate measuring 

machine (CMM) on both the surfaces of the cut. It has the advantage of providing a complete map of 

residual stress on the cut surface, but only one stress component can be obtained, which is the component 

normal to the cut surface. The data collected are first subjected to correction to remove any artefact coming 

from the cutting process, and are then smoothed. After averaging the data from both surfaces, they are 

imposed as negative displacements to an FE model. Assuming elastic relaxation of the surfaces, the 

displacements generate the residual stress distribution that was present before the cutting.  

 

Diffraction techniques are non-destructive residual stress measurement methods which allow 

determination of a complete residual stress profile within certain limits. Diffraction techniques are based 

on Bragg’s law, which states that particles are diffracted by the crystal lattice at an angle proportional to 

the relative distance between two atomic planes. By knowing this distance before any treatment (the so-

called d0 distance owing to the fact that the sample is assumed to be stress-free) and afterwards, it is 

possible to calculate the strains inside the sample and thence calculate the stresses. 

4.2 Neutron Diffraction 
The neutron diffraction technique [28,29] is mostly used when a deep penetration into the sample is 

needed since neutrons interact relatively weakly with matter which allows for a high penetration depth. 

The neutron beam is typically confined by apertures and/or collimators on the incident and diffracted 

beams to define the measurement gauge volume. When the gauge volume is immersed only partially in the 

sample, the disparity between the geometric centre of the gauge volume and the centre-of-gravity of the 

diffracting material generates fictitious strains formally called pseudo-strains. Several techniques can be 

used to prevent this error [30]. The one used during this study consisted of first measuring the residual 

stress values close to the surface with a partially-immersed gauge volume and then measuring the stress-

free lattice parameter far from the stressed region with exactly the same partially-immersed gauge volume. 

During calculation of the strains, this value was used to calculate the effective strains close to the surface. 

The measurements were performed at the Paul Scherrer Institute, Switzerland, which includes a 

spallation neutron source. The beamline used was POLDI (Pulse-OverLap DIffractometer), a time-of-flight 

thermal neutron diffractometer, dedicated to materials science applications [31,32]. During the 

measurements a gauge volume with a section of 2 × 2 mm2 was used; the length of the gauge volume was 

set to 7 mm in the σyy direction (referring to the coordinate system in Fig. 5) both to decrease the amount 

of time per measurement and to include as many diffracting grains as possible to improve statistics.  

 

4.3 Synchrotron X-ray diffraction 
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Synchrotron X-ray diffraction can provide fast measurements, even though the measurement depth is 

lower than neutron diffraction owing to the fact that X-rays have relatively low penetrability into metallic 

materials [33]. The gauge volume used with synchrotron X-rays is usually diamond-shaped with a small 

central width and a length that can be up to two orders of magnitude larger, depending on the diffraction 

angle. Pseudo-strains can again be detrimental for the measurements and this problem can be solved in the 

same way as for the neutron diffraction technique. Synchrotron X-ray diffraction was used in this 

experiment to measure the residual stress distribution from the lateral side of the sample, along the y 

direction according to the coordinate system in Fig. 2.  

 

4.3.1 PETRA III 
 
The first experiment was carried out at PETRA III in Hamburg (Germany), which is a monochromatic high-

brilliance X-ray facility. The principal of Slit Imaging was used which consists of the determination of the 

strains based on the shift of the measured diffracted peak relative to the peak position of an unstressed 

sample [34]. At the beamline P07 [35] used for strain measurements a conical slit setup was available. The 

use of conical slits was first described in [36]: it consists of a plate with a series of concentric conical 

apertures that allows monitoring simultaneously a series of complete diffraction rings emanating from the 

same gauge volume. For every measurement, two components of strain are obtained. The potential of the 

conical slits to measure residual stress in laser shock peened samples was already demonstrated in [37]. 

For this experiment the energy was set to 74.5 keV in order to obtain a wavelength of 0.116 nm; with this 

set-up the strongest reflecting plane was {311}. The incoming beam had a cross-section of 50 × 50 µm2, and 

the gauge volume length was approximately 1.2 mm.  

The post-processing of the data was made through the FIT2D software provided by A. Hammersley at the 

European Synchrotron Radiation Facility. Since only one reflection plane was used to calculate the stress 

from the measured strains, a plane-specific Young’s modulus should be used. However, Lorentzen reported 

in [38] that for the {311} reflection the Young’s Modulus based on Kroner modelling scheme is equal to 

70.2 GPa instead of 72 GPa measured with a tensile test. Since the difference is essentially around 2%, it 

can be considered negligible and a value of 72 GPa was kept for these calculations as well. 

 

4.3.2 Diamond Light Source  
 

A second experiment was carried out at the Diamond Light source (DLS), UK, using the beamline I12: 

Joint Engineering, Environmental, and Processing (JEEP) [39], a polychromatic X-Ray beamline. The 

experiment carried out at DLS aimed to measure the residual stresses at the curved edge. The gauge 

volume was diamond-shaped with a cross section of 50 × 50 µm2, while the length was fixed at 2 mm. With 

this set-up, the closest measurement point to the surface was taken at 200 µm depth and measurements 

were taken up to 5 mm total depth. A “horseshoe” 23-element solid state detector is used at JEEP that 

allows simultaneous collection of strain measurements from 23 scattering vectors. The post-processing of 
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the data was carried out with DAWN software [40]. During the post-processing, only the {311} plane 

reflection was taken into consideration and the peak-fitting was made with a Gaussian curve. 

4.4 Incremental hole-drilling 
The conventional incremental hole-drilling method uses strain gauges to measure the strains that result 

from the redistribution of stresses around the drilled hole. In the system employed in this work, an 

Electronic Speckle Pattern Interferometer (ESPI) [41] replaces the strain gauges. This allows a fast, non-

contact and easy measurement, avoiding the procedure of strain gauge application. In the case of a dull 

surface, no specific preparation of the sample is required for this technique. As it can be seen in Fig. 2, the 

sample surface was shiny. In order to avoid any reflection of the laser beam, the surface was first sprayed 

with an opaque paint and then was covered by paper tape leaving a small area where the measurements 

were performed. 

The ESPI hole-drilling measurements were conducted at Helmholtz-Zentrum-Geesthacht, using a 

Stresstech PRISM system as shown in Fig. 7. 

c  

Fig. 3 Incremental hole drilling measurements 

 

5 Results 

5.1 Residual Stress in the Plane Area 

An initial comparison was made between the measured residual stress in the central planar area and the 

residual stresses derived from the eigenstrain FE model. This gives verification that the eigenstrains were 

implemented correctly inside the ABAQUS environment, as they should reconstruct the measured residual 

stress.  The measurements were taken from the planar area through the thickness, with the σyy component 

of stress obtained from the contour method. The residual stresses from the contour method at the planar 

area were compared with different techniques to increase the confidence, as shown in [42].It is possible to 

see, in Fig. 8, that the peak compressive and tensile stresses match extremely well, within an error of ±5  
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MPa that is within any technique sensitivity. The two curves should overlap perfectly in principle, since 

the eigenstrains were derived from the residual stress profile measured in the same position. However, 

there is smoothing applied to the data which accounts for the small differences observed between the two 

profiles. This first check confirmed the correct derivation of the eigenstrains and their application within 

the FE model.  

 

 
Fig. 1. Comparison between the Contour method results and the Eigenstrain approach results for the σyy residual stresses 

component. 

 

5.2 Residual stresses at the Curved Edges 
 

The derived eigenstrains were used to calculate the stresses normal to the curved edges of the sample. 

Fig. 9 shows the results of the eigenstrain calculation using the eigenstrains derived from the planar region 

of the sample, compared to the measured results from the contour method. There is a good agreement, 

within ±20MPa, from a depth of 1.5 mm from the surface. However, there is a significant discrepancy 

within the first 1.5 mm from the surface where the gap is up to 82 MPa: the compressive residual stress 

peak calculated with the contour method is at the surface and has a value of –154 MPa; the value predicted 

at the same position with the eigenstrain simulation is –236 MPa. A further residual stress measurement 

was carried out with the surface X-ray technique. The measured value at the surface of the round edge is –

208±10 MPa. 
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Fig. 2. Comparison between the Contour method results and the Eigenstrain approach results for the σyy residual stress 

component. 

In order to have a further measurement set of data, the incremental hole-drilling technique was used for its 

higher reliability close to the surface. In Fig. 10 all these data are presented.  

 
Fig. 3. Comparison between the Contour method results, the Eigenstrain approach results and the hole-drilling results for the σyy 

residual stress component. 

 

Fig. 10 shows that the measurements taken at the round edge by incremental hole-drilling lay between the 

eigenstrain prediction and the contour method measurements between 0.1 mm and 0.7 mm depth, while 

between 0 and 0.1 mm the data were more compressive than either method. In particular, the measured 

value at the surface of the round edge is –275 MPa and the stresses reach a value of –210 MPa within the 

first 0.1 mm from the surface in depth. Between 0.1 and 0.7 mm from the surface in depth the values lie 

between –210 and –175 MPa.  

 

Finally, a residual stress measurement on the same region was carried out at Diamond Light Source. The 

measurements were still made at the corner radius, from outside the sample up to 5 mm from the surface 

within the sample.  
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Fig. 4. Comparison between residual stress measurements along the direction indicated in the picture. The stress components is 

the σyy. 

 

Fig. 11 shows the comparison between the eigenstrain prediction and the measured residual stresses in 

the σyy component along the direction indicated in the picture, with all the three techniques used. The 

agreement between the eigenstrain prediction and the synchrotron X-ray data is very good for the entire 

set of data from 0.2 mm from the surface up to 5 mm within the sample.  

5.3 Curved blend area 

An experiment was carried out with neutron diffraction using the POLDI (Pulse-OverLap DIffractometer)  

instrument at PSI, Switzerland [32]. The residual stress in the blend area between the ends of the sample 

was measured to investigate the applicability of the eigenstrain approach when the thickness is changed.  

Measurements were taken from the centre of the blend, normal to the sample surface. Fig. 12 b), c) and d) 

show the results for the three stress components according to the coordinate system shown in Fig. 12 a): 
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c) 

 

d) 

 
Fig. 1. a) Direction of the measurements and coordinate system; b) σxx stress component; c) σyy stress component; d) σzz stress 

component; 

 

5.4 Lateral Side 
The residual stress measurements from the surface of the lateral side (according to Fig. 2) along the y 

direction were made at the PETRA III synchrotron source, using the beamline P07 for strain measurement. 

A conical slit arrangement was used to reach a depth of 7 mm into the thickness. In Fig. 13 the comparison 

between the eigenstrain approach and the three measured stress components is shown: 
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Fig. 1 comparisons between the eigenstrain distribution and the calculated stresses measured along the arrow showed in a) for the 
σxx component of stress b), σyy component of stress c) and σzz component of stress d). 

6 Discussion 

In this study the most challenging part was to accurately calculate the residual stress close to the surface of 

the round edge with a radius of 5 mm. The contour method was used first and it is well known that the 

technique is not reliable very close to a surface as a consequence of near-surface cutting artefacts and 

limitations in the data fitting [43]. Since it was impossible to establish a priori if either the contour method 

or eigenstrain approach were respectively underestimating or overestimating the residual stress values, 

the incremental hole-drilling technique was used for its higher reliability close to the surface. Two 

measurements were obtained at the curved edge to increase the reliability of the collected data, and we 

believe that this is the first time that incremental hole-drilling has been used to determine residual stress 

from a curved surface after LSP. The two residual stress profiles obtained were averaged. Generally 

speaking, the residual stress profile of laser shock peened component tends to vary smoothly very close to 

the surface and have the peak compressive stress below the surface owing to the reverse yielding effect. 

The ESPI hole-drilling technique suggests a residual stress profile that tends to be steeper close to the 

surface, which looks unrealistic. This apparent trend may be due to the fact that during the drilling the 

material very close to the surface was not removed homogeneously, so the data may not be completely 

reliable: and also some further limitations should to be taken into account with this technique such as the 

effects of surface roughness, drilling angle and determination of the surface location. Also, the system used 

performs simple drilling of the hole, and it is known that orbital milling produces more accurate results 

[44].  

The analysis method of the deformed area around the hole using the ESPI technique requires certain 

assumptions. One of the assumptions is that the surface of the sample is flat before drilling the hole, out to 

at least about 5 diameters from the centre of the hole [45]. The ESPI measurement technique interprets the 

deformation as if the surface were flat. The present measurements did not account for the curved surface. 

This could be a further explanation to the steeper trend of the curve near the surface. In consequence, the 

results from the hole-drilling are not reliable near the surface, but can be taken to be acceptable after 0.1 

mm depth; and since these data are closer to the eigenstrain approach than to the contour method (with a 

gap of 10 MPa only), this may indicate that the peak magnitude of near-surface compression was not 

adequately captured by the original contour method measurements from the central planar area. The 

difference may alternatively be a consequence of a change in material response to the peening at the 

curved edge. The laser spot was 4 × 4 mm2 which is of the same order as the radius of the curved edge.  

This may have led to a different generation of shock waves and their interaction within the sample, and 

consequently a different distribution of residual stresses. Both surface and synchrotron X-rays were used 

in order to improve the knowledge of the residual stress distribution close to the surface and within the 

thickness. The surface X-ray measured data is very close to the eigenstrain-based prediction even though it 
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is worth noting that the surface X-ray with a Cr-α tube measures at the depth of 17 µm from the surface in 

aluminium alloys [46]. Synchrotron X-ray data show a good match with the prediction data for the entire 

profile from 0.2 mm for the surface up to 5 mm from the surface in depth. Since the diamond-shaped gauge 

volume was very narrow and elongated, where large grains were present inside the sample, data scatter is 

more evident. This is particularly noticeable around 1.5 mm from the surface and 3.7 mm from the surface. 

Regarding the blended curved area, Fig. 12 shows that the agreement between the eigenstrain prediction 

and the data from POLDI are within the measurements’ error band for most of the points in directions σyy 

and σzz. For the σxx component there are some differences between the neutron measurements and the 

data from the eigenstrain prediction at around 2-5 mm depth.  Close to the surface some pseudo-strains 

corrections were made as described previously in this paper, and the corrected results match the 

eigenstrain predictions within the error band. Owing to the large dimension of the gauge volume, more 

grains contributed to the diffraction process and the scattering was dramatically reduced. 

Fig. 13 shows the residual stresses predicted with the eigenstrain approach where the sample thickness 

is much larger than the thickness form where the eigenstrains were derived. The predicted trend lies 

within the error bands of most of the measured data. A further data point was measured at the surface of 

the curved edge with surface X-Ray diffraction. Only σyy and σzz components were measured since the σxx 

can be considered zero by invoking plane stress. The surface XRD data also show good agreement with the 

eigenstrain approach, increasing confidence in its reliability. 

The data from within the first 0.5 mm from the surface were removed because they were affected by 

pseudo-strains and no corrections could be made. The unstressed lattice parameter was measured for the 

σyy and σzz component only, owing to time constraints. The d0 value for the σzz components was calculated 

based on the fact that the σzz components must be 0 at the surface. Furthermore, it is possible to see that at 

4.5 mm depth there is some scattering in the measured residual stresses. This could derive from the 

presence of a large grain or grains which occupied a large portion of the gauge volume. 

 

7 Conclusions 

 
In this study the application of the eigenstrain theory was investigated on a laser-shock-peened aluminium 

alloy sample containing changes in geometry. Laser peening was applied to a flat, planar surface, and to 

curved surfaces with both convex and concave radii, and the possibility to predict the residual stress 

profiles generated by the LSP surface technique by the eigenstrain method was validated by a combination 

of the contour method, neutron diffraction, synchrotron X-ray diffraction and incremental hole-drilling. 

Eigenstrains for the plasticity induced by the laser peening were calculated from the planar section of the 

sample. The following conclusions can be highlighted: 

 

1. As expected, introducing the eigenstrains into an FE model accurately re-created the original 

residual stress field. 
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2. Where the thickness of the sample increased, on the concave surface with low curvature radius 

compared to the laser peen spot size, the eigenstrain approach accurately predicts the trend of the 

residual stress profile in the three components of the stress, demonstrating that the eigenstrain are 

thickness-independent within the range of thickness studied. 

 

3. Where the geometry changed significantly relative to the planar section, on the convex curved 

edges of the sample, the eigenstrain theory shows discrepancies relative to the experimental 

measurements. Some of the discrepancies may arise from limitations of both the raw contour data 

used to calculate the eigenstrain field, as the contour method has various sources of inaccuracy 

when determining near-surface residual stress; and the ESPI technique within the first 0.1 mm 

from the surface in depth due to the non-uniform drilling process at the surface. This highlights a 

limitation of the method in cases where there is low confidence in the baseline experimental data. 

 
4. Owing to its higher spatial resolution, the synchrotron X-ray technique showed a trend closer to the 

eigenstrain prediction up to 0.2 mm from the surface in depth. This might due to the higher 

reliability of this technique close to the surface compared with the one obtainable with the contour 

method and ESPI. 

 
We summarise that the eigenstrain theory is a conceptually-simple and time-efficient approach for the 

prediction of residual stress. However, attention has to be paid in the derivation of the eigenstrains, and 

caution taken if the geometry of the sample changes significantly from that from which the eigenstrains are 

derived. DeWald’s approach has demonstrated its versatility even when the eigenstrains are used to 

predict the residual stress field in sections of increased thickness or non-flat geometries such as convex 

and concave radii. 
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