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Overheating investigation in the UK social 

housing flats built into the Passivhaus standard 
 

 

Global environmental and energy concerns have led to a rapid growth in mandating 

the construction of more energy efficient dwellings in the UK. This is particularly true 

for the social housing sector which is partly founded by the government and it is 

expected to lead the way in this respect.  

 

To address this issue energy efficiency standards such as Passivhaus are increasingly 

adopted by both private and social housing sectors in the UK. However, data 

describing actual thermal performance of dwellings built to such standards, 

particularly in dense social housing flats, are scarce.   

This study considers the overheating risk in social housing flats built to the 

Passivhaus standard in the UK during the cooling season. It considers 25 flats over 

three cooling seasons in Coventry, UK.  

Overheating assessment based on Passivhaus criteria, using a fixed benchmark, 

suggests there is a significant risk of summer overheating with more than two-thirds 

of flats exceeding the benchmark. While the level of overheating in different flats 

varies considerably, detailed analysis indicates that this is more related to occupant 

behaviour than construction. An alternative approach to evaluating overheating risk is 

the adaptive thermal comfort model, which takes into account occupant vulnerability 

and actual outdoor temperature. Use of the adaptive benchmark suggests this 

overheating risk is lower for normal occupants; but higher for vulnerable occupants. 

These results not only have implications for the evaluation of overheating risk but also 

for the way in which social housing landlords place tenants of differing 

vulnerabilities.  

 

 

Key words: Passivhaus, Social housing, Overheating, Adaptive thermal comfort 
 

 

 

Corresponding author: Seyed Tabatabaei Sameni 

Email: ab2739@coventry.ac.uk 

 

 

 

 

 

 

 

 

 

mailto:ab2739@coventry.ac.uk
http://ees.elsevier.com/bae/viewRCResults.aspx?pdf=1&docID=13469&rev=1&fileID=409799&msid={B41812A4-EABE-41C7-9176-59F955E62DF3}


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

 

 

 

 

 

1. Introduction  

This paper investigates the risk of overheating in social housing flats built to the 

Passivhaus standard in the UK. Fixed and adaptive thermal comfort benchmarks are 

used to assess the overheating risks.  

The UK Government‟s climate change mitigation strategy [1], which introduced zero 

carbon targets for new homes, has generated significant interest in how this can be 

achieved [2, 3, 4]. In response to such interest and the recast European Energy 

Performance in Buildings Directive (EPBD) [5], revised „zero carbon‟ dwelling 

standards will be mandated in the UK by 2016 [3, 6]. This legislation, and the 

voluntary use of energy efficiency standards such as Passivhaus, BREAAM and 

LEEDs etc., have resulted in significant changes in the design and construction of new 

dwellings [7].  

In response to new regulations and the UK‟s move towards zero carbon homes, 

housing developers are under an obligation to build more energy efficient homes. This 

situation applies in particular to social housing developers who, as a sector partly 

funded by housing corporations, are expected to lead the way [8].  

The Passivhaus standard was developed in Germany in 1990 as a way of reducing 

energy consumption and providing ultra-low energy and zero carbon dwellings [7]. 

Central to this approach is the reduction of space heating demand through minimising 

thermal transmission losses and optimising passive solar gain [4, 9]. In recent years 

the Passivhaus approach has gained popularity in the UK but, while considerable 

research has been undertaken regarding its effectiveness in reducing heating loads, 

less attention has been paid to its annual and whole-life performance characteristics 

[7]. 

 

The internal temperature of houses in the summer is of increasing concern, even in the 

mild summers experienced in the UK. High indoor temperatures can be life 

threatening [10].The heat-wave of 2003 is estimated to have caused an additional 

2,091 deaths amongst vulnerable groups in the UK [11] with as many as 70,000 other 

deaths between June and September across Europe [12].  

 

Whilst the summer of 2003 was very unusual, climate change projections indicate 

that, by the 2050s, similar extreme weather events will take place every two or three 

years and by the 2080s such temperatures would be considered unusually cool [13]. 

Indeed, the Zero Carbon Hub (ZCH) [6] highlighted the risk of overheating and 

cautioned that “There is some anxiety that homes we are building today may be at risk 

of overheating even in the current climate. Given the prospect of significant warming, 

well within the expected lifetime of homes this risk will increase with potentially 

serious consequences”. 
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While much attention has been focused on ways to mitigate the causes of climate 

change, mainly by minimising the use of fossil fuels to generate the energy used in 

buildings, there is wide recognition that climate change is already happening. 

Consequently, there is a need to examine how the built environment can adapt to 

change and ensure that all buildings are capable of dealing with greater climate 

extremes [14].     

Any evaluation of the risk of overheating needs to reflect the occupants‟ perceptions 

of thermal comfort, particularly those vulnerable groups which are often tenants in 

social housing.  There are two approaches to evaluate the risk of overheating which 

can be characterised as the fixed and the adaptive approaches. The fixed approach 

considers a benchmark for evaluating overheating, while the adaptive approach 

suggests that a fixed maximum temperature is not appropriate and that the benchmark 

should reflect the outdoor climate at the time and the likely vulnerability of different 

groups to changing comfort conditions [15, 16].  

This paper investigates the risk of overheating for social housing constructed using 

Passivhaus principles during the cooling season; the implications of adopting different 

approaches to evaluate internal comfort conditions and the likely impact on tenants 

with different vulnerabilities. 

 

2. Background study  
 

2.1 Social housing 

 

Social housing provides secure and decent homes for those who cannot afford open 

market prices in the UK. 

The development of social housing in the UK started in the late 19
th

 Century and 

reached its peak by the mid-20
th 

Century. Social housing is one of the most important 

sectors in the UK, with 3.8 million households representing 17% of all UK homes 

[17]. This stock belongs to local authorities and housing associations [18]. In 2012, 

53% (around 2.1 million) of social tenants rented their homes from a housing 

association and the rest (around 1.9 million) from local authorities [17].  

 

Social housing also has the highest rate of overcrowding in the UK, at 7%, compared 

to an overall rate of 3% [17].With the increase in the UK population, social housing 

providers are under pressure to build more houses [8]. The UK housing sector is also 

under pressure to move towards zero carbon houses to comply with UK regulations. 

This applies in particular to the social housing sector, since it benefits from public 

funds [8]. For example, the government‟s Standard Assessment Procedure (SAP) is 

used in the UK to assess the energy and environmental performance of UK dwellings. 

The average SAP rating of UK homes increased from 45 to 57 (12 points) between 

1996 and 2011, while in the same period the rating in the social housing sector rose by 

14 points, from 49 to 63. In 2011-2012, the social housing sector also had the biggest 
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proportion of dwellings earning A to C scores, the highest on the UK‟s Energy 

Efficiency Ratings (EER) scheme [17].         

But in 2012, the social housing sector had the highest unemployment rate, around 

10%, amongst occupants and almost two-thirds of social tenants were in receipt of 

Housing Benefit (HB) to help to pay their rent, approximately 40% more than private 

tenants [17]. The ability of social tenants to pay their rent both now and in the future 

is essential for the long-term business of registered social landlords (RSLs).  

It has been estimated that in 2011 11% of UK households suffered from fuel poverty 

(when a household spends more than 10% of its total income on energy) [19]. 

Average energy bills have also seen a sharp rise (24%) between August 2009 and 

August 2013, while the average household income increased by only 3% in this 

period [20]. Unless energy demand reduction techniques are integrated into social 

housing sector to improve the energy efficiency, there is further risk of more 

households going into fuel poverty. This risk is particularly relevant for social housing 

tenants, given that their average gross annual income is noticeably lower than that of 

private renters and owner occupiers; £17,600 for social renters in comparison to 

£30,100 and £40,500 for private renters and owner occupiers respectively [21].  

Since tenants in the social rented sector also have a higher age profile – 45% aged 55 

or over and 29% aged 65 or over [21] – it is important to consider the relative degrees 

of vulnerability of different tenants.            

Given the specific sensitivities of the social housing sector outlined above, it is vital 

for social housing providers to adopt a standard of supplying energy efficient, 

comfortable and affordable dwellings now and in future climatic conditions, during 

both cooling and heating seasons.  

 

2.2 Passivhaus  

The Passivhaus standard was developed in Germany in the late 1980s; it sets very 

high requirements for energy efficiency in building design and construction. The 

Passivhaus Institute of Darmstadt, Germany, promotes and controls the standard and 

defines the associated quality assurance process [22]. The main aim of Passivhaus is 

to minimise the requirements for space heating and cooling. It also largely focuses on 

avoiding and reducing thermal transmission losses and increasing and optimising the 

benefits from passive solar gain [9].  Furthermore Passivhaus aims to provide 

effective indoor air quality and increase thermal comfort. By definition, a Passivhaus 

home focuses on passive design features such as insulation, airtightness and solar 

orientation. However, it also allows certain active elements to be included – notably 

mechanical ventilation with heat recovery (MVHR). The fundamental principle of the 

Passivhaus standard is for a home to maintain its internal temperature and air quality 

simply by adding a small amount of heat to the air being circulated by the ventilation 

system, thereby eliminating the need for a traditional wet central heating system [9, 

22]. 

Since the late 1980s, some 37,000 Passivhaus buildings have been constructed 

worldwide [23]. It is often referred to as a “comfort standard” as well as an energy 

standard, and the popularity of Passivhaus in Germany – including a 92% positivity 
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rating by occupants – has been largely due to a combination of social, political and 

financial circumstances which are specific to this nation [22]. 

The adoption of the German Passivhaus standard in the UK as a template for 

providing low energy or zero carbon dwellings has increased significantly in recent 

years. Around 250 Passivhaus certified buildings were completed by 2013 and up to 

1000 units are completed, on site, or in the planning phase [24]. According to the UK 

Passivhaus projects map [25], these projects are spread all over the UK and include 

some new social housing projects. Wimbish and Sampson Close Passivhaus schemes 

are two examples of new social housing developments built to this standard [26].  

Touhy et al. [27] investigated and monitored three dwellings, including the first 

Scottish Passivhaus, a Low Energy House (without MVHR), and a 1950s dwelling 

located in Dunoon, Scotland. Their results show that Passivhaus is a successful 

example of providing thermal comfort with a small amount of energy during the 

heating season. Bearing in mind that low income families and also vulnerable groups 

are the main occupants of social housing, the Passivhaus standard is likely to be able 

provide an affordable and comfortable building for them during the heating season.  

In addition to providing affordable comfort during the heating season it is also 

essential that dwellings constructed to the Passivhaus standards are able to deliver 

affordable comfort during the cooling season, given the particular vulnerability of 

many tenants.  

 

2.3 Summer overheating risk in social housing dwellings built to Passivhaus 

standard 

Questions regarding the performance in summer and the risk of overheating for some 

Passivhaus buildings located in different European climatic zones have been raised in 

a number of studies [28, 29, 30, 31, 32]. In the UK, research studies focusing on 

summer temperatures and thermal comfort during the cooling season are fewer and 

more limited than those concerned with performance in the heating season [10].  

 

Athough in recent years there has been an increase in the construction of Passivhaus 

in the UK, the first Passivhaus certified buildings were completed only in 2010 [33]. 

Consequently, post occupancy data for these dwellings are limited and minimal [7].        

A comprehensive review by Dengel and Swainson [22] of the evidence of overheating 

in new UK homes indicates that there is a growing body of evidence that new energy 

efficient homes (i.e. well insulated, airtight dwellings) do suffer from overheating, and 

can in some cases result in adverse health effects for the occupants.  

 

The important provisions which can help to avoid or reduce overheating [34] are a 

proper layout which can minimise unnecessary solar gain, an adequate thermal mass, 

a good level of ventilation and reduced internal gains. In order to identify the risk of 

overheating in dwellings built to the Passivhaus standard, the potential impact of such 

factors should be considered.   
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Roaf et al. [35] argued that limited attention is paid to traditional means of reducing 

overheating, such as the inclusion of thermal mass and openable windows for natural 

ventilation in buildings constructed with the Passivhaus standard.       

Urban areas and dense social housing, flats in particular, limit the opportunities for 

ventilating through windows [7].  In addition, in response to the arguments of the 

Royal Society for the Prevention of Accidents (RoSPA) [36], the windows of new 

build social housing in the UK can open to an angle of only 10 degrees. This can limit 

opportunities for natural ventilation, notably in highly airtight dwellings.   

The social housing sector not only has a higher proportion of dense, purpose-built 

flats, with more than two thirds of social renters having less than 70 m
2 

usable floor 

space [17] it also experiences high rates of overcrowding [21]. Therefore, the impact 

of internal gains is likely to be higher than in other kinds of housing [7]. 

These risks are exacerbated when the implications of uncertain future climate 

conditions are considered [36]. 

 

 

2.4 Thermal comfort and overheating benchmarks 

According to Nicol and Fionn [14], various factors should be considered in relation to 

comfort, however, thermal comfort and climate adaptation studies currently coincide 

in one key area: overheating. 

The Chartered Institution of Building Services Engineers (CIBSE) [38] also states that 

it is vital to know the limits beyond which a building will overheat.  

To evaluate the risk of overheating in a building, the Passivhaus standard uses a fixed 

threshold temperature which remains the same irrespective of the external conditions 

and occupants‟ vulnerabilities. The standard states that that it is not acceptable for 

living areas to exceed an operative temperature of 25
0
C for more than 10% of the total 

occupied hours.     

According to CIBSE TM52 [38], the current advice on overheating in CIBSE Guide 

A is very limited. Therefore, the CIBSE Overheating Task Force have taken the 

adaptive approach and decided that it is no longer suitable to have a fixed indoor 

temperature regardless of the outdoor conditions and a new approach should be 

considered for evaluating overheating, in particular for free running buildings. 

The adaptive approach implies that as a benchmark, a fixed maximum temperature is 

not appropriate for all climates and that, in order to achieve thermal comfort, the 

target indoor temperature should reflect the outdoor temperature at the time [15].  

 

Adaptive thermal comfort standards provide comfort envelopes which change with 

the external temperature. Nicol et al. [15] suggest that occupant discomfort is related 

to ⧍T, the difference between the actual operative temperature (Top) in the room and 

the comfort temperature (Tc) in a free-running building (⧍T = Top - Tc).  

Based on European Standard EN 15251 [39], the comfort temperature (Tc) in summer 

is calculated from Equation 1:  
Tc = 0.33Trm +18.8 (Equation 1) 
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where Trm is the running mean of the outdoor temperature which is calculated from 

Equation 2. 
Trm = (Tod -1 + 0.8 Tod -2 + 0.6 Tod -3 + 0.5 Tod -4 + 0.4 Tod -5 + 0.3 Tod -6 + 0.2 Tod -7)/3.8 (Equation 2) 

where Tod -1 is the daily mean external temperature for the previous day 

     Tod -2 is the daily mean external temperature for the day before and so on.  

 

BS EN 15251 [39] defines that the risk of building overheating relates to the comfort 

temperature as well as the type of building and occupants. Building Category I is 

considered to include buildings where the occupants are particularly sensitive and 

fragile (vulnerable group), whereas Building Category II is considered for normal 

expectations in new or renovated buildings. Equations 3 and 4 show the maximum 

allowable temperature (i.e. thermal comfort) in Building Categories I and II 

respectively.  

 
(Category I)    Tmax = 0.33Trm + 21.8  (Equation 3)         

(Category II) Tmax = 0.33Trm + 20.8   (Equation 4)          

 

Following the new way of evaluating comfort temperature according to the adaptive 

approach, in CIBSE TM 52, Nicol [38] suggests a new guideline to evaluate the 

overheating occurrences for European buildings. According to this guideline the 

following three criteria should be assessed. A room is overheated if any two of the 

three following criteria fail:  

 

- Criterion 1: Hours of exceedance (He) 

The first criterion sets a limit for the number of hours that the operative temperature 

can exceed the threshold comfort temperature (this refers to the upper limit of the 

range of comfort temperatures) by 1K or more during the occupied hours of a typical 

non-heating season. 

The number of hours (He) during which T is greater than or equal to 1K during the 

cooling season (May to September) should not be more than 3% of the total occupied 

hours. 

According to CIBSE TM 52 [38], if data are not available for all of the cooling season 

(or if occupancy or monitoring applies only to part of the period) then 3% of the 

available hours should be used as a limit.    

- Criterion 2: Daily weighted exceedance (We) 

The second criterion deals with the severity of overheating within any one day, which 

can be as important as its frequency. The severity of overheating that occurs in one 

day is a function of the sudden temperature rise and its duration. This criterion sets a 

daily limit of overheating which it states is acceptable during a single day.   

The daily limit set for weighted exceedance (We) shall be less than or equal to 6 in 

any one day to allow for the severity of the overheating. The equation used to 

calculate weighted exceedance (We) is as follows:   

We = (he) × WF = (he0 × 0) + (he1 × 1) + (he2 × 2) + (he3 × 3)   (Equation 5) 
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where:  

he is the number of hours. 

The weighting factor WF = 0 if T 0, otherwise WF = T, and hey is the time (in 

hours). 

- Criterion 3: Upper limit temperature (Tupp) 

An absolute maximum daily temperature for a room is set by the third criterion. 

Temperatures which exceed the absolute maximum temperature are deemed 

unacceptable.  

The absolute maximum value for an indoor operative temperature is set as follows: 

the value of T should not exceed 4K. 

In this standard the absolute maximum temperate is one in which adaptive actions are 

inadequate and cannot restore occupant comfort. Therefore, at no time during 

monitoring period should T exceed 4K. 

According to European Standard BS EN 15251 [39], in order for an adaptive method 

to apply, the living quarters should be equipped with operable windows which open 

outdoors, can be readily opened and adjusted by the occupants of the spaces and there 

should be no mechanical cooling in operation anywhere else apart from the living 

quarters. In the summer, mechanical ventilation with unconditioned air may be used, 

but opening and closing windows shall be of primary importance as a means of 

regulating thermal conditions in the living quarters. In addition to opening and closing 

the windows, there may be other low-energy methods that can help control the indoor 

environment, such as fans, shutters, night ventilation, etc.  

The adaptive thermal comfort model as defined by European Standard BS EN15251 

[39], was applied in this study to help analyse the occupants‟ thermal comfort. The 

reason for using this model is that the bypass mode of the MVHR system used in 

Passivhaus during the summer provides unconditioned ventilation and also gives 

occupants access to windows which open. 

 

3. Methodology 

3.1 Case study  

This study investigates overheating risk in social housing flats built to the Passivhaus 

standard. The case study development is located in the Sampson Close Coventry, 

West Midlands, UK. This development comprises 23 social housing units built to 

Passivhaus Standards. The development has 18 flats and 5 houses constructed by 

Orbit Heart of England Housing Association (OHE) (Figure 1).   
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Figure 1: Sampson Close development by Orbit, reference will be added  

 

3.2 Indoor temperature and occupancy pattern:  

Orbit Housing undertook a systematic monitoring programme of Samson Close where 

5 indoor environmental parameters (i.e. indoor temperature, humidity, CO2 etc.) were 

monitored in 23 dwellings. The analysis in this paper is based on an evaluation of 

flats‟ indoor air temperature. Given the thermally lightweight nature of Passivhaus 

dwellings, air temperature is likely to be reasonable proxy for operative temperature. 

Flats included in this analysis were selected based on the availability and quality of 

monitored data.  Table 1 shows the number of flats selected and monitoring period for 

each year between 2011 to 2013.  

 

In this paper the analysis focusses on the overheating in the living rooms of these 

flats. The selection of living rooms for analysis is due to the daytime use of the space 

and the higher likelihood of overheating during the day when both temperature and 

solar radiation are at their peak. Living rooms also have the highest potential for 

internal gains during the day and the largest south facing aperture.       

 
Table 1: Summary of the monitoring information 

Monitoring 

period 

Year Period of  

monitoring 

Number of 

monitored days 

Number of 

monitored flats 

A 2011 17 Aug – 30 Sep 45 11 

B 2012 3 Jul – 5 Aug 34 9 

C 2013 1 May – 30 Aug  122 5  

 

The occupants of all selected flats were surveyed by OHE about their occupancy 

pattern. The responses from the occupants reveal the majority of the flats are occupied 
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all day. Therefore, for the purpose of this study, due to the high likelihood of living 

rooms being occupied during the day and considering the occupancy pattern of livings 

rooms used in similar studies [10, 40], an occupancy pattern of 8.00-23.00 was used 

to evaluate overheating risk in the selected living rooms. Hence, based on the assumed 

occupied hours and the number of monitoring days (Table 1), the total numbers of 

occupied hours monitored for each flat were 657, 510 and 1830 in 2011, 2012 and 

2013 respectively.  

 

3.3 Outdoor temperature and solar irradiation:  

Outdoor temperatures and solar irradiation information were taken from the local 

weather station (Coventry Coundon weather station) [41]. 

Figure 2 shows the average mean and maximum outdoor temperatures during the 

selected monitoring periods since 2002 [42]. It indicates that the outdoor average 

mean temperature during monitoring periods in the summers of 2011 and 2013 was 

slightly higher (by 4% and 3% respectively) than the historic temperature of the same 

period. Whilst 2012 had a slightly lower average mean temperature (a 2% decline). 

These results indicate that the temperatures experienced during the three monitoring 

periods are in line with those that might typically be expected in this location.   

 

 
Figure 2: Coventry’s average mean and max outdoor temperatures since 2002 in the selected monitoring 

periods  

Further to this historical comparison of outdoor temperature, the environmental 

factors that affect indoor temperature and overheating (outdoor temperature and solar 

irradiation) for the three monitoring periods are compared and presented in Figure 3.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 

 

 
 

Figure 3: Comparison of the monitoring periods (Outside temperature and Solar irradiation) 

 

As it can be predicted based on the number of monitored days, monitoring period C 

has the biggest range of outside temperature and solar irradiation. Comparing three 

monitoring periods, monitoring period B and A have the smallest range of outside 

temperature and solar irradiation respectively and B has the maximum average outside 

temperature and solar irradiation.   
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4. The results 

 

Recorded temperatures during occupied hours in all living rooms are summarised for 

the all monitoring periods in Figure 4. This shows the range of temperature variations 

is significant. However judgment about the actual overheating requires in-depth 

analysis using the selected overheating benchmarks outlined above and which are 

used for data evaluation in the following sections.  

 

 
1
 Asterisks and circles in box plot graphs show the out range data  

Figure 4: Recorded temperatures during occupied hours in all living rooms during all monitoring periods 

 

4.1 Overheating evaluations based on the Passivhaus benchmark  

Passivhaus overheating criteria were used to analyse the data in order to assess the 

risk of overheating and the thermal comfort in the flats.  

As noted above, the criterion states that it is not acceptable for temperature in the 

living area to exceed 25°C for more than 10% of the total annual occupied hours.   

One limitation of the study from which the data were generated is that it was 

conducted on a limited number of days during three cooling seasons; therefore, it 

cannot show the actual risk of overheating based on the Passivhaus benchmark.  

In order to calculate any rise in the annual elevated temperature above 25°C and 

indicate whether flats based on the Passivhaus criteria do indeed overheat, two 

percentages of overheating were calculated. To begin with, the annual overheating 

percentage was calculated, based on the actual number of hours with elevated 

temperature during the monitoring period. Second, assuming occupant behaviour to 

be consistent throughout the year, the likely number of occupied hours that each flat 

would have had a temperature higher than 25°C in the rest of the cooling season was 

calculated based on the actual cooling degree hours recorded during the monitored 

                                                 
1
 Asterisk (*) represents extreme outliers where a data point is more extreme than Q1-2× Step or Q3+2×Step. 

     Where    Q1= first quartile, Q3= third quartile, IQR (Interquartile range) = Q3-Q1   and Step=1.5× IQR     
     Circle (O) represents mild outliers where a data point is more extreme than Q1-Step or Q3+Step, but are not extreme outliers. 
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and unmonitored periods of each cooling season. These anticipated hours were then 

used to calculate the annual overheating percentage in the unmonitored period of the 

cooling season. The sum of these two percentages was then used for comparison with 

the Passivhaus overheating limit.  

Figure 5 represents the result which illustrates the significant risk of overheating in 

these flats, based on Passivhaus criteria.  

 

 
Figure 5: Overheating evaluation for all available living rooms and in all monitoring periods, based on 

Passivhaus Criteria 

 

4.2 Overheating evaluations based on the adaptive benchmark 

In order to assess the occurrence and severity of overheating, the adaptive comfort 

threshold temperature for each category was calculated, based on the daily outdoor 

temperature. The daily values of Trm were calculated from the daily mean outdoor 

temperature (Equation 2) and then Tmax for Categories I and II were calculated using 

Equations 3 and 4.  

Figure 6 shows the daily mean outdoor temperature (Tout) and the values of Tmax for 

building Categories I and II during all monitoring periods.  

 
Figure 6: Daily mean outdoor temperature (Tout) and maximum adaptive thermal comfort temperature 

(Tmax) for building Categories I and II during all monitoring periods 
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Although the Passivhaus thermal comfort threshold (fixed) and the adaptive thermal 

comfort benchmark are not directly comparable due to the difference in their 

overheating evaluation criteria, Figure 6 clearly shows that the adaptive thermal 

comfort thresholds are significantly related to the outside temperature and vary 

according to it. 

 

In order to evaluate overheating in the monitored living rooms, all three criteria were 

investigated separately and then the results were combined to determine the 

occurrence of overheating in each living room. In addition to Category II (this is the 

suggested category for new houses and for normal expectations), an analysis was also 

made of Category I buildings to examine the suitability of these flats for vulnerable 

occupants.  

 

4.2.1 Criterion 1:  

As outlined above, Criterion 1 investigates the frequency of overheating in living 

spaces. The analysis of results based on this criterion is presented in Figure 7. In 

2011, 3 living rooms failed Criterion 1 based on both building categories and 1 living 

room based on only Category I. In 2012, 5 living rooms out of the 9 did not meet the 

requirements of this criterion in both categories. In 2013, all living rooms failed 

Criterion 1 based on building Category I and three of them failed based on building 

Category II as well. 

  

 
Figure 7: % hours of exceedance from Categories I and II threshold comfort temperature during the 

monitored occupied hours in all monitoring periods 

4.2.2 Criterion 2 

Criterion 2 considers the severity of overheating within any one day. During each day 

of monitoring, the weighted exceedance (We) was calculated for all monitored living 

rooms. Figure 8 reveals the total number of days that We was greater than 6 for each 

living room, on the basis of Categories I and II during all monitoring periods. The 

results indicate that nearly all the living rooms that failed Criterion 1 had at least one 
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day (amounting to more considerable number of  days in some cases) where We was 

higher than 6 and did not meet the requirement of Criterion 2.      

 

 
Figure 8: Number of days where the weighted exceedance was more than 6 from Categories I and II 

threshold comfort temperatures during all monitoring periods 

 

4.2.3 Criterion 3 

Criterion 3 establishes a maximum value for an indoor temperature. During all the 

monitoring periods, the T values were calculated for all living rooms. The results 

show that in nearly all living rooms, T was less than 4 K, only for three days in 

2013, two rooms failed this criterion based on building Category I.  

 

4.2.4 Summary of the results 

Table 2 summarises the data analysis based on all three criteria for 2011, 2012 and 

2013. According to CIBSE TM 52 [38], the room is classed as overheated when at 

least two of the three criteria have failed. 

 
Table 2: Summary of the results for both adaptive and fixed benchmarks 
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5. Discussion 

5.1 Indoor temperature variation  

The recorded indoor temperatures of all the flats are shown in Figure 4.  In order to  

compare the indoor temperatures experienced in different living rooms, the 

Passivhaus discomfort temperature threshold is used (without any endorsement or 

judgment about the suitability of this threshold) to calculate and evaluate the elevated 

temperatures and their frequencies from this baseline. The percentage of hours in 

which the temperature exceeded 25
o
C is shown in Figure 9 for the monitored living 

rooms for all monitoring periods.  

 

 
Figure 9: Percentage of occupied hours with measured temperatures over 25°C in all living rooms during all 

monitoring periods 

The results reveal significant variations in the elevated temperature in different living 

rooms. The percentages vary from approximately 94% to 3% in 2011, from 99% to 

5% in 2012 and from 94% to 33% in 2013.  

 

As discussed, different factors (outdoor temperature, solar gain, ventilation, thermal 

mass and internal gains) have significant effects on the indoor temperature range and 

overheating of a room.   

In general, the results suggest that in the monitoring period of 2013 monitored living 

rooms experienced more elevated temperatures, since the average percentage of hours 

above 25
0
C was 68% in 2013, 54% in 2012 and 42% in 2011. The daily averages of 

percentage hours with temperatures over 25
 o

C in all flats for all monitoring periods 

are represented in Figure 10.  
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Figure 10: Daily comparison of average daily percentage hours with temperature over 25 °C in all flats 

during three monitoring periods 

A comparison of external environmental factors and average daily percentage hours 

with temperature above 25
o
C in all flats (Figures 3 and 10), suggests no direct 

relationship between such factors and the overheating experienced in different flats. 

However, in order to understand the significance of the factors that did cause the 

variation, an in-depth analysis has been carried out. To assess the significance of the 

effective factors on temperature variations and overheating experienced, separate 

linear regression analyses were carried out for each flat.  

 

Hourly outside temperature and solar irradiation were identified as the environmental 

factors that affect indoor temperature and were considered as the two input factors in 

each regression analysis.  

It should be noted that solar gain on each vertical surface is affected by solar 

irradiance (direct and diffuse data) on the related orientation [43]. Many 

meteorological stations in the world measure global irradiance on a horizontal surface; 

however, only limited number of them measure the solar component on vertical 

surfaces [44]. Available solar data for this study (obtained from UK Metoffice) is also 

global radiation on horizontal surface. Some methods to predict vertical global solar 

irradiation based on the horizontal value have been suggested by different researchers; 

however, most of them are complicated and their applications are debatable [43, 45, 

46]. Therefore, as this study is concerned with the relative effect of solar irradiance, 

data for horizontal surfaces are used and are considered simply as being representative 

of the potential solar irradiation on vertical surfaces.    

 

 Occupant behavior, thermal mass, orientation and size of window aperture are the 

other factors that affect indoor temperature [34]. Occupant behavior in this study is 

defined as: 

 Amount of natural ventilation and mechanical ventilation through MVHR 

bypass mode, 

 Actual amount of solar gain affected by shading devices used by occupants,  

 Actual internal gain.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 

 

Since the regression analysis was carried out separately for each flat, factors such as 

thermal mass, orientation and aperture which remained constant during the monitoring 

period will not affect the proposed regression model. Hence, the regression model in 

each flat can directly show the relative significance of the two input factors 

(environmental conditions) and also indirectly the significance of missing input factor 

(occupant behavior) (Table 3).  

 
Table 3: Results from the regression analysis in each living room  

 
 

 

Table 3 shows the impact of environmental factors (R
2
) and also the significance of 

occupant behavior (100- R
2
).    

 

Although the result shows a range of R
2
 values in different flats from 5% to 62.8%, in 

a majority of cases, the R
2
 is less than 50% and in terms of the average of all 

monitoring periods, this value is 32.1%. This indicates that in most cases, less than 

50% of the indoor temperature variations are explained by environmental factors 

(parameter in model) which means the impact of occupants behavior as defined 

(missing factors in the model) on indoor temperature variations is greater.  

 

The results from this investigation therefore show that occupant behavior has a 

significant impact on temperature variation and overheating. Also, comparison of the 

results in three monitoring periods (Table 3 and Figure 10) shows that where the 

average daily percentage hours with elevated temperature is lower, the average impact  

of occupants behavior on temperature variation is higher, which suggests that 

occupants have a considerable role in controlling overheating. Consequently, it is 

likely that occupant behavior can increase the risk of overheating even in cases where 

the environmental factors are not very severe, it also suggests that even in cases when 
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the environmental factors are severe, effective occupant behavior can have a 

significant impact on reducing overheating risks in these flats.   Therefore, it is 

essential for the occupants to know how to run their homes and control overheating in 

thermally efficient buildings such as Passivhaus. This highlights the importance of 

educating occupants about ways they can reduce the risk of overheating. 

 

 

 

5.2 Overheating assessment 

5.2.1 Passivhaus benchmark 

The results from the overheating evaluation show that in 2011, and for only 45 

monitored days, two flats reached the overheating limits of the Passivhaus standard 

(10% of annual occupied hours) and two flats overheated more than 5% of occupied 

hours over the whole-year. In general, taking account of the anticipated overheating 

hours for the rest of the cooling season, 8 out of 11 monitored flats overheated on the 

basis of the Passivhaus benchmark, which represents more than 72% of the case 

studies.    

In 2012, during the 34 days of monitoring, overheating in three flats was more than 

8% of the annual occupied hours and about 6% in two flats. After considering the 

anticipated overheating hours for the rest of the cooling season, 5 out of the 9 

monitored flats overheated according to the Passivhaus benchmark, which represents 

more than 55% of all the case studies.   

 

In 2013, flats were monitored during most of the cooling season and all of them 

exceeded the annual Passivhaus overheating limit. Some of the flats experienced 

overheating based on Passivhaus standard during most of the occupied hours 

monitored.   

The average annual percentage of elevated temperatures in all monitored flats was 

16.6%, 12.6% and 22.9% in 2011, 2012 and 2013 respectively and 72% of these flats 

(18 out of a total of 25 flats in 3 monitoring years) failed to meet their design criteria 

in terms of overheating. Therefore, according to the Passivhaus criteria, most of these 

flats face significant risks of overheating.    

   

5.2.2 Adaptive benchmark 

As discussed in section 2.4, there is a consensus that the statistical benchmarks which 

define overheating, such as the Passivhaus benchmark, are increasingly restrictive. In 

contrast, adaptive thermal comfort benchmarks can provide better understanding and 

prediction of overheating. However, the results from this study indicate that the 

criteria for defining overheating based on adaptive thermal comfort benchmark as 

defined in CIBSE TM52 [38] can help identify overheated spaces in different 

categories, but they are relatively weak and limited in terms of determining the 

frequency, intensity and severity of overheating between categories I and II.  

The results from this study indicate that nearly all the living rooms that overheated 

based on Category I evaluation were also deemed highly likely to overheat when 
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evaluated based on Category II. However, on the basis of a detailed analysis of 

Criteria 1 and 2, it should be noted that the intensity and severity of overheating based 

on Category I were significantly higher than those based on Category II. In order to 

explore this in more detail and assess the significance of overheating in each category, 

a statistical analysis was conducted for both categories as summarised in Table 3. In 

this analysis, the daily average percentage hours exceedance from Tmax (Criterion 1) 

and also the daily average weighted exceedance (We) (Criterion 2) for both categories, 

across all flats, are compared for all monitoring periods. This analysis indicates that 

on average, occurrence of overheating in terms of Category I is approximately 8.31, 

14.01 and 26.27 percent higher than this occurrence in terms of Category II in the 

monitoring periods of A, B, and C and in each of these cases there are lower and 

upper limits based on 95% confidence interval as shown in Table 4. The statistical 

analysis shows that the results of each criteria based on each category are significantly 

different (Sig <0.05). Similarly, on average the daily average weighed exceedance 

was about 1.7, 2.81 and 5.85 percent higher in Category I than the occurrence based 

on Category II in the monitoring periods A, B, and C. Hence, both the frequency 

(comparison of Criterion 1) and the severity (comparison of Criterion 2) of 

overheating in terms of Category I are significantly higher than Category II.   

 
Table 4: statistical analysis of Criteria 1and 2 in the two monitoring periods 

 
 

Apart from this general comparison, and in order to demonstrate these differences in 

all overheated living rooms, the same statistical analysis was undertaken for each 

overheated individual living room separately. A summary of the results can be found 

in Tables 5 and 6.  
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Table 5: Statistical analysis of Criterion 1 for all overheated living rooms 

 
 

Table 6: Statistical analysis of Criterion 2 for all overheated living rooms 

 
 

 

These separate analyses also reinforce the results from general analysis of the average 

values. The statistical analysis shows that the results of each criteria based on each 

category for all overheated living rooms are significantly different (Sig <0.05). The 

range of the difference for daily percentage hours is from approximately 5 to 45 

percentage (mean values) and this range for daily exceedance is about 1 to nearly 11 

degree hours (mean values) in different flats.  
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5.2.3 Suggestions for revising Criterion 2 and comparison of the benchmarks 

It is noted above that Criterion 2 used in the adaptive benchmark sets a daily limit for 

the severity of overheating (weighted exceedance). As discussed in section 2.4, to 

meet the criterion, this daily limit, which is expressed as weighted exceedance (We), 

must be less than or equal to 6 in any given day. The number 6 is based on the 

assumption that similar occupancy patterns exist in all the spaces being investigated 

for overheating. In fact, this number in CIBSE TM52 [38] is considered with the 

assumption of having a room with 8 hours of occupancy. Obviously, in a room with 

higher hours of occupancy, this number can increase and a higher We can be 

acceptable. In order to investigate the effect of a higher acceptable We in overheating 

evaluation, Criterion 2 was tested over the We of 11 degree hours. The number 11 is 

based on adjusting We proportionally in line with the difference between the actual 

occupied hours of 15 and the standard, assumed, occupied hours of 8.   

All the living rooms that failed against Criterion 2 were tested again using the new 

weighted exceedance of 11. The results of the initial and revised investigation of 

Criterion II are presented in Table 7. The results of the new overheating evaluation for 

all living rooms are also presented in this table. 

The results show that according to this modified limit, in the monitoring period A, one 

flat based on Category I and one based on Category II are not classified as overheated. 

The difference in monitoring period B is more considerable: four flats based on 

Category II are no longer classified as overheating. It can be seen that in in 

monitoring period C one flat based on Category I is not classified as overheating 

according to the modified criterion.  This clearly shows the importance of selecting an 

accurate weighted exceedance limit for the assessment of overheating. This study 

suggests that this number should be in accordance with the actual occupied hours 

rather than a fixed number.  

In all monitoring periods, 18 out of out of 25 living rooms, were classified as 

overheated based on the Passivhaus benchmark. Interestingly, most of these living 

rooms are classified as overheated when assessed according to the adaptive 

benchmark of Category I. However, when assessed according to Category II criteria, 

significantly fewer of these spaces are identified as overheated. 

 

Therefore, although considerable numbers of these flats failed against the Passivhaus 

criteria of overheating, when the adaptive thermal comfort model is applied, this risk 

is quite different and is based on occupant type. The results from this study show that 

the risk of overheating for vulnerable occupants (Category I) is considerable, while 

this risk is not as significant for occupants with normal expectations (Category II). 

As previously explained in detail in section 2.1, the social housing sector has the most 

vulnerable occupants (both in terms of affordability and age profile) in the UK. 

Hence, the results from this study show a significant risk of overheating in Passivhaus 

social housing flats built in the UK under current climate condition.  

 

In order to have a clear picture of the summer performance of social housing flats 

built to the Passivhaus standard, not only the current performance but also the future 
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performance of these dwellings in an uncertain future climate should be investigated 

and assessed. Also, determining the flats with higher risk of overheating (related to 

orientation and position of the flat within a block, etc) will help social housing 

developers to house their tenants appropriately and prioritize accommodation of 

vulnerable occupants in dwellings less susceptible to overheating. This strategy can 

avoid or reduce the risk of overheating occurrences based on type of occupant.              

 

Therefore, determining the flats with higher risk of overheating and assessing the 

summer performance of these dwellings under future climate condition are the future 

focuses of this study. 
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Table 7: Summary of all overheating assessment  
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6. Conclusion  
Considering global environmental and energy concerns and the UK movement 

towards more energy efficient homes, the housing industry and social housing 

developers in particular are under pressure to deliver energy efficient dwellings. In the 

social housing sector which has a high percentage of vulnerable occupants, the 

increase in the cost of new housing delivery as a result of new regulations and the 

increasing demand for new dwellings due to population increase, will make it more 

challenging for this sector to meet this new regulations.    

 

New standards, design and construction methods are undeniably needed to comply 

with new regulations. One of these is the German Passivhaus standard. Evidence 

suggests that new energy efficient dwellings are at risk of overheating in the UK and 

the north of Europe. Considering the limited monitored data for the actual 

performance of Passivhaus dwellings in the UK, the ability of this standard to provide 

suitable thermal comfort conditions during cooling seasons is one of the main 

concerns. This risk is exacerbated in dense social housing flats built to Passivhaus 

standard.  

 

In order to evaluate overheating in Passivhaus, it is essential to have a clear 

appreciation of the occupants‟ thermal comfort requirements and apply an appropriate 

benchmark to assess the risk of overheating.  

The results of the analysis of in-use data for flats built to Passivhaus in the UK  

highlight a considerable risk of overheating based on the Passivhaus benchmark, 

where 72 percent of all monitored flats failed their designed criteria.       

The result of a regression analysis indicates that user behavior is the most significant 

factor in increasing or decreasing the risk of overheating. This emphasizes the 

importance of occupant‟s awareness of the implication of their actions in the thermal 

performance of their homes and also developing targeted education packages. 

Statistical benchmarks to define overheating such as the Passivhaus benchmark have 

been criticized with greater emphasis now being placed on the adaptive thermal 

comfort model. An initial assessment of the results of the overheating analysis using 

the adaptive thermal comfort model does not show significant difference from the 

Passivhaus benchmark in the number of overheated rooms, when the associated 

threshold for vulnerable and normal occupants was applied. However detailed 

analyses of all criteria and the statistical analysis of the differences show significant 

differences in terms of both the occurrence and severity of uncomfortable indoor 

temperatures experienced for these two types of occupant.       

Modifying the intensity of daily uncomfortable indoor temperatures, known as 

weighed exceedance (We),  the actual occupied hours results in a considerable 

difference in the number of overheated rooms based on occupant type, showing about  

50% of the livings rooms overheated for vulnerable occupants while about 25% 

overheated for normal occupants. The use of the new assessment reveals significant 

differences between the risk of overheating for vulnerable and normal occupants.  
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Occupants‟ vulnerabilities in social housing dwellings due to both financial capacity 

and age of occupants demonstrate the significance of this risk.  

This study highlights the risk of overheating in social housing flats built to Passivhaus 

standards under current climatic conditions. Identifying flats with higher risk of 

overheating both now and under uncertain future climate will also help the social 

housing developers to house their tenants appropriately and reduce or avoid the risk of   

overheating based on the occupant type.  
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 Overheating risk is more related to occupant behavior in Passivhaus (PH) flats   

 There is a significant risk of summer overheating based on PH benchmark  

 Adaptive model is better in representing the overheating risk in PH flats 

 Based on above model risk of overheating is higher for vulnerable occupants  

 

 

 




