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Electronic structure calculations employing screened hybrid density functional theory are 

used to gain fundamental insight into the interaction of carbon interstitial (Ci) and 

substitutional (Cs) atoms forming the CiCs defect known as G-center in silicon (Si). The 

G-center is one of the most important radiation related defects in Czochralski grown Si. 

We systematically investigate the density of states and formation energy for different 

types of CiCs defects with respect to the Fermi energy for all possible charge states. 

Prevalence of the neutral state for the C-type defect is established.  
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I Introduction  

Silicon (Si) is an important material for numerous devices (e.g. microelectronic 

and photovoltaic) though its electronic properties and defect processes are significantly 

affected by the presence of impurities,
1-6

 where carbon (C) is a common impurity in the 

mono-crystalline Si lattice and is incorporated inadvertently during the Czochralski 

growth process.
7,8

 C is isovalent with Si and occupies electrically neutral substitutional 

sites (Cs). Its presence is evidenced in the IR spectra by a localized vibrational mode 

(LVM) at 607 cm
-1

. It is established
9,10

 that most of the Si self-interstitials (SiI) are 

readily trapped by Cs defect, which are shifted off lattice sites so that C interstitials (Ci) 

form. Importantly, radiation defects such as CiCs pairs introduce
11,12

 electronic levels in 

the Si band gap, affecting the efficiency of corresponding devices. In general, the 

performance of Si as optical emitter is limited by its indirect band gap, where 

introduction of optically active C-related G-centers is a promising approach to improve 

the efficiency because the sharp luminescence peak at 1.28 μm matches the important 

optical communications wavelength of 1.30 μm. It has been demonstrated that G-centers 

can contribute to optically pumped lasing.
13,14

 The emission of G-center results from the 

existence of bistable configurations of the CiCs defect, the formation of which is assisted 

by mobile SiI defect. Various approaches have been put forward to introduce G-centers, 

such as high concentration C doping
14

, nano-patterning of the Si surface
7
, and C 

implantation followed by proton irradiation.
15

 Song et al.
16

 has reported two 

configurations of the CiCs defect according to their structural, electronic, and optical 

properties obtained by a variety of experiments. Interestingly, a third configuration of the 

CiCs defect has been identified theoretically not long ago,
17,18

 using the  local density 
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approximation or generalized gradient approximation. However, both these 

approximations underestimate the band gap of pristine Si so that a more sophisticated 

approach has to be employed
19

. For this reason, we use in our work screened hybrid 

density functional theory calculations to investigate the densities of states (DOSs) and 

formation energies of the three known types of the CiCs defect with respect to the Fermi 

energy for all possible charge states. 

 

II Methodology 

The Vienna Ab-initio Simulation Package
20

 is used with pseudopotentials 

generated by the projector augmented wave method
21 

and a 2×2×2 supercell containing 

64 Si atoms.  The k-point mesh is set to 3×3×3 within the Monkhorst-Pack scheme
22

 and 

the cutoff energy for the plane waves amounts to 400 eV. The lattice constant of Si is 

optimized employing the PBEsol
23

 functional, which gives results very close to those 

obtained by screened hybrid functional Heyd, Scuseria, and Ernzerhof (HSE) 

calculations.
24-26

  A Gaussian smearing with a width of 0.05 eV is used. For each charged 

defect, the lattice constant is kept at the value of pristine Si and the atomic positions are 

relaxed until the forces on all atoms decline below 0.01 eV/Å. The optimized structures 

are then used for HSE calculations
 
with Perdew, Burke, and Ernzerhof local term and a 

screening parameter of μ = 0.206 Å
-1

. Finally, we apply the correction approach of by 

Freysoldt el al.
27,28

 to our finite size supercell calculations to eliminate artificial 

interaction.  

The formation energy of the CiCs defect with respect to the Fermi energy for all 

possible charge states
 
is given by

29
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ΔHD,q(μe μa)= ED,q - EH  + Σ na μa + q μe 

where ED,q is the total energy of the defective cell with charge q and EH is the total energy 

of the perfect cell. Moreover, na represents the number of atoms added or removed to the 

defective cell and μa corresponds to their chemical potentials. The Fermi energy is 

denoted as μe and is measured from the top of the valence band maximum, with values in 

the band gap: EVBM  ≤  μe ≤  EVBM + Egap. The C chemical potential is calculated using 

face-centered cubic SiC.  

 

III Results and discussion 

 The efficacy of the present computational approach has been discussed in a recent 

study on vacancies and the A-center in Si,
30,31 

 which we here extend to the case of the G-

center. Two stable structural configurations of CiCs (A- and B-type
16

) are shown in Figs. 

1(a) and (b), whereas the more recently predicted C-type configuration
17,18

 is depicted in 

Fig. 1(c). The established A- and B-type configurations will be discussed first. In the A-

type structure the substitutional C atom, bonding with four Si atoms, is denoted as C(4). 

The C interstitial sharing a regular lattice site with a Si atom is denoted as C(3) and the Si 

atom connecting two C atoms as Si(2C). The four C(4)-Si bond distances are 1.88 Å, 

1.99 Å, 1.99 Å, and 2.03 Å and the three C(3)-Si bond distances amount to 1.75 Å, 1.83 

Å, and 1.83 Å, while the Si-Si bond length is 2.36 Å.  As compared with the A-type 

defect, the Si(2C)-Si bond breaks and one C-Si bond forms in the B-type case. The C 

interstitial now fully occupies the Si site. The two groups of C(4)-Si bond lengths become 

1.85 Å, 1.94 Å, 2.01 Å, 2.01 Å, and 1.88 Å, 1.96 Å, 1.96 Å, 2.04 Å. In general, the 

geometrical properties obtained in the present study are in agreement with the results 
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reported previously.
32,33

  

 The partial DOSs for the two C atoms and Si(2C) in 0, +1, and -1 charged A- and 

B-type structures are depicted in Fig. 2. Other Si atoms have similar DOSs without 

significant peaks around the Fermi level and are thus not shown.  As in A-type CiCs
0
 the 

C(3) atom has one dangling electron, the DOS reveals a sharp peak below the Fermi 

level. In addition, the Si(2C) atom shows very localized unoccupied states around 6.5 eV, 

because of its two C nearest neighbors with a much larger electronegativity. This is also 

illustrated by the DOS of B-type CiCs
0
. As a consequence, when an electron is trapped by 

the CiCs
 
defect it will occupy the Si(2C) states, as shown in the DOSs of A- and B-type 

CiCs
-1

. In the B-type configuration, since the C interstitial becomes fourfold coordinated, 

the Si(2C) atom receives more valence charge, which results in the peak below the Fermi 

level. Because both C atoms have fourfold coordinations, there appears no distinct C 

peak in the DOS.  

The experimental total energy differences indicate that the A-type defect is more 

stable than the B-type defect for +1 and -1 charge, whereas the B-type defect is more 

stable for 0 charge. Table I summarized the experimental results
16

 and the calculated total 

energy differences between the A- and B-type structures. The results obtained by the 

PBEsol functional only agree with the experimental value in the energetic order for the 

charge neutral state, while the value is substantially larger. Our HSE calculations yield 

results that agree with the experiment better than previous theoretical studies
32-34

, except 

for the -1 charge state for which the total energy difference is 0.07 eV while the 

experimental value is -0.04 eV. The total energy difference for the charge neutral state is 

found to be 0.04 eV, which is very close to the experimental value of 0.02 eV, and for the 
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+1 charge state the value of -0.09 eV is also qualitatively comparable to the experimental 

result of -0.02 eV. Spin polarized calculations are performed using both the PBEsol and 

HSE functionals. For the HSE functional, only the total energies of A-type CiCs
+1

 and B-

type CiCs
+1

 and CiCs
-1

 are lowered in energy (as compared to the spin-degenerate 

solution) by significant amounts of 0.22 eV, 0.02 eV, and 0.07 eV, respectively. 

Therefore, the energy difference between the A- and B-type defects becomes -0.29 eV for 

the +1 charge state and 0.14 eV for the -1 charge state. We have also performed 

calculations for 128-atom supercell on the PBEsol level and show the results in Table I, 

confirming the PBEsol 64-atom results. This indicates that the 64-atom supercell is large 

enough to avoid artificial effects of the strain field. 

The spin polarized partial DOSs for the A- and B-type CiCs
+1

 and CiCs
-1

 defects 

are shown in Fig. 3. For A-type CiCs
+1

 the occupied states of the C(3) atom delocalize in 

energy, the unoccupied states shift to higher energy, and a significant magnetic moment 

(within the atomic sphere) of 0.29 μB is obtained. The DOSs of the C atoms in A-type 

CiCs
-1

 is almost spin degenerate with a magnetic moment of 0.17 μB localized on Si(2C). 

For B-type CiCs
+1

 and CiCs
-1

, respectively, the donated and accepted charge is mainly 

localized on Si(2C) with a magnetic moment of 0.16 μB and 0.13 μB. These results agree 

with the experimental situation
16

 in two points: The electron paramagnetic resonance 

signal of C in A-type CiCs
-1

 is much weaker than for CiCs
+1

 and the unpaired spin is much 

less localized on C atoms in the B-type CiCs
-1

 than in A-type CiCs
+1

. Nevertheless, the 

experimental finding that the unpaired spin spreads over the neighboring Si atoms of the 

A- and B-type CiCs
-1

 defects is not reproduced by the calculations (the magnetic moments 

on other atoms are one order of magnitude smaller than those on Si(2C)). This may be the 
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reason why the theoretical energy difference between A- and B-type CiCs
-1

 is not 

consistent with  the experimental value.   

Figures 4(a) and 4(b) present the formation energy of the CiCs defect as function 

of the Fermi energy for different charge states. Note that the total energies of A-type 

CiCs
+1

 and B-type CiCs
-1

 from the spin polarized calculations are used. Except for the fact 

that the A-type defect has a higher (+/0) transition level, the results are similar due to the 

small total energy difference between the A- and B-type configurations in other charge 

states. In the low Fermi energy range the +1 charge state is favorable, while at higher 

Fermi energy the charge neutral state dominates. The transition levels between different 

charge states are reported in Table II for all configurations considered. 

A third configuration of the CiCs defect has been revealed in Refs. 17, 18 to be 

more stable than the A- and B-types. In this C-type configuration, as shown in Fig. 2(c), 

the C-C atom pair along the <100> direction occupies a regular Si lattice site. The C-C 

bond length is 1.42 Å, which is shorter than that in diamond or graphite. The C-Si 

interaction is weaker than the C-C interaction as reflected by longer C-Si bonds (1.89 Å). 

In addition, the fact that each C atom has a dangling electron is demonstrated by the half-

occupied peaks at the Fermi level in the spin degenerate DOS of charge neutral C-type 

CiCs in Fig. 5. An average DOS is shown because the results for the C atoms as well as 

for its nearest Si neighbors are similar. Spin polarization splits these peaks and results in 

magnetic moments on the C atoms. For the +1/-1 charge states the wave function of the 

lost/trapped electron is shared by both C atoms, as demonstrated by the fact that the DOS 

curve of each C atom in CiCs
+
 and CiCs

-
 crosses the Fermi level. The total energy of the 

charge neutral C-type defect is 0.11 eV higher than found for the A-type defect in the 
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spin degenerate calculation, but 0.61 eV lower in the spin polarized case, which is 

comparable to the value of 0.2 eV
17

 as obtained by the generalized gradient 

approximation. In addition, spin polarization lowers the total energies of the +1 and -1 

charge states by 0.20 eV and 0.23 eV, respectively. The formation energy for the 

different charge states of C-type CiCs as a function of the Fermi energy is plotted in Fig. 

4(c), presenting results for the spin polarized 0, +1, and -1 charge states. The +2 and -2 

charge states are favorable in small ranges at low and high Fermi energy, respectively, 

while the charge neutral state is favorable in the Fermi energy range from 0.06 eV to 0.91 

eV due to that fact that the two unpaired electrons on the C atoms, under spin 

polarization, lower the total energy substantially. The transition between the other charge 

states occurs somewhere in the middle of the band gap. 

 

IV Conclusions 

In conclusion, screened hybrid density functional theory calculations have been 

used to investigate the electronic properties of G-centers in Si. The calculated formation 

energies show that neutral charge state is favorable in most of the Fermi energy range. 

For the A- and B-type metastable CiCs structures HSE functional calculations have been 

demonstrated to yield significantly improved agreement with the experimental situation 

with respect to the energetic order, as compared to previous theoretical work. The two 

unpaired electrons on the C atoms in C-type CiCs lead to spin polarization. Importantly, 

the C-type CiCs configuration is revealed to the lowest energy, calling for in-depth 

experimental research on the C-type G-center. 
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TABLE I Total energy differences (eV) between the ground states of the A- and B-type 

structures of the CiCs defect for different charges. The numbers in brackets are obtained 

by spin polarized calculations.  

 A
+
 - B

+ 
A

0
 - B

0 
A

-
 - B

- 

Experiment 
16 

-0.02 0.02 -0.04 

PBEsol 64 atoms 0.15 0.20 0.23 

HSE 64 atoms -0.09(-0.29) 0.04 0.07(0.14) 

PBEsol 128 atoms 0.14 0.18 0.21 

 

 

 

TABLE II. Calculated transition levels (in eV) between different charge states for CiCs 

defects. 

 

 A-type  B-type  C-type  

(++/+) --- --- 0.16 

(++/0) 0.16 0.12 0.06 

(+/0) 0.39 0.25 --- 

(0/-) --- --- 1.05 

(0/--) --- --- 0.91 

(+/-) 0.73 0.74 0.50 

(+/--) 0.93 1.03 0.59 

(++/-) 0.46 0.49 0.39 

(-/--) --- --- 0.76 

(++/--) 0.68 0.77 0.48 
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FIG. 1. (Color online) Structures of the A-type (a), B-type (b), and C-type (c) CiCs 

defects. Big blue spheres are Si atoms and medium yellow spheres are C atoms. 
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FIG. 2. (Color online) Spin degenerate partial DOSs of A- and B-type CiCs defects in 0, 

+1, and -1 charge states. C(3) and C(4) indicate the C atoms coordinated by three and 

four Si atoms, respectively. Si(2C) is the Si atom that connects two C atoms. The states 

below the dotted line are occupied. 
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FIG. 3. (Color online) Spin polarized partial DOSs of the A- and B-type CiCs defects in 

the +1 and -1 charge states. C(3) and C(4) indicate the C atoms coordinated by three and 

four Si atoms, respectively. Si(2C) is the Si atom that connects two C atoms. The states 

below the dotted line are occupied. 
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FIG. 4. (Color online) Formation energies of the A-type (a), B-type (b), and C-type (c) 

CiCs defects with respect to the Fermi energy. 
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FIG. 5 (Color online) Spin degenerate and spin polarized partial DOSs of C-type CiCs in 

the 0, +1, and -1 charge states. The average DOS of the C atoms and of the nearest Si 

neighbors is shown. The states below the dotted line are occupied. 
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