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1 Introduction 

An innovative technique to create moment connections using rods, such as, steel and fibre 

reinforced polymers (FRPs), loaded into structural timber elements is preferred over the 

mechanical connections. Some of the advantages achieved through bonded-in rod techniques 

include transfer of high localised forces, formation of stiff connections and good fire 

resistance properties, since the host timber acts as insulating material to the connections [1,2].  

Other advantages are that, dissimilar materials can be bonded and shear stresses are uniformly 

transferred between materials [3].  Moreover, adhesive joint requires little or no damage to 

the adherends and is capable of resisting fatigue compared to the other jointing techniques [4]. 

Bonded-in rods have been successfully used for almost 30 years for repair and strengthening 

of timber structures [1,5].  

Connections with bonded-in rods are of a hybrid type, comprising timber, adhesive and rod. 

Timber used for connections with bonded-in rod joints is softwood, hardwood or a composite 

product such as glued laminated timber (glulam), parallel strand lumber (PSL) and laminated 

veneer lumber (LVL). In practice, glulam members made from softwood are most commonly 

used as the host material, due to their superior strength and stiffness compared to the sawn 

timber. In most cases, steel rods (threaded and reinforced types) have been used as the 

medium through which load is transferred because of their availability coupled with well-

established surface preparations [6]. In the past two decades, fibre reinforced polymers 

(FRPs) are being considered as an alternative connecting rod for applications in timber 

structures. Adhesives commonly used in practice for bonded-in rod connections are one-and 

two-component epoxies, polyurethane and resorcinol types [5].  

1.1 Aims and objectives 

The performance of bonded-in rod connections is governed, mainly, by stresses at the 

interface, which are in turn controlled by many factors. However, investigation of the stresses 

at the interfaces of the bonded-in rod connections is limited, mainly, owing to difficulty in 

measuring interfacial stresses. Research into the use of GFRPs and CFRPs materials as 

reinforcement in timber is much more frequently published, compared to BFRPs. Moreover, 

the use of fibre optic sensors for investigating the stress/strain behaviour in timber 

connections has not yet been reported. The current research investigated the distribution of 

interfacial stresses using fibre optic sensors (FOS) in order to understand the mechanisms 

governing the behaviour of the joint for structural analysis and design purposes. Pull-out tests 

of bonded-in BFRP rods loaded parallel and perpendicular to the grain were used in this 

study. The effect of bonded length and load-to-grain on interfacial stress distribution was also 

discussed and analysed.  

 

 

1.2 Background and previous research  
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1.2.1 FRP-timber connections 

In civil engineering applications, FRPs have several advantages over conventional materials, 

including improved resistance to corrosion, significantly higher strength-to-weight ratio, 

easier and faster handling and installation. Other advantages include low heat transmission 

during fire outbreak, low transportation costs due to reduced weight and higher tensile 

strength [7,8]. FRPs consist of strong fibrous materials fixed in a polymeric matrix to achieve 

a stable form of composite end product, with the strength properties dictated by the behaviour 

of the fibres [1]. The FRP materials can be classified as Glass Fibre Reinforced Polymers 

(GFRP), Carbon Fibre Reinforced Polymers (CFRP), Aramid Fibre Reinforced Polymers 

(AFRP) and Basalt Fibre Reinforced Polymers (BFRP).  

Carbon and aramid fibres have higher strength and stiffness properties than glass or basalt 

fibre but CFRP and AFRP are far more expensive than GFRP and BFRP [8,9]. Therefore, 

based on their availability and cost, GFRP and BFRP can be the most cost-effective to replace 

steel. Table 1 shows that, basalt has higher strength in tension and possesses more improved 

resistance to corrosion than the corresponding glass fibre [10]. 

Several opportunities exist for the application of FRP rods in timber structures for new 

buildings, bridges as well as rehabilitation of existing structures [8,11]. Lorenzis et al [7] 

conducted tests to investigate the influence of bonded length, surface configuration of the 

CFRP rod and direction of the wood fibres with respect to the longitudinal axis of the 

connection on the bond performance of specimens. They used the test results to model local 

bond-slip behaviour of the connections. Harvey and Ansell [10] investigated the use of GFRP 

as an alternative connecting rod in bonded-in rod joints. They fabricated and tested pull-out 

samples loaded with the GFRP rods in order to investigate the effect of rod surface 

preparation, bondline thickness, bonded length, type of adhesive, timber moisture content and 

timber type on the capacity of the connections. Raftery and Harte [12] investigated the 

reinforcement in bending of low-grade glulam with GFRP. They reported improvements in 

stiffness and ultimate bending moment when the reinforced glulam was compared with 

unreinforced ones. Experiments conducted to investigate the reinforcement of timber 

members with carbon FRP reinforcement have shown that the use of a small percentage of 

reinforcement resulted in increases in the flexural and stiffness capacities of up to 90% and 

100% respectively [13-17]. Numerical model developed to predict the behaviour of clear 

timber beams reinforced with FRP showed that small amounts of FRP reinforcement resulted 

in increase in strength and stiffness of the beams [18,19]. Recently, an investigation into the 

use of basalt (BFRP) has also been conducted [20]. Basalt rods have been used as reinforced 

material in a concrete bridge deck (Thompson Bridge) in Co. Fermanagh, Northern Ireland 

[21].  

1.2.2 FRP-timber bond durability  

The moisture content of timber at the time of bonding represents one of the most important 

factors to take into consideration in the design of the bonded-in rod connections. The 

environment (humidity) in which the timber is located can change the moisture content and 

hence the strength of the member [22] due to the hygroscopic nature of timber. Moisture 

variations in timber can cause shrinkage and swelling which can result in considerable 

stresses as well as cracking. The stresses and the cracking together can result in reduction or 

loss of bond strength with bonded-in rods and therefore it is recommended to use these 

connections only in service classes 1 and 2 [23] 

FRP composites are also known to show reduction in strength, thermo-physical, mechanical, 

and chemical properties upon exposure to water [24-26]. Moreover, an exposure of FRP 

composites to moisture can result in changing resin matrix, damaging fibre/matrix interface 

and fibre degradation [26]. However, the absorption of moisture (as a result of change in 

humidity) in FRPs is significantly lower, compared to that of timber [27]. GFRP composites 
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exposed to hygrothermal ageing are known to decrease in tensile, compressive and shear 

strengths [28]. Chu and Karbhari [29] have reported that when GFRP is exposed to moisture 

for long time, the fibres are damaged through stress-corrosion mechanisms and cracking. An 

exposure of AFRP to moisture results in accelerated fibrillation [30]. Immersion of CFRP 

laminates in water at room temperature showed an initial decrease of 25-30% in tensile 

strength during first month of exposure, but remained constant during the rest of exposure 

period [31]. Wang et al [32] studied durability of basalt fibre and its epoxy resin composites 

in alkaline environments for 3 months. They reported that, the tensile strength of the BFRP 

reduced by 40%, while the modulus was not affected. They observed that, the bare basalt 

fibre immersed in hygrothermal and alkaline environments showed a considerable 

degradation in the tensile properties, due to corrosion of the fibres. On the contrary, basalt 

fibre reinforcing bars show a much improved durability performance subjected to the same 

conditions.  

Moisture in the adhesive can also considerably affect wetting, penetration and cure of the 

adhesives in the bond. However, for epoxy adhesives the above does not always occur 

[33,34]. An experiment conducted to investigate the adhesion between epoxy and some 

timber members at moisture content of 10%, 18% and 22% showed that the epoxy resins 

employed were able to bond the timber samples up to moisture content of up to 22% without 

any appreciable reduction in bond strength [33]. Temperature of the surroundings can affect 

the creep, fatigue and fire resistance of adhesive joints and therefore it can influence the 

durability of structural adhesive joints [4]. Epoxy adhesives perform best when kept below 

temperature of 50°C [35].  

1.2.3 Pull-out loading configurations 

In bonded-in rod connections, the main studies focus on tensile pull-out of samples and their 

dependency on the host timber and their adherends as well as other factors that influence the 

capacities of the bond [9]. There are four main types of loading configurations for pull-out 

tests, which are pull-pull, pull-compression, pull-beam and pull-pile foundation [5,6]. Pull-

pull and pull-compression conditions are used mainly for both parallel and perpendicular to 

the grain tests, whereas pull-pile foundation and pull-beam situations are suitable for 

perpendicular to the grain tests only. The pull-pull loading configuration is more practical and 

produces higher pull-out capacities than the pull-compression type [36,37]. Experimental 

results by Harvey et al [38] also demonstrated that the pull-pull loading conditions exhibited 

more uniform distribution of stress along the bonded length. However, it is more expensive 

since more materials and fabrication processes are needed. The pull-beam configuration is 

inefficient and therefore not practical for pull-out tests because large amount of timber 

members is required for fabrication. Moreover during loading, the timber beams are subjected 

to bending stresses. In the case of the pull-pile foundation, the tensile force in the rod is 

balanced by shear stresses in the timber. Excessive compression perpendicular to the grain 

caused by the reaction forces is normally avoided by four screws with thread over the entire 

length and four glued-in steel rods acting like a ‘‘pile foundation’’. Moreover, tensile failure 

of timber in the perpendicular to the grain direction is prevented [39]. However, the pull-pile 

foundation loading configuration would be very expensive as more rods would be needed for 

the fabrication of the samples. The pull-compression configuration is not practical and the 

pull-out load could be influenced by stresses in compression perpendicular to the grain in the 

area close to the application of the load [6,39]. However, the pull-compression loading 

condition is relatively cheaper and the fabrication process is easier. 

1.2.4 Failure mechanisms of bonded-in rod joints 

Failure modes mostly associated with bonded-in rods are localised shear failure (close to the 

bond), interfacial rod/adhesive failure, failure of the rod and splitting along the grain [1,40].  
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The shear failure of timber close to the bond occurs when the shear capacity of the timber is 

exceeded [34,40,41]. Results of pull-out tests of bonded-in BFRP rod connections showed 

that, the most significant failure mode was shear failure of timber adjacent to the bond which 

was associated with plug of wood and pull-out of rods [42]. This type of failure results in 

optimal bond strength [34,41].  

 

Failure at the adhesive rod/adhesive interface depends mainly on the type of adhesive use for 

the bonding. Pull-out tests conducted by Bainbridge et al [43] showed cohesive failure in 

phenol resorcinol formaldehyde (PRF) resins, while epoxy and polyurethane samples 

recorded timber shear failure. Broughton and Hutchinson [34] also reported failure at 

rod/adhesive interface for most samples at moisture contents above 22%. 

 

Failure of rod is due to the material failure or buckling of the rod, outside of the timber in 

case of compression loading [5]. This mode of failure can occur when the diameter of the rod 

is smaller (e.g. 8 mm) and edge distance is large enough to avoid rupture of the timber close 

to the joint to enable the tensile capacity of the rod to be exceeded. Tensile failure of FRPs are 

mainly brittle while for steel rods, yielding is possible resulting in a more ductile failure mode 

[44].  

 

Longitudinal timber splitting results in a tensile failure in the timber perpendicular to the 

grain as a result of low tensile strength perpendicular to grain and low edge distance [5,7]. 

Pull-out results of CFRP rods loaded parallel to the grain of timber specimens recorded 

longitudinal splitting at bonded lengths varying between 50 – 200 mm [7]. 

1.2.5 Stress-strain behaviour of bonded-in rod connections 

The capacity of bonded-in rod joint depends on the shear strength of the interfacial layer of 

the samples [22,37], which is also governed by the mechanical and geometrical properties of 

the host timber, the connecting rod and the adhesive. For rods with outer deformations, the 

adhesive distributes the force along the axis between the ribs. In that case, the load is 

transferred by mechanical contact and adhesion [41]. In the case of sandblasted or grain-

covered rod surfaces (such as FRPs), the performance of the adhesive connection can be 

governed by adhesion and friction [45]. In situations where the diameter of the rod is very 

close to the diameter of the hole drilled through the host timber, the connections behave 

similarly to screw joint. In such situations, the load is transferred by the compressive 

behaviour between the wood and the shanks of the screw [37]. 

Benasconi [41] used Figure 1 to illustrate the load transfer along the interface of a typical 

bonded-in rod connection and observed that, failure of the connection occurred at the 

timber/adhesive interface. According to Bernasconi [41], the value of the shear stress can be 

interpreted as the average shear stress acting along the adhesive layer. This theory assumes 

that, the interfacial stress distribution along the length of the rod is uniform. 

 

However, in practice, the stress distribution of bonded-in rods is non-uniform [5] and this has 

been supported by [4], as shown in Figure 2.  

Finite element analysis has also been used by Deng et al [46] to study the mechanisms of load 

transfer and the stress distributions of bonded-in steel rods in glulam timber samples. They 

reported that, the shear stress distribution was not uniformly distributed along the bonded 

length of the timber samples. According to [46] the highest shear stress concentrations in the 

adhesive layer occurred at both ends of the bonded length and that the stress concentration at 

the unloaded end of the rods was higher than that of the outer end. 

The results of [46 have been supported by [47], who also used pull-out samples of bonded-in 

steel rod joints to investigate interfacial stress distributions along the bonded length. Their 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 
 

results showed that, the highest stress concentration occurred at a point where the steel rods 

entered the opening of the host timber, which contradicts [4], shown in Figure 2.  

2 MATERIALS AND METHODS 

 

2.1 Materials 

Materials used for the experiment were glulam timber, 2-part epoxy gap-filling adhesives and 

12 mm BFRP rods. Details of the properties of the materials are shown in Table 2. 

 

 

2.1.1 Timber 

 

The timber blocks were cut from Spruce glulam elements (cross section dimension 90 mm x 

270 mm) with strength class GL28. The compressive and tensile strengths determined were, 

42.3 N/mm
2
 and 44.4 N/mm

2
, respectively, in accordance with [48]. The average density of 

the samples was 450 kg/m
3
. Glulam was the host timber for this investigation because of its 

relatively uniform mechanical properties.   

2.1.2 Basalt bars 

Basalt fibre reinforced polymer connecting rods were adopted for the experiment due to their 

high strength, low weight, corrosion resistance and as a less expensive alternative to CFRP 

rods [49]. The diameter of the BFRP rods used was 12 mm due to its commercial availability.  

2.1.3 Epoxy adhesive 

The 2-part thixotropic epoxy gap filling, comprising the base and hardener, was used as the 

adhesive for the test because epoxy resin is an ideal resin for adhesive applications [50,51].  

Epoxy adhesives do not require high pressure during their application and curing, and are 

reasonably tolerant with regard to bondline thickness variations. They also exhibit strong 

adhesion to several materials, little or no shrinkage during cure, dimensional stability after 

hardening, excellent mechanical resistance and high resistance to chemical products and 

water [52,53].  Shear capacity of epoxy resins is 2-3 times that of timber [50]. The glass 

transition temperature for the epoxy was below 50ºC [Rotafix Ltd]. 

2.2 Fabrication methods and test procedure 

In this section, fabrication or bonding of the timber samples with BFRP connecting rods and 

the epoxy adhesives are described. The bonding of the FOS on the BFRP rods also explained. 

This section also depicts testing of the pull-out samples. 

2.2.1 Fabrication of bonded-in BFRP timber samples 

Test variables used for the experiment are depicted in Table 3. One sample of each test 

configuration (for parallel and perpendicular to the grain samples) was bonded with FOS. 

Thus a total of eleven samples were bonded with FOS cables. The moisture content of the 

timber blocks determined by oven-drying method prior to bonding ranged from 8% to 10%, 

which was suitable for bonding [48]. 

In each timber specimen, a 16 mm diameter hole, (in accordance with bonded lengths shown 

in Table 3) was machined through the specimen.  As a result, the gap between the BFRP and 

the timber was 2 mm, which gives the minimum glueline thickness for optimum bond 

capacity [8].  Prior to bonding, epoxy resins were used to coat the end of each rod to which 

the pull-out load had to be applied in order to enhance gripping. The rods were located 

centrally in the hole by means of a locator point. The specimens were fabricated by inserting 

the BFRP rods into the drilled holes which have been partially filled with the epoxy resins. 
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Before testing, the fabricated specimens were allowed to cure for six (6) at temperature of 

20°C.   

2.2.1.1 Bonding Fibre Optic Sensors (FOS) on the BFRP rods 

Prior to fabrication, Fibre Optic Sensors (FOS), with Bragg gratings (FBG) of 1 µm 

modulation, were fixed spatially along the BFRP (see Figures 3 and 4) of the nine samples to 

detect strains along the BFRP rods within the bonded length. The sensors (FOS) were used 

for this experiment due to their flexibility. They are also excellent for measuring strains in 

small spaces such as interfaces (the bar/adhesive interface).  

Moreover, the discrete size of the cables meant minimal interference to the bond behaviour, 

unlike the more bulky vibrating wire strain gauge technologies [54,55]. 

Fibre Bragg Grating (FBG) sensors (Figure 5) are regarded as the major leading technology 

and the most mature grating-based sensors which are being used for monitoring crack and 

damages in structures. The sensors reflect a portion of the incoming light of a particular 

wavelength, which is called Bragg wavelength, and leaves the rest of the incoming light 

without changing its property. The Bragg wavelength is defined by the fibre refractive index 

and grating pitch and it is affected by change in temperature, strain, vibration and other 

parameters. These environmental changes are then reflected on the Bragg wavelength shift. 

Hence, many measurands, such as strain, can be measured by monitoring the Bragg 

wavelength shift of the FBG sensors [55]. 

For each sample configurations (parallel and perpendicular to the grain specimens), three 

FOS, each of diameter 0.2 mm, were bonded at pre-determined positions of the BFRP rods. 

Thus, one sample of each test configuration was bonded by the FOS due to economic reasons.  

The reference point for the tests was the FOS at the top of the rod (loaded-end). In order to 

monitor the strain distribution along the BFRP rods, the first sensor (S1) was positioned 10 

mm from the loaded end and another one (S2) at the middle of the rod and the third sensor 

(S3) 10 mm from the unloaded-end of the rod. The distance xd between the sensors was 

calculated as (lb – 20)/2 mm.  

2.2.2 Test procedure 

The testing of the bonded-in BFRP rod connections involved determination of the capacity of 

the bond, measurements of interfacial strains and the bond slip. 

2.2.2.1 Pull-out testing 

The loading configuration for the current experiment was pull-compression type (Figure 6) 

which was considered as the most suitable means of investigating the bond strength of the 

bonded-in rod timber samples due to economy performance and bonding process. The BFRP 

specimens were tested at temperature of 20°C which was considered appropriate for joints 

with epoxy resins [34].  

The samples were loaded incrementally to failure by applying the load in tension, as shown in 

Figure 6. During loading the square base plate together with the two T-section arrangements, 

provided compression against the specimens as the BFRP rods was pulled through the pull-

through hole (of the base plate) at a constant cross-head displacement of 3 mm/min in 

accordance with BS EN: 26891 [56]. The maximum load for each sample configuration was 

recorded when there was total separation of the bond with accompanied zero load-bearing 

capacity. All data was converted into Excel format for processing and analysis at the 

conclusion of the tests.  

2.2.2.2 Interfacial strain and bond slip measurement 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

7 
 

For the measurement of bond slip and strain, an initial reference reading was taken from both 

sensor and LVDT at zero prior to a load being applied on the respective samples. In order to 

compare the load and the strain data from the system, a time stamp was used.  The tensile test 

machine did not have a load output, which could be compatible with the FOS acquisition 

systems.   

The bond slip or the movement of the BFRP rod was measured by Linear Variable 

Differential Transformer (LVDT) attached to the BFRP rods. The time for a particular 

predetermined load was known. The LVDT was fixed at a distance, X, (see Figure 6) at the 

loaded end of the bonded length by means of an aluminium bar which was attached to the 

tested BFRP rod. In order to measure the bond slip, the elongation of X was subtracted from 

the total reading from the LVDT. Since the test machine did not have an output that allowed 

the load to be recorded automatically, readings from the LVDT were taken at predetermined 

hand written load figures (3 kN intervals). This was done by controlling the speed and 

direction of the load applied, reducing speed to zero, thus holding the test  machine load 

steady, at the appropriate predetermined loads. The trigger for taking these readings was an 

external switch connected to the data logger which when closed caused the logger to record 

the voltage from the LVDT at that exact time and date. Moreover, the tests in connection with 

the FOS were run parallel with the LVDT. A scanning rate of 1 Hz was used for the FOS and 

the average over 10 seconds was used in the results to match the scanning rate for the LVDT. 

Therefore, the corresponding load when the strain was taken was simply deduced by 

comparing these two parameters.  

3 RESULTS AND DISCUSSION 

The perpendicular and parallel to the grain results (including failure mechanisms, the 

relationship between load and bonded length), have been previously published in [20] and 

[57] respectively. The present paper presents the original results in relation to interfacial 

strain measurement with discrete optical sensors (FOS). The bond slip behaviour of the 

specimens is also presented and discussed.   

Pull-out performance of the FOS samples is illustrated in Table 4. Figures 7–11 show the 

distribution of strain at the interfacial zone. The cables of the sensors (FOS) failed at 24 kN 

and 15 kN for parallel and perpendicular to the grain specimens respectively. Hence, the 

stress-strain graphs of the bonded specimens were limited to 24 kN and 15 kN respectively. 

Figure 12 also shows comparison of bond stress-slip behaviour for parallel and perpendicular 

to the grain samples. 

During bonding, the FOS cables for the 100 mm and 200 mm pull-out samples (both parallel 

and perpendicular configurations) failed and therefore they were not included in the 

experimental results.  

3.1 Bonded length versus interfacial strain of the samples 

In this section, the stress-strain behaviour of the samples (at the predetermined positions 

along the rod at the rod/adhesive interface) is discussed. The influence of bonded length and 

load-to-grain on the distribution of the interfacial shear stress of the specimens is investigated.  

3.1.1 Stress-strain behaviour of parallel to the grain samples  

The results for the parallel to the grain samples (Figure 7) show that the sensors at the 

unloaded end and at the middle of the rod/adhesive interfacial, generally, recorded linear or 

uniform strains.  The loaded end of the BFRP rod showed non-linear behaviour at the early 

stages of the loading and then tended to exhibit almost linear shape at an increasing loading. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

It was also noticed that the loaded end recorded the highest stress whereas the lowest stress 

occurred at the unloaded end of the BFRP rods. Thus, failure of the bond was more likely to 

occur at the loaded end than at the unloaded end.  

The stress-strain relationship of the specimens loaded parallel to the grain (Figure 7) showed 

that increasing the bonded length resulted in corresponding decrease in the stress at the 

unloaded end (S3). Thus, it was easier to debond samples with shorter bonded lengths. 

Moreover, the sensor at the top of the rod recorded more significant strain values as compared 

to that at the bottom of the rod.  At the unloaded end of the samples with 150 mm bonded 

length, the FOS recorded higher strain values compared to the corresponding higher bonded 

lengths (Figure 8). In the case of the 250 mm to 350 mm bonded length samples, there was no 

significant change in the strain at the unloaded end of the BFRP rod. Thus it is noticed that 

the stress did not significantly change the stiffness at the interfaces when the bonded length 

was 250 mm and beyond.  

The pull-out capacity of the specimens shown in Table 4 indicated that, the bond strength of 

the samples reached maximum at 250 mm. Beyond 250 mm bonded length, the average pull-

out load remained almost unchanged, indicating that for design of 12 mm BFRP rod loaded 

parallel to the glulam members, the design bonded length was 250 mm.   

 

3.1.2 Stress-strain behaviour of perpendicular to the grain samples 

Figure 9 shows that the stress-strain behaviour of the perpendicular to the grain samples was 

similar to those of the parallel to the grain samples. The highest strain was recorded at the 

loaded end of the samples whilst unloaded end of the BFRP rod recorded the lowest strain. 

The results also show that, as the volume of the epoxy in the length of the drilled hole 

increased, the strain increased at the loaded end of the samples.   

The results showed that, at the unloaded end of the 250 mm and 270 mm bonded length 

samples, there was no significant deformation at an applied load of 15 kN. In the case of 100 

mm and 150 mm samples, the interfacial strain was almost 3 N/mm
2
. It is noticed that during 

loading, the 250 mm and 270 mm specimens allowed deformation at the loaded end of the 

rod, while at the same time firmly grasping the unloaded end of the specimen down (Figure 

10), resulting in higher bond strength. The pull-out capacity of the perpendicular to the grain 

samples depended on the value of the peak interfacial stresses at the loaded end of the 

specimens.  

The above investigations (for parallel and perpendicular to the grain samples) contradict 

earlier work by Deng et al [46] and Senno et al [47] who showed that interfacial stress 

concentration along the bonded length of bonded-in steel rod connections was highest at both 

ends of the bonded lengths and that the stress (strain) at the unloaded end of the steel bar was 

the highest.  

3.1.3 Comparison of stress-strain behaviour of parallel and perpendicular to the grain 

samples 

 

It is observed in Figure 11 that, the peak strain at the loaded ends of both parallel and 

perpendicular to the grain was significantly higher than at the unloaded ends of the samples. 

That is, shear failure close to the adhesive layer or interface occurred more at the loaded end 

of the timber than at the unloaded end. In the case of 150 mm and 250 mm BFRP rods loaded 

perpendicular to the grain samples, the strain was 48% and 98% respectively higher than 

those of the corresponding parallel to the grain samples.  

The deformation at the unloaded end of the 150 mm sample bonded parallel to the grain was 

significantly lower than in the case of the perpendicular to the grain. There was no significant 
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difference in the strain of the 250 mm samples bonded parallel and perpendicular to the grain. 

From these results, it was expected that the pull-out capacity of the parallel to the grain 

samples would be higher than the corresponding perpendicular to the grain samples. 

However, the pull-out results in Table 4 showed that the perpendicular to the grain samples 

recorded higher load capacity than the corresponding parallel to the grain samples. The higher 

stresses recorded for perpendicular samples were expected since timber is weak in the 

perpendicular to the grain direction as opposed to the direction which is parallel to the grain. 

The holes drilled through the perpendicular to the grain members resulted in significant stress 

concentration as its depth increased. The higher stress concentration at the loaded end of the 

perpendicular to the grain samples may also be due to crushing of wood samples which was 

caused by compressive stress perpendicular to the grain when the metal plate was placed on 

top of the glulam timber blocks during loading. The perpendicular to the grain samples 

showed some pseudo-ductile behaviour and reserved more capacity to carry further load, 

provided the end grain distance was enough to resist splitting along the grain. The interfacial 

shear failure of the perpendicular to the grain samples was gradual involving crushing of the 

cell walls, whereas the samples loaded parallel to the grain exhibited brittle splitting 

behaviour.  

3.2 Bond stress-slip behaviour of the specimens 

The relationship between the interfacial stress and slip at loaded-end of the samples is 

illustrated in Figure 12. The results of bond stress-slip of the pull-out samples showed that 

perpendicular to the grain specimens exhibited significantly higher shear stress than the 

corresponding parallel to the grain samples. It was also observed that, samples loaded parallel 

to the grain exhibited brittle behaviour whereas the stress-slip response of the perpendicular to 

the grain samples less brittle behaviour. The difference in ductility of the samples was due to 

orientation of cells of the timber samples. In the parallel to the grain direction of timber, cells 

are arranged longitudinally which are boarded by brittle cell walls and hence failure was by 

separation of cells which is very sudden (brittle). Contrary to the parallel to the grain samples, 

the loading of perpendicular to the grain samples involved crushing of the cells which was 

gradual and resulting in reduction in brittleness.  

For parallel to the grain specimens, the 250 mm samples exhibited very high stiffness and 

irregularity which could be due to improper monitoring of the LVDT computer controlled 

system.  In the case of the 200 mm specimen, the epoxy glue at the grip of the machine 

debonded so the sample failed prematurely. In general, the samples loaded parallel to the 

grain were characterised by non-linear behaviour before the maximum value. This behaviour 

might be due to friction and defects in the timber specimens [7]. The specimens bonded 

perpendicular to the grain exhibited more uniform behaviour than the corresponding parallel 

to the grain samples.   

4 CONCLUSIONS 

Bonded-in rod connection is an innovative and efficient technique in strengthening timber 

members. The performance of this innovative tool is governed by stresses at the interfaces. 

The current research used fibre optic sensors to study the interfacial stress-strain behaviour of 

bonded-in BFRP rod glulam connections. It was found that, the interfacial stresses at the 

loaded end were higher than those at the unloaded end. 

It was also observed that, samples loaded perpendicular to the grain increased in interfacial 

stress when the bonded length increased. In the case of the parallel to the grain samples, 

increasing bonded length at the same loading configuration resulted in decrease in interfacial 

stress at the loaded end.  
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At the same loading configuration, the perpendicular to the grain samples recorded higher 

strain values than the corresponding parallel to the grain samples at the loaded end.  

Moreover, the stress-slip behaviour of samples loaded perpendicular to the grain exhibited 

pseudo-ductile behaviour whereas the corresponding parallel to the grain samples showed 

non-linear response with brittle behaviour. 
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Figure 1: Load transfer in bonded-in rod joint [41] 

 

 

Figure 2: Theoretical shear stress distribution in a bonded-in rod connection at: (a) rod/adhesive 

interface and (b) at timber adhesive interface [4]. 

 

Figure 3: Fibre Optic Sensors positioned on the BFRP rod. 
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Figure 4: Samples bonded with Fibre Optic Sensors. 

 

 

Figure 5: Functional principle of FBG [55]. 

 

 

Figure 6: Test set up and instrumentation. 
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Figure 7: Effect of bonded length on the interfacial strain for parallel to the grain samples at an applied 

load of 24 kN. 

 

 
Figure 8: Strain at an applied load of 24 kN for parallel to the grain samples. 
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Figure 9: Effect of bonded length on the interfacial strain for perpendicular to the grain samples at an 

applied load of 15 kN. 

 

 

Figure 10: Strain at an applied load of 15 kN for perpendicular to the grain sample. 
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Figure 11: Comparison of strain up to 15 kN for parallel and perpendicular to the grain samples. 

 

 

 

Figure 12: Bond stress-slip behaviour of samples loaded parallel and perpendicular to the grain.  
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Material Density (kg/m3) Tensile strength (MPa) Elastic modulus (GPa) Cost (Euro/m3) 

BFRP 2700 1000 90 14,000 

CFRP 1500 1600 120-300 90,000 

GFRP 1800 850 46 11,500 

Table 1: Material properties of FRPs [9] 

 

 

Material 

Property 

Tensile strength 

(N/mm2) 

Compressive 

strength (N/mm2) 

Bending strength 

(N/mm2) 

Shear strength 

(N/mm2) 

Modulus of Elasticity  

(N/mm2) 

Timber* 19.5  42.2  56 11.9 12600 

BFRP 920 - - - 54000 

Epoxy** 2800 68 70 12.5 3,700 

Table 2: Properties of the materials used for bonded-in BFRP rod specimens 

**Properties of epoxy resins are from the manufacturer. *Timber samples were loaded in parallel to the grain direction 

 

Parallel to the grain samples 

Test No. Bonded length, lb (mm) No. of tests 

PBl-100 100 1 

PBl-150 150 1 

PBl-200 200 1 

PBl-250 250 1 

PBl-300 300 1 

PBl-350 350 1 

Perpendicular to the grain samples 

Test No. No. of tests Bonded length, lb (mm) 

PBd-100 100 1 

PBd-150 150 1 

PBd-200 200 1 

PBd-250 250 1 

PBd-270 270 1 

Table 3: Test variables used for the pull-out tests 

Notation: PBl-100 – P = Pull-out; B = BFRP rod; l = parallel to the grain; 100 = bonded length. PBd-100 – P = Pull-out; B = BFRP 

rod; l = perpendicular to the grain; 100 = bonded length 
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Parallel to the grain samples 

Bonded length, lb (mm) 

FOS Samples Average of 8 Samples 

Pull-out load, Pu (kN) Pull-out load, Pu (kN) Sdev CoV (%) 

150 37.9 37 4.2 11.3 

250 49.4 55 6.3 11.4 

300 47.2 54 5.1 9.4 

350 52.7 54 5.1 9.4 

Perpendicular to the grain samples 

Bonded length, lb (mm) 

FOS Samples Average of 8 Samples 

Pull-out load, Pu (kN) Pull-out load, Pu (kN) Sdev CoV (%) 

150 52.2 49 2.8 5.6 

250 59.2 58 3.9 5.1 

270 66.0 56 4.6 9.2 

Table 4: Pull-out results of samples tested with FOS 


