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Abstract: The modelling of market returns can be especially problematical in emerging 
and frontier financial markets given the propensity of their returns to exhibit signifi-
cant non-normality and volatility asymmetries. This paper attempts to identify which 
representations within the GARCH family of models can most efficiently deal with the-
se issues. A number of different distributions (normal, Student t, GED and skewed Stu-
dent) and different volatility of returns asymmetry representations (EGARCH and GJR-
-GARCH) are examined. Our data set consists of daily Jordanian stock market returns 
over the period January 2000 – November 2014. Using both the Superior Predicative 
Ability (SPA) and Model Confidence Set (MCS) testing frameworks it is found that using 
GJR-GARCH with a skewed Student distribution most accurately and efficiently foreca-
sts Jordanian market movements. Our findings are consistent with similar research un-
dertaken in respect to developed markets.

 Introduction 

The global financial crisis of 2007-09 and subsequent shocks in the Euro-area 
and beyond has led researchers to examine again the ways in which they mod-
el stock market returns. It has become increasingly apparent that the ‘stand-
ard assumptions’ made in respect to the ways in which statistical series are 
distributed are not applicable in financial markets. As the global economy be-
comes more integrated it is also becoming increasingly important to under-
stand how emerging and frontier markets react in periods of high volatility. In 
this paper we explore which elements of the GARCH family of models can be 
used to efficiently and effectively model markets in Jordan from January 2000 
to November 2014.

The paper begins with a brief review of the literature in the second Sec-
tion. This is followed in the subsequent section by a description of the data 
and methodology. The most efficient model is then identified using the Supe-
rior Predictive Ability (SPA) and Model Confidence Set (MCS) prediction frame-
works before, finally, some brief conclusions are drawn.

Literature: volatility modelling in the GARCH framework 

The GARCH model was first introduced by Bollerslev (1986). Much of the sub-
sequent research in this area has focused on developing the model to better re-
flect the data found in real-world settings, such as, for example, financial mar-
kets. The finance-related literature focuses principally on modelling (i) the 
structure of the volatility (ii) the nature of the distribution of the returns.
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Much of the work on modelling the structure of volatility relates to the asym-
metries found in stock market returns. For example, Engle and Ng (1993) found 
evidence supporting the Quadratic-GARCH model. Others, such as Brailsford 
and Faff (1996), found evidence to support GJR-GARCH and Heynen and Kat 
(1994) argued that EGARCH has a superior predictive ability. Although the lit-
erature does not show one individual asymmetry specification as being clearly 
superior to others, Awartani and Corradi (2005) argue that they generally out-
perform non-asymmetric specifications in financial market prediction. How-
ever, it can be noted that the evidence is not unequivocal; McMillan, Speight, 
and Apgwilym (2000) found GARCH, moving average and exponential smooth-
ing models to provide marginally superior daily volatility forecasts. Their work 
also strongly suggested that EGARCH does not necessarily outperform simple 
GARCH model in forecasting market volatility. 

For the purposes of our paper methodologies with the greatest out-of-sam-
ple forecasting accuracy are the most desirable. Balaban (2004) tested a se-
ries of both symmetric and asymmetric models (included ARCH, GARCH, GJR-
GARCH and EGARCH). Their results suggest that all models are biased and 
generally over-predict volatility. Model performance in these latter respects 
was best for GARCH and worst for GJR-GARCH. However, they also noted that if 
avoidance of under-prediction was the key decision criteria, ARCH was the pre-
ferred model. 

A further issue that is important to consider is that the nature of volatility 
in emerging and frontier markets differs considerably from that found in de-
veloped markets (Andrikopoulos, Niklewski and Rodgers forthcoming). Given 
that the focus of this paper is Jordan, it is important to consider how different 
GARCH specifications perform in these market-types. Gokcan (2000) examined 
seven emerging market (Argentina, Brazil, Colombia, Malaysia, Mexico, Philip-
pines, Taiwan) and found that GARCH(1,1) outperformed EGARCH everywhere 
with the exception of Brazil. 

The most compelling conclusion we draw from the literature in respect to 
modelling volatility structure is that it is difficult to identify one single model 
that is clearly superior to others. This indicates to us that it may be necessary 
to test a number of volatility specifications.

A standard feature of most financial markets is that their returns are non-
normal with distributions exhibiting ‘fat-tailed’ characteristics (Mittnik, 
Paolella, and Rachev 2000). This appears to be particularly an issue in emerg-
ing markets. Brooks (2007) studied a set of such markets (including MENA re-
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gion countries) using the Asymmetric Power ARCH model. He found that unlike 
developed markets, where non-normal conditional error distributions appear 
to fit the data well, there were a set of emerging markets where estimation 
problems arise using a conditional t distribution. It was also found that the de-
gree of volatility asymmetry appears to vary across markets, with the Middle 
Eastern and African markets having very different volatility asymmetry char-
acteristics to Latin American markets.

Brooks (2007) found that a fat-tailed t-distribution was needed to model 
the distribution of returns in most MENA markets. However, there were differ-
ences. For example, Turkey, Egypt and Morocco display much larger kurtosis 
and exhibit fatter tails than Jordan. Likelihood ratio tests were found to clearly 
favour the APARCH with t-distribution rather than a normal distribution. It is 
possible that such differences may reflect the Islamic nature of these markets. 
For example, Al-Hajieh, Redhead, and Rodgers (2011) found that the month of 
Ramadan (Islamic holy month) shows high level of volatility and the overall 
impact of Ramadan on returns is statistically significant in most Middle East 
countries.

We conclude the literature review by identifying that we are aware of no 
studies of volatility forecasting in emerging markets that have examined the 
combined issues of the distribution of returns and the GARCH model specifica-
tion. We have also identified from the literature that (i) no single GARCH mod-
el specifications clearly outperforms other forms in all circumstances and (ii) 
evidence to suggest that the distribution of returns in emerging markets (like 
Jordan) can follow a number of possible forms and that these can interact with 
volatility models in different ways. In this paper we therefore test a number of 
possible distribution-types (Normal, Student-t, GED, and Skewed Student) and 
GARCH model types (GARCH, GJR-GARCH and EGARCH) in order to identify the 
most efficient volatility forecasting model for Jordan.

Data description 

The empirical investigation is undertaken in respect to daily closing price data 
for the Jordanian Amman Stock Exchange Index (ASE) covering the period 2nd 
January 2000 to 27th November 2014. The data source is the Thomson-Reuters 
Eikon database and the dataset comprises of a total of 3655 trading days. Daily 
returns computed as the log-difference of the daily closing prices:
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ASE Index closing prices are presented in Figure 1 and the daily returns in 
Figure 2. A number of volatility clusters can be observed in the returns data; for 
example, a cluster corresponding to the 2007-09 global financial crisis.

Figure 1. Daily Jordanian Price Index January 2000–November 2014

S o u r c e : created by the authors using OxMetricsTM 7 software and data from Thomson Reuters 
EikonTM.

A preliminary statistical analysis of the daily returns is presented in Ta-
ble 1. It can be noted that average daily returns are small relative to the stand-
ard deviation. The series also displays negative skewness and strong posi-
tive kurtosis; these are indicative of a heavy tailed non-Gaussian distribution.

Table 1. Descriptive Statistics of Daily Returns January 2000–November 2014

Mean Std.
Dev Min Max Skewness Excess

Kurtosis
J-B

Test
ARCH
Test1

L-B
 Test1

ADF
Test

0.025 0.946 -6.428 6.198 -0.363 6.167 5872.2** 107.9** 2571** -32.8**

** Significant at 1%. 
1Both the Ljung-Box and the ARCH tests use 10 lags.

S o u r c e : estimated by the authors using OxMetricsTM 7.
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Figure 2. Jordanian Daily Percentage Returns January 2000–November 2014

S o u r c e : created by the authors using OxMetricsTM 7.

This is confirmed by the Jarque-Bera test which rejects unconditional normali-
ty and further confirmatory evidence is provided in the related histogram (Fig-
ure 3). 

Figure 3. Histogram of Jordanian Daily Returns January 2000–November 2014

S o u r c e : created by the authors using OxMetricsTM 7.
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The Ljung-Box Q-test and the ARCH tests suggest autocorrelation and hetroske-
dasticity within the data and the ADF (Augmented Dickey-Fuller) unit root test 
rejects the null hypothesis of data non-stationary.

The research methodology

A total of 12 GARCH-model-specification/distribution pairs are tested with 
the results being presented in Tables 3–7. The models tested are: GARCH-
based specifications (GARCH-N, GARCH-T, GARCH-GED and GARCH-ST)1; 
and two sets of asymmetry-type specifications: (i) EGARCH (EGARCH-N, 
EGARCH-T, EGARCH-GED and EGARCH-ST) and (ii) GJR-GARCH (GJR-GARCH-N, 
GJR- GARCH- T, GJR-  GARCH-GED and GJR- GARCH-ST). 

The alternative models are subsequently evaluated by: (i) an evaluation of 
model parameters and (ii) an evaluation of model forecasting performance. For 
robustness, the latter undertakes a series of tests using both the Superior Pre-
dictive Ability (SPA) test Hansen (2005) and the Model Confidence Set (MCS) 
test (Hansen, Lunde, and Nason 2011). Both are available in the OxMetricsTM 72 
software package used in this paper. The forecast-based tests use a ‘loss-func-
tion’ to identify the most efficient model. The loss function can be estimated us-
ing Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) statistics. 
SPA identifies the ‘best’ model in terms of predictive ability and MCS identifies 
the ‘best’ model set.

The model specifications and the distributions tested are identified below. 
They consist of three different conditional volatility specifications and four dif-
ferent statistical distributions. 

(i) GARCH 

The GARCH model, as introduced by Bollerslev (1986), is a generalisation of 
the ARCH specification of Engle (1982). The model specifies that the condition-
al variance is a function of the lagged squared residuals as well as of its past 
conditional variances. Although the equation may be specified with a number 

1 N stands for the Normal distribution, T the Student t distribution, GED the Gener-
alised Error Distribution and ST the Standardised Skewed Student distribution.

2 The MULCOM 3.0 package running SPA and MCS was developed by Hansen and 
Lunde (2014).
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of lags in each term a single lag in each is usually adequate in financial market 
data. We follow this conversion in this paper.
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age (asymmetry) effect is simple to test. Indeed, γ1 = … = γq = 0 implies that the 
impact of a shock is symmetric, i.e., past positive shocks have the same impact 
on today’s volatility as past negative shocks. 

Four different statistical density functions are tested. The use the Gauss-
ian or normal distribution is potentially appropriate as the conditional distri-
bution of the residuals would account for some non-normality in returns. The 
second and third density functions can more fully account for ‘fat-tail’ effects; 
however, they do have a drawback in that they are symmetric. Our preferred 
option is therefore the skewed-Student density proposed by Fernández and 
Steel (1998).

(iv) Gaussian (normal) distribution

Where the log-likelihood function of the distribution is:

This variation on the GARCH model was proposed by Glosten, Jagannathan, and 

Runkle (1993) as an alternative way of dealing with asymmetric shocks in financial series. 

Its generalized version is:  
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(v) Student-t distribution 

Where the log-likelihood function of the distribution is:

This variation on the GARCH model was proposed by Glosten, Jagannathan, and 

Runkle (1993) as an alternative way of dealing with asymmetric shocks in financial series. 

Its generalized version is:  
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(vi) Generalized Error distribution (GED) 

Where the log-likelihood function of the distribution is:
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(vii) Standardized (zero mean and unit variance) skewed-Student distribution

Where the log-likelihood function of the distribution is:

Where the log-likelihood function of the distribution is: 

Results: model evalutation 

We evaluate the alternative models by (i) an assessment of the parameters associated 

with each model set (ii) an evaluation of each model set’s forecasting performance.  

(i) Parameter Based Evaluation 

Tables 2, 3 and 4, present the parameter values and associated significance tests for the 

GARCH, EGARCH and GJR-GARCH specified model sets. For the first and third model 

sets the constants in the mean equations and the variance parameters are positive and statis-

tically significant for all distributions. For the EGARCH model set the constants for the 

mean equations are not statistically significant.  

The alpha coefficient for all models and distributions is statistically significant at the 

99% level of confidence. This implies the existence of the ARCH process in the residuals 

term. The returns exhibit time-varying volatility clustering; this indicates that periods of 

volatility are followed by periods of relative calm.  

The beta coefficients of the three models in all distribution are also statistically signifi-

cant at the 99% level of confidence. This indicates that the variance is dependent on its 

moving average. In a subset of the models the sum of alpha and beta is close to unity, 

which implies in these cases that volatility shocks are quite persistent and suggests that a 

large positive (or negative) return will lead future forecasts of the variance to be high for 

an extended period.

The GARCH coefficient (beta) is larger than the ARCH term (alpha) in all three model 

sets. This is a further indication that the conditional variance will exhibit long persistence 

of volatility. 
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Where the log-likelihood function of the distribution is: 
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Results: model evalutation

We evaluate the alternative models by (i) an assessment of the parameters as-
sociated with each model set (ii) an evaluation of each model set’s forecasting 
performance. 

(i) Parameter Based Evaluation

Tables 2, 3 and 4, present the parameter values and associated significance 
tests for the GARCH, EGARCH and GJR-GARCH specified model sets. For the first 
and third model sets the constants in the mean equations and the variance param-
eters are positive and statistically significant for all distributions. For the EGARCH 
model set the constants for the mean equations are not statistically significant. 

The alpha coefficient for all models and distributions is statistically signifi-
cant at the 99% level of confidence. This implies the existence of the ARCH pro-
cess in the residuals term. The returns exhibit time-varying volatility clustering; 
this indicates that periods of volatility are followed by periods of relative calm. 

The beta coefficients of the three models in all distribution are also statisti-
cally significant at the 99% level of confidence. This indicates that the variance 
is dependent on its moving average. In a subset of the models the sum of alpha 
and beta is close to unity, which implies in these cases that volatility shocks are 
quite persistent and suggests that a large positive (or negative) return will lead 
future forecasts of the variance to be high for an extended period. 

The GARCH coefficient (beta) is larger than the ARCH term (alpha) in all 
three model sets. This is a further indication that the conditional variance will 
exhibit long persistence of volatility.
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The GJR models show no evidence of asymmetry effects being statistically 
significant. EGARCH models however, indicate significance in the magnitude 
effect but not in the sign effect.

Table 2. The GARCH model set

Distribution  Const.
(M)α

Const.
(V)β

ARCH 
(Alpha)

GARCH 
(Beta)

Student 
(DF)µ

GED 
(DF)µ Asymm. Tail

Normal Coefficient 0.02 0.01 0.11 0.89 NA NA NA NA

p-value 0.05 0.02 0 0 NA NA NA NA

Student Coefficient 0.02 0.01 0.14 0.86 6.23 NA NA NA

p-value 0.02 0.02 0 0 0 NA NA NA

GED Coefficient 0.02 0.01 0.12 0.88 NA 1.36 NA NA

p-value 0.02 0.02 0 0 NA 0 NA NA

Skewed  
Student

Coefficient 0.02 0.01 0.14 0.86 NA NA -0.01 6.22

p-value 0.05 0.02 0 0 NA NA 0.69 0

α Mean equation, β Variance equation, µ Degrees of freedom.

S o u r c e : estimated by the authors using OxMetricsTM 7.

Table 3. The EGARCH model set

Distribution  Const.
(M)α

Const.
(V)β

ARCH 
(Alpha)

GARCH 
(Beta)

Stu-
dent 
(DF)µ

GED 
(DF)µ Asymm. Tail EGARCH 

(Theta1)
EGARCH 
(Theta2)

Normal Coefficient 0.01 0.12 -0.53 0.99 NA NA NA NA 0 0.39

p-value 0.16 0.74 0 0 NA NA NA NA 0.8 0

Student Coefficient 0.02 -0.59 -0.52 0.99 6.47 NA NA NA -0.01 0.43

p-value 0.17 0.02 0 0 0 NA NA NA 0.55 0

GED Coefficient 0.02 -0.68 -0.53 0.99 NA 1.38 NA NA 0 0.41

p-value 0.11 0 0 0 NA 0 NA NA 0.93 0

Skewed 
Student

Coefficient 0.01 -1.11 -0.53 0.99 NA NA -0.02 6.44 -0.01 0.43

p-value 0.15 0.15 0 0 NA NA 0.48 0 0.65 0

α Mean equation, β Variance equation, µ Degrees of freedom.

S o u r c e : estimated by the authors using OxMetricsTM 7.
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Table 4. The GJR-GARCH model set

Distribution  Const.
(M)α

Const.
(V)β

ARCH 
(Alpha)

GARCH 
(Beta)

Student 
(DF)µ

GED 
(DF)µ Asymm. Tail GJR 

(Gamma)

Normal Coefficient 0.02 0.01 0.11 0.89 NA NA NA NA -0.01

p-value 0.03 0.03 0 0 NA NA NA NA 0.53

Student Coefficient 0.02 0.01 0.14 0.86 6.22 NA NA NA 0.01

p-value 0.03 0.02 0 0 0 NA NA NA 0.6

GED Coefficient 0.02 0.01 0.12 0.88 NA 1.36 NA NA 0

p-value 0.02 0.03 0 0 NA 0 NA NA 0.92

Skewed 
Student

Coefficient 0.02 0.01 0.14 0.86 NA NA -0.01 6.21 0.01

p-value 0.05 0.03 0 0 NA NA 0.75 0 0.62

α Mean equation, β Variance equation, µ Degrees of freedom.

S o u r c e : estimated by the authors using OxMetricsTM 7.

We turn now to the issue of identifying the most efficient model(s) from 
the groups that have been tested. The diagnostic tests of the standardized re-
siduals (Table 5) give us little help in this respect. Both ARCH(10) and Q2(10) 
statistics indicate that hetroskedasticity has not been fully accounted for by 
the models which means the estimated volatility equations have to be treated 
with some degree of caution. Furthermore, Log likelihood and Akaike informa-
tion criteria based tests all have approximately similar results; this suggests 
they provide minimal help in distinguishing between model sets on the basis of 
model fit. We can conclude from this that alternative forecasting-based testing 
procedures will be required. It can be noted as a caveat to the above conclusion 
however, that for all model sets, Akaike indicates that the normal distribution 
produces the worst performance. From this it can possibly be concluded that 
this distribution can probably be discounted at the outset. 



 Forecasting the Jordanian stock index… 21

Table 5. Diagnostic Tests Of The Standardised Residuals

Model Distribution Log Likelihood Q2(10)α ARCH(10)α Akaike

GARCH Normal -4044.15 37.14
(0)

3.49
(0)

2.22

Student -3963.3 31.31
(0)

2.92
(0)

2.18

GED -3966.62 33.86
(0)

3.15
(0)

2.17

Skewed Student -3963.22 31.29
(0)

2.92
(0)

2.17

EGARCH Normal -3980.23 21.62
(0)

2.14
(0.01)

2.18

Student  -3893.84 21.01
(0)

2.11
(0.02)

2.13

GED -3900.81 21.28
(0)

2.12
(0.01)

2.13

Skewed Student  -3890.96 21.04
(0)

2.11
(0.02)

2.13

GJR-GARCH Normal -4043.82 38.11
(0)

3.57
(0)

2.22

Student -3963.12 30.56
(0)

2.86
(0)

2.17

GED -3966.62 34.01
(0)

3.17
(0)

2.17

Skewed Student -3963.07 30.59
(0)

2.86
(0)

2.17

α The p-values are shown in brackets.

S o u r c e : estimated by the authors using OxMetricsTM 7.

(ii) Forecasting Based Evaluation

The Superior Predictive Ability test can be used for comparing the per-
formances of two or more forecasting models. Forecasts are evaluated using 
a pre-specified loss function with the ‘best’ forecast model being the one pro-
ducing the smallest expected loss. An important issue that researchers face is 
identifying what the loss function is estimated against. For the purposes of this 
paper losses are estimated relative to the observed returns.

The two potential loss functions used by SPA are the Mean Squared Error 
(MSE) and Mean Absolute Deviation (MAD). The losses estimated from the cho-
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sen function are then compared against a benchmark model. Identifying an ap-
propriate benchmark to use is another important issue in respect to this meth-
odology. In this paper we benchmark against a random walk.

The result presented in Table 6 below identify that GJR-GARCH with Skewed 
distribution produces the smallest loss and is therefore the best fitting mod-
el. These findings are consistent with those of Marcucci (2005) and Awarta-
ni and Corradi (2005). The latter found GARCH-N to be outperformed by both 
EGARCH and GJR-GARCH models across different forecast horizons.

Table 6. Superior Predictive Ability Tests 

Performance Model Sample Loss 
(MSE*103) t-statistic p-value

Most Significant GJR-GARCH-Skewed Student 0.00039 16.75819 0

Best GJR-GARCH-Skewed Student 0.00039 16.75819 0

Model_25% GJR-GARCH-Student-t 0.00043 16.75729 0

Median GARCH-GED 0.00049 16.75627 0

Model_75% EGARCH-Normal 0.02761 16.63402 0

Worst EGARCH-Skewed Student 0.03208 16.59516 0

S o u r c e : estimated by the authors using OxMetricsTM 7 and MULCOM 3.0 package (Hansen, and 
Lunde 2014).

Forecasts can also be tested using the model confidence set (MCS) proce-
dure. This uses the same loss function as SPA but requires no benchmark. It 
identifies efficient model sets at different levels of confidence. Hansen and Lun-
de state “the set,, that consists of the ‘best’ model(s) from a collection of mod-
els,; where ‘best’ is defined in terms of a criterion that is user-specified. The 
MCS procedure yields a model confidence set,, that is a set of models construct-
ed to contain the best models with a given level of confidence. The models in  
are evaluated using sample information about the relative performances of the 
models in ”. (Hansen and Lunde 2014, 16). The result of MCS presented in Table 
7 identifies that the 90% confidence model set consists of a single model; name-
ly, GJR-GARCH with Skewed Student distribution.
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Table 7. Model Confidence Set Tests

Model MSE*103 p-value

GARCH-Normal 0.00041 0

GARCH-Student-t 0.00047 0

GARCH-GED 0.00049 0

GARCH-Skewed Student 0.00041 0

EGARCH-Normal 0.02761 0

EGARCH-Student-t 0.03117 0

EGARCH-GED 0.02926 0

EGARCH-Skewed Student 0.03208 0

GJR-GARCH-Normal 0.00047 0

GJR-GARCH-Student-t 0.00043 0

GJR-GARCH-GED 0.0005 0

GJR-GARCH-Skewed Student 0.00039 1.0000*

* 90% model confidence set.

S o u r c e : estimated by the authors using OxMetricsTM 7 and MULCOM 3.0 package (Hansen, and 
Lunde 2014).

Discussion of findings and conclusions

Given the large differences between developed and emerging markets, it is pos-
sibly a little surprising that the result of our study, made in respect to Jordan, 
are consistent with previous studies made of developed markets. For example, 
Engle and Ng (1993), examining Japanese stock return also found strong sup-
port for the GJR-GARCH model. Similarly, Bentes, Menezes, and Ferreira (2013) 
examining NIKKEI 225, S&P 500 and STOXX 50 from 1987–2013 found all stock 
index returns tested exhibited asymmetry.

Further similarities can be identified between our results and other stud-
ies. Liu & Hung (2010) investigated the performance of one-step-ahead fore-
casting using asymmetric GARCH models with different distribution assump-
tions. Their work, in respect to United States data, concluded that GJR-GARCH 
generated volatility forecasts were more accurate that those produced by their 
EGARCH counterparts. Furthermore, their results indicated that modelling the 
asymmetric component was much more important than specifying the correct 
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error distribution when it came to improving volatility forecasting. This was 
especially the case in the presence of fat-tails, leptokurtosis, skewness and the 
leverage effect.

A number of other studies have examined volatility in MENA countries like 
Jordan. Assaf (2015), for example, examined the forecasting performance of 
the Value-at-Risk (VaR) models in Egypt, Jordan, Morocco, and Turkey. Their 
results suggested that returns had a significantly fatter tails than the normal 
distribution and that Student APARCH model produced more accurate results 
than those generated using Normal APARCH models.

The considerable variety of results found in these different studies suggests 
to us that it is difficult to conclude that there is a ‘one size fits all’ model that can 
be used to model asymmetry affects in stock market returns.

We believe that our study contributes significantly to the literature by exam-
ining the relative forecasting performances of different distribution-type (Nor-
mal, Student-t, GED, and Skewed Student) and asymmetry-type (GJR- GARCH 
and EGARCH) GARCH models. Both our Superior Predictive Ability and Model 
Confidence Set results identify that GJR-GARCH with Skewed Student distri-
bution is the best fitting model for Jordan. The finding in our research chimes 
with the findings of similar studies undertaken in different market contexts; 
such as Liu & Hung (2010) work in respect to the United States.
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