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Oscillations of weakly viscous conducting liquid
drops in a strong magnetic field

J ĀNIS PRIEDE†
Applied Mathematics Research Centre, Coventry University, Priory Street, Coventry CV1 5FB, UK

(Received 9 April 2010; revised 24 September 2010; accepted 4 November 2010;

first published online 10 February 2011)

We analyse small-amplitude oscillations of a weakly viscous electrically conducting
liquid drop in a strong uniform DC magnetic field. An asymptotic solution is obtained
showing that the magnetic field does not affect the shape eigenmodes, which remain the
spherical harmonics as in the non-magnetic case. A strong magnetic field, however,
constrains the liquid flow associated with the oscillations and, thus, reduces the
oscillation frequencies by increasing effective inertia of the liquid. In such a field,
liquid oscillates in a two-dimensional (2D) way as solid columns aligned with the
field. Two types of oscillations are possible: longitudinal and transversal to the field.
Such oscillations are weakly damped by a strong magnetic field – the stronger the
field, the weaker the damping, except for the axisymmetric transversal and inherently
2D modes. The former are overdamped because of being incompatible with the
incompressibility constraint, whereas the latter are not affected at all because of
being naturally invariant along the field. Since the magnetic damping for all other
modes decreases inversely with the square of the field strength, viscous damping
may become important in a sufficiently strong magnetic field. The viscous damping
is found analytically by a simple energy dissipation approach which is shown for
the longitudinal modes to be equivalent to a much more complicated eigenvalue
perturbation technique. This study provides a theoretical basis for the development of
new measurement methods of surface tension, viscosity and the electrical conductivity
of liquid metals using the oscillating drop technique in a strong superimposed DC
magnetic field.

Key words: drops, high-Hartmann-number flows, magnetohydrodynamics

1. Introduction
Shape oscillations of levitated metal droplets can be used to measure the surface

tension and viscosity of liquid metals (Rhim et al. 1999; Egry, Giffard & Schneider
2005). Theoretically, the former determines the frequency, while the latter accounts
for the damping rate of oscillations. In the reality, experimental measurements may be
affected by several side effects. Firstly, levitated drops may be significantly aspherical
and the oscillations amplitudes not necessarily small, whereas the classical theories
describing the oscillation frequencies (Rayleigh 1945) and damping rates (Reid 1960;
Chandrasekhar 1981; Lamb 1993) assume small-amplitude oscillations about an
ideally spherical equilibrium shape. Corrections due to the drop asphericity have been
calculated by Cummings & Blackburn (1991) and Suryanarayana & Bayazitoglu
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(1991). Bratz & Egry (1995) find the same order correction to the damping rate
resulting also from an AC magnetic field. The effect of a moderate amplitude on the
oscillations of inviscid drops has been analysed by Tsamopoulos & Brown (1983), who
find that the oscillation frequency decreases with the square of the amplitude. Using a
boundary-integral method, Lundgren & Mansour (1991) show that small viscosity has
a relatively large effect on the resonant-mode coupling phenomena in the nonlinear
oscillations of large axially symmetric drops in zero gravity. Numerical simulation of
large-amplitude axisymmetric oscillations of a viscous liquid drop by Basaran (1992),
who uses the Galerkin/finite-element technique, shows that a finite viscosity results in
a much stronger mode coupling than predicted by the small-viscosity approximation.

Secondly, the measurements may be strongly disturbed by an AC-driven flow
in the drop. The mode coupling by the internal circulation in an axisymmetrically
oscillating drop has been studied numerically by Mashayek & Ashgriz (1998) using the
Galerkin/finite-element technique. To reduce the strength of the AC field necessary
for the levitation and, thus, to minimise the flow, experiments may be conducted
under the microgravity conditions during parabolic flights or on the board of space
station (Egry et al. 1999). A cheaper alternative might be to apply a sufficiently
strong DC magnetic field that can not only stabilise AC-driven flow but also suppress
the convective heat and momentum transport responsible for the mode coupling
under the terrestrial conditions as originally shown by Shatrov, Priede & Gerbeth
(2003). Such an approach has been implemented first by Yasuda et al. (2004) on the
electromagnetically levitated drops of copper and nickel, which were submitted to
a DC field of the induction up to 10 T. The only motion of Cu drops observed to
persist in magnetic field above 1 T was a solid-body rotation about an axis parallel
to the magnetic field. No shape oscillations, usually induced by the AC-driven flow
fluctuations, were observed. Note that this implies only the suppression of AC-driven
flow but not of the shape oscillations themselves, which require an external excitation
to be observable. Yasuda et al. (2005) study the effect of suppression of the melt flow
on the structure of various alloys obtained by the electromagnetic levitation melting
technique in a strong superimposed DC magnetic field. The use of high magnetic fields
in various material processing applications has been reviewed by Yasuda (2007).

Note that a similar suppression of the AC-driven flow can also be achieved by a
fast spinning of the drop (Shatrov, Priede & Gerbeth 2007), which may be driven
by an electromagnetic spin-up instability (Priede & Gerbeth 2000, 2006). The effects
of both the drop rotation and the AC-driven flow on the frequency spectrum of
shape oscillations have been modelled numerically by Bojarevics & Pericleous (2009).
Watanabe (2009) demonstrates numerically that a large enough oscillation amplitude
can compensate for the effect of rotation on the frequency shift.

A novel method of measuring thermal conductivity of liquid silicon using the
electromagnetic levitation in a strong superimposed DC magnetic has been introduced
by Kobatake et al. (2007). Subsequent numerical modelling by Tsukada et al. (2009)
shows that applying a DC magnetic field of 4 T can suppress convection in a molten
silicon droplet enough to measure its real thermal conductivity. Later on, this method
was extended to the measurements of heat capacity of molten austenitic stainless steel
(Fukuyama et al. 2009) and also that of supercooled liquid silicon (Kobatake et al.
2010).

In order to determine the surface tension and viscosity or the electrical conductivity,
one needs to relate the observed surface oscillations with the relevant thermophysical
properties of the liquid. General small-amplitude shape oscillations of a conducting
drop in a uniform DC magnetic field have been analysed first by Gailitis (1966).
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Although a magnetic field of arbitrary strength is considered, the solution is
restricted to inviscid drops. Moreover, only the frequency spectrum and magnetic
damping rates are found but not the associated shape eigenmodes, which may be
useful for experimental identification of the oscillation modes. Energy dissipation
by axisymmetric oscillations of a conducting drop in a weak DC magnetic field
was considered by Zambran (1966), who found the magnetic damping rates in
agreement with more general results of Gailitis (1966). Axisymmetric oscillations of an
electromagnetically levitated drop of molten Al in a superimposed DC magnetic field
are modelled numerically by Bojarevics & Pericleous (2003). A moderate DC magnetic
field is shown to stabilise AC-driven flow and, thus, to eliminate the associated shape
oscillations. A three-dimensional (3D) numerical simulation of an oscillating liquid
metal drop in a uniform static magnetic field has been carried out by Tagawa (2007).
The numerical results show that the vertical magnetic field effectively damps the flow,
while horizontal field tries to render the flow two-dimensional.

In the present paper, we analyse free oscillations of a viscous electrically conducting
drop in a homogeneous DC magnetic field. In contrast to Gailitis (1966), we assume
the viscosity to be small but non-zero and the magnetic field to be strong. This
allows us to obtain an asymptotic solution to the eigenvalue problem for general
small-amplitude 3D shape oscillations including the eigenmodes left out by Gailitis
(1966), which are necessary for the subsequent determination of the viscous damping.
Firstly, we show that the eigenmodes of shape oscillations are not affected by the
strong magnetic field – they remain the spherical harmonics as in the non-magnetic
case. The magnetic field, however, changes the internal flow associated with the
surface oscillations and thus the frequency spectrum. As the drop oscillates in a
strong magnetic field, the liquid moves as solid columns aligned with the field. Two
types of such oscillations are possible: longitudinal and transversal to the magnetic
field. The oscillations are weakly damped by a strong magnetic field, except for both
the axisymmetric transversal and inherently 2D modes. The former are magnetically
overdamped because the incompressibility constraint does not permit an axially
uniform radial flow. The latter, which are transversal modes defined by the spherical
harmonics with equal degree and order, l = m, are not affected at all because these
modes are naturally invariant along the field. Because the magnetic damping for all
other modes decreases inversely with the square of the field strength, the viscous
damping may become important in a sufficiently strong magnetic field.

This paper is organised as follows. The problem is formulated in § 2. Section 3
presents an inviscid asymptotic solution which yields the shape eigenmodes and
frequency spectrum of longitudinal and transversal oscillations. Magnetic damping
is found in § 3.2 as a next-order asymptotic correction to the frequency. Viscous
damping rates are calculated in § 3.3, first by the eigenvalue perturbation technique
for the longitudinal modes and then by an energy dissipation approach for both of
the oscillation modes. The paper is concluded by a summary and discussion of the
results in § 4.

2. Problem formulation
Consider a spherical non-magnetic drop of an incompressible liquid with radius R0,

density ρ, surface tension γ, electrical conductivity σ, and a small dynamic viscosity
η performing small-amplitude shape oscillations in a strong uniform DC magnetic
field B, as illustrated in figure 1. The velocity of the liquid flow v and the pressure
distribution p are governed by the Navier–Stokes equation with electromagnetic body
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Figure 1. Sketch of the formulation of the problem.

force

ρ∂tv = −∇p + η∇2v + j × B, (2.1)

where the induced current follows from Ohm’s law for a moving medium

j = σ (E + v × B). (2.2)

Owing to the smallness of the oscillation amplitude, the nonlinear term in (2.1)
and the induced magnetic field are both negligible. In addition, the characteristic
oscillation period τ0 is supposed to be much longer than the magnetic diffusion time
µ0σR2

0, where µ0 is the permeability of vacuum. This leads to the quasi-stationary
approximation according to which ∇ × E = 0 and E = −∇ϕ, where ϕ is the electric
potential. The incompressibility constraint ∇ · v = 0 and the charge conservation
condition ∇ · j = 0 applied to (2.1) and (2.2) result, respectively, in

∇2p = σ (B · ∇)(B · v), (2.3)

∇2ϕ = B · ∇ × v. (2.4)

For a uniform B under consideration here, applying the operators ∇ × ∇×, (B · ∇)B ·
and (B · ∇)B · ∇× to (2.1) and taking into account ∇ × ∇ × ( j × B) = σ (B · ∇)2v,
together with (2.3) and (2.4), we obtain

[ρ∇2∂t + σ (B · ∇)2 − η∇4]{p, ϕ, v} = 0. (2.5)

Although the above equation applies to p, ϕ and v separately, these variables are
not independent of each other. Firstly, owing to the incompressibility constraint, only
two velocity components are mutually independent. Secondly, velocity is related to
the pressure and electric potential by (2.1), which can be used to represent v in terms
of p and ϕ as done in the following.

Boundary conditions are applied at the drop surface S defined by its spherical
radius R = R0 + R1(θ, φ, t), where R1 is a small perturbation, which depends on the
poloidal and azimuthal angles, θ and φ, and the time t . The radial velocity at the
surface is related to the radius perturbation by the kinematic constraint

vR|S = ∂tR1. (2.6)

The normal component of the current at the drop surface, which is assumed to be
surrounded by vacuum or insulating gas, vanishes, i.e. jn|S =0. In addition, there is
no tangential stress at the free surface:

n · ∂τv + τ · ∂nv|S = 0, (2.7)
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while the normal stress component is balanced by the capillary pressure

p0 + p − 2η∂nvn = γ ∇ · n, (2.8)

where p0 = 2γ /R0 is the constant part of pressure, τ is a unit tangent vector
and n = ∇(R − R1)/|∇(R − R1)| is the outward surface normal. For small-amplitude
oscillations defined by R1 � R0, we have n ≈ eR − ∇R1.

Henceforth, we proceed to dimensionless variables by choosing the radius R0 and
the characteristic capillary pressure P0 = γ /R0 as the length and pressure scales. The
characteristic period of capillary oscillations is determined by the balance of inertia

and pressure, which yields the time scale τ0 =
√

R3
0ρ/γ . The velocity and potential

scales are chosen as v0 =R0/τ0 and ϕ0 = v0BR0, respectively, where B = |B| . In the
dimensionless variables, (2.5) takes the form

[∇2∂t + Cm(ε · ∇)2 − Ca∇4]{p, ϕ, v} = 0, (2.9)

where ε = B/B is a unit vector in the direction of the magnetic field and
Ca = η/

√
R0ργ and Cm = σB2R2

0/
√

R0ργ are the conventional and magnetic capillary
numbers, respectively. They are the ratios of the capillary oscillation time τ0 defined
above and the viscous and magnetic damping times, which are τv = ρR2

0/η and
τm = ρ/(σB2), respectively. In the dimensionless form, the normal stress balance
condition (2.8) reads as

(∇2 + 2)R1 + p − 2Ca∂RvR|R=1 = 0. (2.10)

In the following, we assume viscosity to be small but the magnetic field strong so that
Ca � 1 and Cm � 1, which means that the second and third terms in (2.9) are much
greater and much smaller, respectively, than the first term. Thus, we first focus on the
effect of the magnetic field and ignore that of viscosity, which is considered in § 3.3.

3. Inviscid asymptotic solution
Here we ignore viscosity that allows us to formulate the problem in terms of p, ϕ

and R1. Projecting the dimensionless counterpart of (2.1), which takes the form

Cmv + ∂tv = −∇p + Ca∇2v + Cm [ε × ∇ϕ + ε(ε · v)] , (3.1)

onto eR and ε, and putting Ca = 0, we obtain

CmvR + ∂tvR = −eR · ∇p + Cm[eR × ε · ∇ϕ + eR · εv�], (3.2)

∂tv� = −ε · ∇p, (3.3)

where v� = ε · v is the velocity component along the magnetic field. Differentiating
(3.2) with respect to t and substituting ∂tv� from (3.3), we represent (2.6) in terms of
p and ϕ,

Cm∂2
t R1 + ∂3

t R1 = [Cm(eR × ε · ∇∂tϕ − (eR · ε)ε · ∇p) − eR · ∇∂tp]R=1. (3.4)

Velocity has to be eliminated also from the electric boundary condition given by the
radial component of Ohm’s law

jR|R=1 = −eR · [∇ϕ + ε × v]R=1 = 0. (3.5)

Firstly, applying (Cm + ∂t ) to (3.5) and then using (3.1), we obtain

[Cm(eR · ε)ε · ∇ϕ − eR × ε · ∇p + eR · ∇∂tϕ]R=1 = 0. (3.6)
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In the inviscid approximation, (2.10) reduces to

p|R=1 = −(∇2 + 2)R1. (3.7)

In the following, besides the spherical coordinates (R, θ, φ), we will also be using the
cylindrical coordinates (r, φ, z) with the axis aligned along the magnetic field so that
ε = ez.

Solution is sought in the normal mode form {p, ϕ, R1} = {p̂, ϕ̂, R̂}(r) exp(βt + imφ),

where p̂, ϕ̂ and R̂ are axisymmetric amplitude distributions, m is the azimuthal
wavenumber, and β is a generally complex temporal variation rate which has to be
determined depending on m, Cm and Ca. Then, boundary conditions (3.4), (3.6) and
(3.7) for the oscillation amplitudes at R = 1 take the form

β2R̂ + imβϕ̂ + z∂zp̂ = −Cm−1(β3R̂ + β∂Rp̂), (3.8)

z∂zϕ̂ = −Cm−1(imp̂ + β∂Rϕ̂), (3.9)

p̂ = −(Lz + 2)R̂, (3.10)

where

Lz ≡ d

dz

(
(1 − z2)

d

dz

)
− m2

1 − z2
(3.11)

is the angular part of the Laplace operator in the spherical coordinates for the
azimuthal mode m written in terms of z = cos θ. Furthermore, it is important to note
that

LzP
m
l (z) = −l(l + 1)P m

l (z), (3.12)

where P m
l (z), the associated Legendre function of degree l and order m, is

an eigenfunction of Lz with eigenvalue −l(l + 1) (Abramowitz & Stegun 1972).
Equation (2.9) for p̂ and φ̂ can be written as[

∂2
z + Cm−1

(
Lr + ∂2

z

)(
β − Ca

(
Lr + ∂2

z

))]
{p̂, ϕ̂} = 0, (3.13)

where Lr ≡ ∂2
r + r−1∂r − m2/r2 is the radial part of the Laplace operator in the

cylindrical coordinates for the azimuthal mode m. Here we put Ca = 0, suppose
Cm � 1, and search for an asymptotic solution in the terms of a small parameter
Cm−1 as

{p̂, ϕ̂,R̂, β} ∼ {p̂0, ϕ̂0, R̂0, β0} + Cm−1{p̂1, ϕ̂1, R̂1, β1} + · · · . (3.14)

Note that although (3.13) admits solutions with β ∼ Cm found by Gailitis (1966), such
quickly relaxing modes cannot be related with the surface deformations. From the
physical point of view, a drop is driven to its equilibrium shape by the surface tension,
and the magnetic field can only oppose but not to accelerate the associated liquid
flow. From the mathematical point of view, β ∼ Cm � 1 applied to (3.8) results in
R̂0 = 0, which means no surface deformation at the leading order, as suggested by the
previous physical arguments. Consequently, these fast modes represent internal flow
perturbations which are not relevant for the shape deformations under consideration
here.

3.1. Oscillation frequencies

At the leading order, (3.13) reduces to ∂2
z {p̂0, ϕ̂0} =0, whose general solution is

{p̂0, ϕ̂0}(r, z) = {p̂+
0 , ϕ̂+

0 }(r) + z{p̂−
0 , ϕ̂−

0 }(r), (3.15)

where the first pair of particular solutions are the functions of r only, while the second
pair is linear in z but general in r. Owing to the z-reflection symmetry of the problem,
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these two types of particular solutions do not mix and, thus, they are subsequently
considered separately. We refer to these solutions in accordance with their z-parity
as even and odd ones using the indices e and o. As shown below, the odd and even
solutions describe longitudinal and transversal oscillation modes, respectively.

3.1.1. Longitudinal modes

For the odd solutions {p̂o
0, ϕ̂

o
0}(r, z) = z{p̂−

0 , ϕ̂−
0 }(r), the boundary condition (3.9),

which at the leading order reads as z∂zϕ̂0 = 0, results in ϕ̂−
0 (r) = 0. The two remaining

boundary conditions (3.8) and (3.10) take the form

βo
0

2
R̂o

0 = −zp̂−
0 , (3.16)

(Lz + 2)R̂o
0 = −zp̂−

0 . (3.17)

Eliminating the pressure term between the equations above, we obtain an eigenvalue
problem in β2

0 for R̂o
0 , (

Lz + 2 − βo
0

2
)
R̂o

0 = 0, (3.18)

which is easily solved by using (3.12) as

R̂o
0(z) = Ro

0P
m
l (z), (3.19)

βo
0 = ±i

√
(l − 1)(l + 2), (3.20)

where Ro
0 is a small amplitude of oscillations and l − m is an odd positive number.

Note that imaginary βo
0 describes constant-amplitude harmonic oscillations with the

circular frequency |βo
0 |, which differs from the corresponding non-magnetic result

only by the factor of
√

l (Lamb 1993), and coincides with the result stated by
Gailitis (1966). Thus, the strong magnetic field changes only the eigenfrequencies
but not the eigenmodes of shape oscillations which, as without the magnetic field,
are represented by separate spherical functions (associated Legendre functions with
integer indices) (Abramowitz & Stegun 1972). Similar to the non-magnetic case, the
frequency spectrum for odd modes is degenerate because it depends only on the
degree l but not on the order m. Thus, for each l, there are [l/2] odd modes with
different m.

Taking into account that z =
√

1 − r2 at the surface, the radial pressure distribution
is obtained from (3.16) as

p̂−
0 (r) = −β2

0 R̂
o
0(

√
1 − r2)/

√
1 − r2. (3.21)

According to (3.3), this pressure distribution is associated with the axial velocity
component

ŵo
0(r) = −β−1

0 p̂−
0 (r), (3.22)

while two other velocity components transversal to the magnetic field are absent in the
leading-order approximation. Thus, the liquid effectively oscillates in solid columns
along the magnetic field, as illustrated in figure 2, for the first four longitudinal
oscillation modes defined by the indices (l, m) = (2, 1), (3, 0), (3, 2) and (4, 1). Since
such a flow does not cross the flux lines, the oscillations are not damped by the
magnetic field in the leading-order approximation.

3.1.2. Transversal modes

For the even solutions {p̂e
0, ϕ̂

e
0}(r, z) = {p̂+

0 , ϕ̂+
0 }(r), the leading-order boundary

condition (3.9) is satisfied automatically. The two remaining conditions (3.8) and
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Figure 2. Shapes and the associated liquid oscillations in the (x, z)-plane parallel to the
magnetic field for the first four longitudinal oscillation modes with indices (l, m) = (2, 1) (a),
(3, 0) (b), (3, 2) (c) and (4, 1) (d ).

(3.10) then take the form

βe
0R̂

e
0 + imϕ̂+

0 = 0, (3.23)

(Lz + 2)R̂e
0 = −p̂+

0 . (3.24)

In contrast to the longitudinal modes considered above, now we have two equations
(3.23) and (3.24) but three unknowns. To solve this problem, we need to consider the
first-order solution to (3.13), which now takes the form ∂2

z {p̂e
1, ϕ̂

e
1} = −β0Lr{p̂+

0 , ϕ̂+
0 }

and yields

{p̂e
1, ϕ̂

e
1}(r, z) = {p̂+

1 , ϕ̂+
1 }(r) − 1

2
βe

0z
2Lr{p̂+

0 , ϕ̂+
0 }. (3.25)

Then, the boundary condition (3.9) results in imp+
0 −βe

0(z
2Lr − r∂r )ϕ̂

+
0 = 0. Combining

this with (3.23) and (3.24) and taking into account

z2Lr − r∂r |R=1 ≡ Lz + m2, (3.26)

we obtain [
Lz + 2 +

(
βe

0/m
)2(

Lz + m2
)]

R̂e
0 = 0. (3.27)

Using (3.12), we readily obtain

R̂e
0(z) = Re

0P
m
l (z), (3.28)

βe
0 = ±im

√
(l − 1)(l + 2)

l(l + 1) − m2
, (3.29)

where Re
0 is a small oscillation amplitude and l − m is an even non-negative number.

The above result again agrees with the asymptotic solution given by Gailitis (1966).
Similar to the odd solutions found in the previous section, even eigenmodes are
represented by separate spherical functions, and the oscillations are not damped at
the leading order. In contrast to the odd modes as well as to the non-magnetic
case, the frequency spectrum (3.29) is no longer degenerate and frequencies vary with
the azimuthal wavenumber m. In particular, there are two important results implied
by (3.29). Firstly, the oscillation frequency for the axisymmetric modes specified by
m =0 is zero. This means that these modes are overdamped and do not oscillate at
all. Secondly, the oscillation frequency for the modes with m = l is exactly the same
as without the magnetic field, i.e.

√
l(l − 1)(l + 2). This is because the liquid flow

associated with these oscillation modes is inherently invariant along the field and,
thus, not affected by the latter (Gailitis 1966).
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Figure 3. Shapes and the associated liquid flows in the horizontal mid-plane (z = 0)
perpendicular to the magnetic field for the first four transversal oscillation modes defined
by indices (l, m) = (2, 2) (a), (3, 1) (b), (3, 3) (c) and (4, 2) (d ).

The electric potential and pressure distributions follow from (3.23) and (3.24) as

ϕ̂e
0(r) = im−1βe

0R̂
e
0(

√
1 − r2), (3.30)

p̂e
0(r) = (l − 1)(l + 2)R̂e

0(
√

1 − r2). (3.31)

The associated velocity distribution is obtained from (3.1). Firstly, (3.3) implies that
the liquid oscillations are purely transversal to the magnetic field. In the leading-order
terms, we obtain from (3.1),

ve
0(r, φ) = ez × ∇ϕe

0(r, φ), (3.32)

which shows that the velocity is not only transversal but also invariant along the
magnetic field. Thus, the liquid again oscillates as solid columns, but in this case
transversely to the field which has no effect on such a flow. This is because the
electromotive force induced by the flow, which is invariant along the magnetic
field, is irrotational, i.e. ∇ × (v × B) = (B · ∇)v ≡ 0, and thus unable to drive current
circulation in a closed liquid volume.

Note that for the axisymmetric modes (m =0), the potential (3.30) and the
associated velocity (3.32) take an indeterminate form. For m =0, the boundary
condition (3.23), which in this case straightforwardly implies a zero frequency, is
satisfied by an arbitrary potential distribution independent of the radius perturbation.
As seen from (3.30), a non-zero axisymmetric potential is associated with a purely
azimuthal velocity. Consequently, this mode is irrelevant and can subsequently be
neglected because it represents an internal flow perturbation which is just compatible
but not coupled with axisymmetric shape deformations similar to the fast modes
discussed at the end of § 3. Moreover, this is consistent with (3.29) according to which
axisymmetric transversal modes are static in the leading-order approximation that
implies a zero velocity and, consequently, a zero associated potential.

Expression (3.32) implies that the velocity streamlines coincide with the isolines
of ϕ0, which thus represents a streamfunction for the flow oscillations. Figure 3
shows the shapes and streamlines of the associated liquid flow in the horizontal
mid-plane for the first four transversal oscillation modes. Note that the first and third
modes with the indices (l, m) = (2, 2) and (3, 3) are both naturally invariant in the
direction of the magnetic field and, thus, effectively non-magnetic. The second mode
with (l, m) = (3, 1) corresponds to the drop oscillating in such a way that horizontal
cross-sections remain circular in the small-amplitude limit under consideration while
the whole shape deforms because of vertical offset of the cross-sections.
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3.2. Magnetic damping

3.2.1. Longitudinal modes

In order to determine the magnetic damping rates for longitudinal modes, we have
to consider the first-order solution governed by

∂2
z {p̂o

1, ϕ̂
o
1} = −βo

0zLr{p̂−
0 , 0}, (3.33)

which yields
{p̂o

1, ϕ̂
o
1}(r, z) = z{p̂−

1 , ϕ̂−
1 }(r) − 1

6
βo

0z
3Lr{p̂−

0 , 0}. (3.34)

Then, (3.9) and (3.16) applied consecutively result in zϕ̂−
1 = −imzp̂−

0 , which combined
with (3.8), (3.10) and (3.16) yields(

Lz + 2 − βo
0

2
)
R̂o

1 = 1
3
βo

0
3z[z2Lr − 3r∂r ]z

−1R̂o
0 + βo

0

(
2βo

1 − m2βo
0

2
)
R̂o

0 . (3.35)

After some algebra, we obtain z[z2Lr − 3r∂r ]z
−1|R =1 ≡ Lz + 2 + m2, and consequently(

Lz + 2 − βo
0

2
)
R̂o

1 = 1
3
βo

0 [β
o
0

2(Lz − 2m2 + 2) + 6βo
1 ]R̂

o
0 . (3.36)

The left-hand-side operator above is the same as that in (3.18), which has R̂o
0 as its

eigensolution with a zero eigenvalue. Owing to (3.12) and (3.19), R̂o
0 is an eigensolution

of the right-hand-side operator of (3.36), too. Thus, for (3.36) to be solvable, its right-
hand side has to be free of the terms proportional to R̂o

0, which yields

βo
1 = − 1

6
(l − 1)(l + 2)((l − 1)(l + 2) + 2m2). (3.37)

Note that conversely to the frequency for longitudinal oscillation modes (3.20), the
magnetic damping rate above is not degenerate and varies with m.

3.2.2. Transversal modes

Similar to the oscillation frequency considered above, boundary conditions (3.10)
and (3.8) applied to the first-order solution (3.25) result in

β0R̂
e
1 + imϕ̂+

1 =
[
βe

0
2
(
m−2(z2Lr − r∂r )

2 − 1
2
z2Lr − 1

)
− βe

1

]
R̂e

0, (3.38)

(Lz + 2)R̂e
1 = −p̂e

1. (3.39)

To solve this first-order problem, we again need a second-order solution governed by

∂2
z {p̂e

2, ϕ̂
e
2} = −βe

0

(
Lr + ∂2

z

)
{p̂e

1, ϕ̂
e
1} − βe

1Lr{p̂+
0 , ϕ̂+

0 }, (3.40)

which, by taking into account (3.25), yields

ϕ̂e
2(r, z) = ϕ̂+

2 (r) − 1

2
βe

0z
2Lrϕ̂

+
1 + βe

0
2

[
z2

2
Lr +

z4

4!
L2

r

]
ϕ̂+

0 − 1

2
βe

1z
2Lrϕ̂

+
0 . (3.41)

Then, (3.10) results in

imp̂e
1 − βe

0(z
2Lr − r∂r )ϕ̂

+
1 = im−1

[
βe

0(z
2Lr − r∂r ) − 1

6
βe

0
2
z2(z2Lr − 3r∂r )Lr

]
R̂e

0. (3.42)

Substituting ϕ̂+
1 and p̂e

1 from (3.38) and (3.42) into (3.39) and using

z2(z2Lr − 3r∂r )Lr − 3(z2Lr − r∂r )z
2Lr |R=1 ≡ 2m2 − 2(Lz + m2)2, (3.43)

after some algebra we obtain an equation for R̂e
1, which is the same as (3.27) for R̂e

0,

except for the right-hand side, which now reads as

βe
0

3m2

[(
βe

0

/
m

)2
((Lz + m2)2 − m2)(3Lz + 2m2) − 6βe

1(Lz + m2)
]
R̂e

0. (3.44)
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By the same arguments as for (3.36), the solvability condition applied to the expression
above results in

βe
1 = − (l − 1)(l + 2)(l2 − m2)((l + 1)2 − m2)(3l(l + 1) − 2m2)

6(l(l + 1) − m2)2
, (3.45)

which again coincides with the corresponding result of Gailitis (1966).

3.3. Weak viscous damping

There are three effects due to viscosity in this problem. Firstly, viscosity appears in
the normal stress balance condition (2.10) as an O(Ca) correction to the inviscid
solution obtained above. Secondly, viscosity also appears as a small parameter Ca in
(3.13), which again implies the same order correction when the leading-order inviscid
solution is substituted into this term. Thirdly, viscosity enters the problem implicitly
through the free-slip boundary condition (2.7) which was ignored by the inviscid
solution but needs to be satisfied when viscosity is taken into account. To satisfy
this condition, the leading-order solution needs to be corrected by the viscous term
in (3.13), where Ca appears as a small parameter at the higher-order derivative. For
this small viscous term to become comparable with the dominating magnetic term at
the surface, the expected correction has to vary over the characteristic length scale
δ ∼

√
Ca/Cm = Ha−1, which is defined by the Hartmann number Ha = B0R0

√
σ/(ρν).

Moreover, for the viscous correction of the tangential velocity ṽτ in the Hartmann
layer to compensate for an O(1) tangential stress due to the leading-order inviscid
solution, ṽτ ∼ Ha−1 is required. Then, the incompressibility constraint implies an
associated normal velocity component of an order in δ smaller than ṽτ , i.e. ṽn ∼ Ha−2.

This normal velocity correction is subsequently negligible. However, this not the case
for the tangential velocity correction ṽτ , which according to (2.3) is expected to
produce a pressure correction p̃ ∼ Cm/Ha2 ∼ Ca. This correction is comparable with
the normal viscous stress produced by the leading-order inviscid flow. Taking into
account the above estimates and ϕ̃ ∼ δṽφ ∼ Ha−2, which follows from (2.4), we search
for a viscous correction as

{p̂, ϕ̂, v̂} ∼ {p̂0, ϕ̂0, v̂0} + Ca{p̂01, ϕ̂01, v̂01} + {Cap̃, Ha−2ϕ̃, Ha−1ṽ} · · · , (3.46)

{R̂, β} ∼ {R̂0, β0} + Ca{R̂01, β01} + · · · , (3.47)

where the terms with the tilde account for a Hartmann layer solution localised at the
surface.

3.4. Eigenvalue perturbation for longitudinal modes

We start with the core region, where the additive boundary layer corrections
are supposed to vanish. The first-order viscous corrections for the pressure and
the potential {p̂o

01, ϕ̂
o
01}(r, z) = z{p̂−

01, ϕ̂
−
01}(r) are obtained similarly to the leading-

order inviscid solution (3.15). Now, instead of the kinematic and electric boundary
conditions (3.4) and (3.6) derived in the inviscid approximation, we have to use the
original ones (2.6) and (3.5) containing the velocity, which again follows from the
Navier–Stokes equation (3.1), including the viscous term ∼Ca.

For the longitudinal modes, described by the odd solutions, (3.1) yields

βo
0 ŵ

o
01 + βo

01ŵ
o
0 = −p̂−

01 + Lrŵ
o
0, (3.48)

ûo
01 = ez × Dϕ̂o

01, (3.49)

where ŵ and û are the velocity components parallel and perpendicular, respectively,
to the field direction ez, and D ≡ e−imφ∇eimφ is a spectral counterpart of the nabla
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operator for the azimuthal mode m. Since, as shown above, both the potential
and velocity perturbations in the Hartmann layer are higher-order small quantities
and, thus, negligible with respect to the core perturbation, the electric boundary
condition (3.5) can be applied at R =1 directly to the first-order core solution as
∂Rϕ̂o

01 = −eR · ez × ûo
01. Taking into account (3.49) yields ϕ̂−

01 ≡ 0 and, hence, ûo
01 ≡ 0.

Consequently, the first-order velocity perturbation in the core for the odd modes is
again purely longitudinal. Then, the kinematic constraint (2.6) for the leading- and
first-order terms takes, respectively, the form

zŵo
0 = βo

0 R̂
o
0, (3.50)

zŵo
01 = βo

0 R̂
o
01 + βo

01R̂
o
0 . (3.51)

These expressions combined with (3.48) result in

βo
0

(
βo

0 R̂
o
01 + 2βo

01R̂
o
0 − zLrz

−1R̂o
0

)
= −p̂o

01, (3.52)

which defines the first-order core pressure perturbation at R = 1. In addition, we also
need the Hartmann layer pressure correction, which according to the above estimates
is of the same order of magnitude as the core one.

To resolve the Hartmann layer, we introduce a stretched coordinate R̃ = (1 − R)/δ
(Hinch 1991), where δ = Ha−1 is the characteristic Hartmann layer thickness. In the
Hartmann layer variables, (3.13) takes the form(

Cm−1β0 + z2 − ∂2
R̃

)
∂2

R̃
{p̃, ϕ̃, ṽ} = 0. (3.53)

For Cm � 1, the inertial term ∼Cm−1 is negligible in (3.53) with respect to the
magnetic term ∼z2, except for |z| � Cm−1/2. First, ignoring this term, which, as shown
below, gives a next-order small correction, the solution of (3.53) vanishing outside the
Hartmann layer can be written as

{p̃, ϕ̃, ṽ} = {p̃s, ϕ̃s, ṽs}(z) e−|z|R̃, (3.54)

where the index s denotes the surface distribution of the corresponding quantity.
Then, the free-slip boundary condition (2.7) results in

ṽs
φ = −|z|−1(imr−1v̂0,R + ∂R(v̂0,φ/R)), (3.55)

ṽs
θ = −|z|−1(∂θ v̂0,R + ∂R(v̂0,θ /R)). (3.56)

For the longitudinal modes, defined by the odd solutions, the leading-order inviscid
velocity is purely axial:

v̂
o
0 = ezŵ0(r) = −ezβ

o
0

−1
p̂−

0 (r). (3.57)

Substituting this into (3.56) and taking into account that the radial pressure
distribution at the surface is related to the radius perturbation by (3.16), we obtain

ṽs
θ = β0

r(z2 − r2)

z|z|
d

dz

R̂o
0

z
. (3.58)

Pressure is related to the velocity by (2.3), which in the dimensionless form reads as
∇2p = Cm∂zvz. In the Hartmann layer variables, this equation takes the form

∂2
R̃
p̃ = rz∂R̃ṽθ . (3.59)

Substituting the general solutions for pressure and velocity given by (3.54) into (3.59)
and using (3.58), we find

p̃s = −rz|z|−1ṽs
θ . (3.60)
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m = 0 1 2 3 4 5 6

l = 2
5

2

3
35

3
7

4
51

2

27

2

5
154

3
44 22

6
169

2

403

6

65

2
7 135 125 95 45

Table 1. The viscous damping rates −βo
01 for the first seven longitudinal oscillation modes.

Substituting the normal component of viscous stress

−2∂Rv̂o
0,R = 2βo

0 r
2 d

dz

R̂o
0

z
, (3.61)

together with the core and boundary layer pressure contributions defined by (3.52)
and (3.60) into the normal stress balance condition (2.10), we finally obtain

(
Lz + 2 − βo

0
2
)
R̂o

01 = βo
0

[
2βo

01R̂
o
0 − z−2(Lz + m2 + 2)R̂o

0 − 2(1 − z−2)
d

dz

R̂o
0

z

]
. (3.62)

The sought for viscous damping rate is obtained in the usual way by applying the
solvability condition to (3.62), which after some algebra results in

βo
01 = −(2l + 1)

(l − m)!

(l + m)!

∫ 1

0

[
1

2
(l(l + 1) − m2 − 2)

P m
l (z)

z

− (z − z−1)
d

dz

P m
l (z)

z

]
P m

l (z)

z
dz = −(2l + 1)

[
1

2
(l(l + 1) − m2) − 1 − Im

l

]
, (3.63)

where

Im
l =

(l − m)!

(l + m)!

∫ 1

0

P m
l (z)

z
(z − z−1)

d

dz

P m
l (z)

z
dz

=
((l − 1)2 − m2)Im

l−2 + (2l − 1)(l(l − 1) − m2)

l2 − m2
(3.64)

can be calculated from the above recurrence relation starting with l = m + 1 and
taking into account that Im

l =0 for l < m. For the modes with m = l − 1, we have
βo

01 = (2l + 1)(l − 1)/2, which is the half of the corresponding viscous damping rate
without the magnetic field (Lamb 1993). Although the viscous damping rate increases
for smaller m, as seen from the numerical values of −βo

01 for the first seven longitudinal
oscillation modes calculated by the Mathematica (Wolfram 1996) and shown in
table 1, it remains below its non-magnetic counterpart up to l =5 modes.

Note that the right-hand side of (3.62) has a simple pole (z−1) singularity at z = 0,

which is due to the neglected inertial term in (3.53). As discussed above, this term
becomes relevant for |z| � Cm−1/2, where it cuts off the singularity at z−1 ∼ Cm1/2.

This cutoff integrated in (3.63) over |z| � Cm−1/2, where P m
l (z) ∼ z for the odd modes,
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results in the damping rate correction O(Cm−1/2), which is a higher-order small
quantity.

3.5. Viscous energy dissipation

The viscous damping rate can be found in an alternative much simpler way by
considering the energy balance following from the dot product of (3.1) and v, which
when integrated over the drop volume yields

1

2
∂t

∫
V

v2 dV +

∫
S

(∇ · n)v · ds = −
∫

V

(2Caε2 + Cm j 2) dV, (3.65)

where the first and second terms on the left-hand side stand for the time-variation
of kinetic and surface energies, while the terms on the right-hand side with the
rate-of-strain tensor (ε)i,j = (vi,j + vj,i)/2 and the dimensionless current density
j = −∇ϕ + v × ε account for the viscous and Ohmic dissipations, respectively. As
estimated above, viscosity gives rise to the tangential current density ∼Ha−1 in the
Hartmann layer of the thickness ∼Ha−1, which according to (3.65) produces the ohmic
dissipation ∼Cm/Ha3 ∼ Ca/Ha , which for Ha � 1 is negligible with respect to the
viscous dissipation ∼Ca. Note that although the contribution of the Hartmann layer
to the normal stress balance is important, its contribution to the energy dissipation
is still negligible. This fact results in a substantial simplification of the solution
procedure for the viscous damping rate.

Thus, neglecting the ohmic dissipation and averaging the rest of (3.65) over the
period of oscillation and taking into account that the mean kinetic and surface
energies for small-amplitude harmonic oscillations are equal, we obtain a simple
expression for the viscous damping rate in terms of the inviscid leading-order solution
(Landau & Lifshitz 1987)

β01 = −
∫

V

|ε̂0|2 dV
/ ∫

V

|v̂0|2 dV. (3.66)

For the longitudinal modes, this equation takes the form

βe
01 = −

∫ 1

0

[(
rz−1∂zŵ

o
0

)2
+

(
mŵo

0/r
)2]

z2 dz∫ 1

0

ŵo
0

2
z2 dz

. (3.67)

Substituting ŵo
0(z) = βo

0R
o
0P

m
l (z)/z from (3.22) into (3.67), after some algebra, the

above expression can be shown to be equivalent to (3.63).
This approach is particularly useful for the transversal modes for which the

conventional eigenvalue perturbation solution becomes excessively complicated and,
thus, it is omitted here. In this case, using (3.32), we can represent (3.66) in terms of
the scalar potential

βe
01 = −

∫ 1

0

[(
r∂r

(
r−1∂r ϕ̂

e
0

)
+ m2ϕ̂e

0/r
)2

+
(
2m∂r

(
ϕ̂e

0/r
))2]

z2 dz∫ 1

0

[(
∂r ϕ̂

e
0

)2
+

(
mϕ̂e

0/r
)2]

z2 dz

. (3.68)

Substituting ϕ̂e
0(z) = im−1βe

0R
e
0P

m
l (z) from (3.30) into (3.68), after a lengthy algebra,

we obtain

βe
01 = −(2l + 1)

l(l + 1)(l − 2) − m2(l − 3) + (l2 − m2)Im
l−1

2(l(l + 1) − m2)
, (3.69)
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m = 1 2 3 4 5 6 7

l = 2 5

3
70

11
14

4
135

8
27

5
1232

29

220

7
44

6
1339

19
50 65

7
1350

11

4930

47

2250

31
90

Table 2. The viscous damping rates −βe
01 for the first seven transversal oscillation modes.

where Im
l−1 is defined by (3.64). Note that for 2D modes, defined by m = l, which are

not affected by the magnetic field, we recover the well-known non-magnetic result
βe

01 = −(2l + 1)(l − 1) (Lamb 1993). For other indices, (3.69) can be verified by a
direct integration of (3.68) using the Mathematica (Wolfram 1996). As seen from the
numerical values shown in table 2, the next even mode with m = l − 2 has the viscous
damping rate, which is by the factor of (l − 2)/(l − 4/5) lower than the non-magnetic
counterpart given by m = l. Only for the modes with m � l − 4, the viscous damping
rate in the magnetic field becomes higher than that without the field.

The above approach is not directly applicable to the axisymmetric transversal modes
which, as discussed at the end of § 3.1.2, are stationary in the leading-order inviscid
approximation. For these overdamped modes, a flow with the velocity ∼1/Cm relative
to the leading-order radius perturbation appears only in the first-order approximation,
which according to (3.65) produces the same order ohmic dissipation. In this case,
dissipation takes place on the account of the surface energy reduction, while that of
the kinetic energy is negligible because it is by ∼1/Cm2 smaller than the former. The
contribution of the viscous dissipation in (3.65) is ∼Ca/Cm2, which for a low viscosity
and a high magnetic field is much smaller than the ohmic dissipation ∼1/Cm, and
thus negligible with respect to the latter.

4. Conclusion
In the present study, we have considered small-amplitude oscillations of a

conducting liquid drop in a uniform DC magnetic field. Viscosity was assumed to be
small but the magnetic field strong. Combining the regular and matched asymptotic
expansion techniques, we obtained a relatively simple solution to the associated
eigenvalue problem. Firstly, we showed that the eigenmodes of shape oscillations are
not affected by the strong magnetic field – they remain the spherical harmonics as
in the non-magnetic case. The strong magnetic field, however, constrains the liquid
flow associated with the oscillations and, thus, reduces the oscillations frequency by
increasing apparent inertia of the liquid. In such a field, liquid oscillates in a 2D
way as solid columns aligned with the field. Two types of oscillations are possible:
longitudinal and transversal to the field. Such oscillations are weakly damped by a
strong magnetic field – the stronger the field, the weaker the damping, except for the
axisymmetric transversal and 2D modes. The former are magnetically overdamped
because the incompressibility constraint does not permit an axially uniform radial
flow. The latter, which are transversal modes defined by the spherical harmonics
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with equal degree and order, l = m, are not affected by the magnetic field because
these modes are naturally invariant along the field. In a uniform magnetic field, no
electric current is induced and, thus, no electromagnetic force acts on such a 2D
transversal flow because the associated electromotive force is irrotational. Because the
magnetic damping for all other modes decreases inversely with the square of the field
strength, the viscous damping may become important in a sufficiently strong magnetic
field. Consequently, the relaxation of axisymmetric transversal modes, whose viscous
damping is negligible relative to the magnetic one, can be used to determine the
electrical conductivity, while the damping of l =m modes can be used to determine
the viscosity. The damping of all other modes is affected by both the viscous and
Ohmic dissipations. Although the latter reduces inversely with the square of the field
strength while the former stays constant, an extremely strong magnetic field may be
required for the viscous dissipation to become dominant.

As an example, let us consider a drop of nickel of 1 cm in diameter (R0 = 5 × 10−3 m)
which, at the melting point (1455 ◦C), has the surface tension γ = 1.8 N m−1, density
ρ = 7.9 × 103 kg m−3, the dynamic viscosity η = 4.9 × 10−3 Ns m−2 and the electrical
conductivity σ = 1.2 × 106 S m−1 (Gale & Totemeier 2004). The capillary time scale
and frequency of the non-magnetic fundamental mode (l = 2) for such a drop

are τ0 =
√

R3
0ρ/γ ≈ 23 ms and f =

√
l(l − 1)(l + 2)/(2πτ0) ≈ 19 Hz, respectively. The

viscous damping time without the magnetic field (Lamb 1993) is τv/((2l + 1)
(l − 1)) ≈ 8 s, where τv = ρR2

0/η ≈ 40 s is the viscous time scale. Note that weak-
viscosity approximation is applicable in this case because Ca = τ0/τv = 5.8 × 10−4 is
small. In the magnetic field of B = 5 T, for which Cm = σB2R2

0/
√

ργR0 ≈ 87 � 1,

the oscillation frequency of the longitudinal fundamental mode (l, m) = (2, 1) drops
according to (3.20) to f o

2,1 =
√

(l − 1)(l + 2)/(2πτ0) ≈ 14 Hz. The corresponding viscous
damping time increases by a factor of two to −τν/β

o
01 ≈ 16 s, where −βo

01 = 5/2
according to table 1. The magnetic damping time of this mode, for which (3.37)
yields βo

1 = −4, is −τ0Cm/βo
1 ≈ 0.5 s. According to this formula, for the magnetic

damping time to exceed the viscous one, a magnetic field of B � 20 T is necessary.
The relaxation time for the axisymmetric fundamental mode (l, m) = (2, 0), which is
magnetically overdamped, is −τ0Cm/βe

1 ≈ 28 ms, where βe
1 = 72 follows from (3.45).

The magnetic field affects neither the frequency nor the damping rate of the
(l, m) = (2, 2) transversal oscillation mode, which is naturally invariant along the
field. For the same reason, there is no magnetic damping of this mode either.
The first oscillatory transversal mode is (l, m) = (3, 1), whose frequency drops
according to (3.29) from fl =

√
l(l − 1)(l + 2)/(2πτ0) ≈ 38 Hz without the magnetic

field to f e
3,1 =

√
(l − 1)(l + 2)/[l(l + 1) − m2]/(2πτ0) ≈ 5 Hz in a strong magnetic field.

The magnetic damping time for this mode in a 5 T magnetic field is −τ0Cm/βe
1 ≈ 36 ms,

where βe
1 = 6800/121 follows from (3.45). The viscous damping time for this mode

is −τν/β
e
01 ≈ 6 s, where βe

01 = 70/11 follows from table 2. The viscous damping is
small relative to the magnetic one for this mode, and a magnetic field of about
65 T would be necessary for the magnetic damping time to become as long as the
viscous one.

In conclusion, this theoretical model provides a basis for the development of new
measurement method of surface tension, viscosity and electrical conductivity of liquid
metals using the oscillating drop technique in a strong superimposed DC magnetic
field.

The author would like to thank A. Gailitis and R. Avalos-Zúñiga for constructive
comments and stimulating discussions.
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