

Parallel dynamic data-driven model for
concept drift detection and prediction

Lin, S-Y. , Chiu, Y-C. , Lewandowski, J. and Chao, K-M.

Post-print deposited in Coventry University repository January 2017

Original citation:
Lin, S-Y. , Chiu, Y-C. , Lewandowski, J. and Chao, K-M. (2016) Parallel dynamic data-driven
model for concept drift detection and prediction. Journal of Intelligent & Fuzzy Systems,
volume In press. DOI: 10.3233/JIFS-169138

http://dx.doi.org/10.3233/JIFS-169138

IOS Press

The final publication is available at IOS Press through http://dx.doi.org/10.3233/JIFS-169138

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners.
A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge. This item cannot be reproduced or quoted extensively from without
first obtaining permission in writing from the copyright holder(s). The content must not be
changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holders

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228142594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3233/JIFS-169138
http://dx.doi.org/10.3233/JIFS-169138

Parallel Dynamic Data-Driven Model for

Concept Drift Detection and Prediction

Szu-Yin Lina, Yao-Ching Chiub, Jacek Lewandowskic,d, Kuo-Ming Chaoc
a Department of Information Management, Chung Yuan Christian University, Taoyuan, Taiwan
b Institute of Information Management, National Chiao Tung University, Hsin-Chu, Taiwan
c School of Computing, Electronics and Mathematics, Coventry University, UK
d Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland

Abstract. The traditional data analysis and prediction method assumes that data distribution is normal and will not change.

Therefore, it can predict unlabeled data by analyzing the static and historical data. However, in today’s big-data environment,

which is changing frequently, the traditional approaches can no longer be effective, as they cannot handle concept drift problems

in a Dynamic Data Driven Application System (DDDAS). This study proposes a parallel detection and prediction method for

concept drift problems in DDDAS. The proposed method can detect dynamic and changing data, and then feedback to the

prediction model to revise for better subsequent predictions. Furthermore, this method computes a global prediction result by

aggregating local predictions in the resource bounded environment. Therefore, the prediction accuracy increases, and the

computation time decreases. In the simulation, the Map-Reduce technology is used for parallel processing. The simulation results

show that the prediction accuracy is raised by 14%, and the execution time is improved by almost 45%.

Keywords: Dynamic Data-Driven Application System, Concept Drift, Map-Reduce

1. Introduction

In recent years, the Ubiquitous Sensor Networks [1],

Internet of Things [2], Cloud Computing [3] and Big

Data [4] have been rapidly developed and advanced to

meet the changing application’s environments and

demands. These information technologies are so

popular that Gartner Inc. listed them in the top 10

Information Technology Strategies of the Year 2016

[5]. Fast development of wireless and cellular network

infrastructures, which took place in recent years,

enabled mobile devices with computing power to

communicate with each other with a cheaper rate and

higher availability. This allowed us to collect a wide

variety of data through sensors, smart phones or

wearable devices. Furthermore, with the higher

efficiency in data storage and the lower cost of storage

devices, we can handle larger amounts of data in a

shorter time. The amount of such data accumulates,

however, quickly. In recent years, big data analysis

has become one of the hottest research fields. Strong

interests in the collected data grow from the big data’s

ability to derive new useful information, which can be

further used to generate new knowledge and

applications. These big data (data driven) applications

could be applied in many fields of social networks,

cybercrime, energy, or e-health [6]. However, due to

the volume, velocity and variety of big data, to

increase the precision of predicting the future trend or

events in such dynamic, uncertain, and complicated

environments is still a challenge. Most the existing

prediction methods are designed to focus on analysis

of static historical data. However, in the dynamic

environment, new data can be generated at any time

which violates the assumption of most traditional

prediction models which is built upon that idea that the

population is distributed in a stationary manner.

Therefore, such prediction models may lose accuracy

if it relies on the historical data only without up-to-

date data, which may possess new features with new

distribution. This phenomenon is called Concept Drift

[7]. Concept drift means that the focus on the topic

moves from one concept to another. The definition of

concept drift in the traditional context differs from the

one in the context of data mining. Once concept drift

happens, the prediction model, which does not include

the new factors, may have the high probability of

making the wrong predictions. Emerging topic

detection [8] and the typhoon rain falls predictions are

the examples of Concept drift.

This research paper proposes a method to detect

concept drift and adjust the prediction model to retain

the precision in a dynamic data stream environment.

The proposed method leverages the concept of

Dynamic Data Driven Application System(DDDAS)

[9] to detect changing concepts, and then adopts the

available adjustment strategies to increase the

prediction accuracy. Due to the limited resources (e.g.

computation, storage), it is not possible to try various

combinations of datasets and parameter settings of a

model. In order to allow varied prediction models with

varied parameter settings to apply to different datasets,

different models have been deployed to a distributed

computing architecture and computed in parallel to try

different combinations in order to optimize the model

prediction output before the designated deadline. The

proposed method will include the detection and

adjustment of these two components.

2. Related Works

2.1. Dynamic Data Driven Application System

(DDDAS)

A Dynamic Data Driven Application Systems

(DDDAS) is a real time feedback and control system.

It is a new paradigm supported by the National Science

Foundation (NSF) in order to solve the inefficient

problems in traditional simulations, predictions and

measurements [10]. DDDAS provides a model which

is characterized by a more reliable outcome, stable data

process and accurate prediction or analysis results. It

allows a model to dynamically receive and respond

[11] to the changing environments. The DDDAS

concept describes the dynamic capability of the system

to process and control data. DDDAS implements real-

time data coordination in a runtime environment.

Hence, DDDAS does not only provide more just in-

time statistics, but also offers the feedback method to

enhance the model and improve experimental results

[11-14]. Recent improvements of computing power

and models (e.g. Cloud Computing, Grid Computing)

as well as data technologies(e.g. Sensor Network, data

storage techniques, data communication techniques),

speeds up the promotion of DDDAS architecture [14].

These components are integrated with automatic

feedback, measurement, simulation and a control

method to work in a dynamic way. Users could use the

DDDAS model via the dynamic visualization module

to interact with other components: (1) real-time

dynamic data gathering from others modules; (2) time

series data gathered from measurement instruments

(e.g. sensors, database, GIS, open data); (3) dynamic

computation modules dealing with mathematical

models and prediction computation.

Due to these functions, DDDAS is able to provide

efficiency and stability to handle real-time situations in

the real world. As Figure 1 shows, the DDDAS

architecture includes: the user’s controller, dynamic

visualization interface, dynamic computation and real-

time dynamic data gathering modules [14].

Figure 1. Basic concept and components of DDDAS.

In the past, when facing challenges in weather

prediction, agricultural forecast or contaminant

tracking, the historical data was used as the input into

a prediction system. However, when a model relies on

historical data only, it cannot reflect the real-time

events or provide real-time feedback. DDDAS

proposed a real-time feedback method to transfer data

to a computing model, thereby enhancing the

predication accuracy. In the field of environmental

and agriculture sciences, (e.g., Greenhouse Gas

emission, River Pollution monitoring) DDDAS offers

the ability to adjust and change parameters. This

feature makes the model scalable [15]. Moreover, it

can be used in predicting hurricanes [16]. DDDAS is

not only able to process numerical data, but it can also

analyze graphs or diagrams to increase the prediction

success rate [17].

Frederica Darema who proposed the DDDAS

concept, pointed out that it encompasses more than

real-time control. However, there are some challenges

which require further work. One of the challenges is

the uncertainty of concept drift dynamics, which

causes the prediction error. The key to solving this

problem is to find out how to establish data correlation.

In this research paper, we will try to solve the

correlation problem and increase the predication model

accuracy in an efficient way.

2.2. Concept Drift

“Concept” is a central structure that is used to

describe the common properties of a set of objects. The

states of the world continue to change, and the

corresponding concepts also change rapidly. A concept

is mapped to different objects in different places or

times [18]. “Concept Drift” is a phenomenon that

happens when the distribution of data shift from its

original patterns to different ones. This “Drift” will

possibly cause the prediction model, which was trained

on historical data, to make the erroneous predictions.

The tastes of users are often determined by Hidden

Contexts [19]. It is a challenge to give a clear and

definite formula to model the tastes of users. An

example such as: a customer’s shopping behavior

changes over time due to a number of hidden reasons,

which can make the modeling process difficult and

complicated. Furthermore, data generated in a dynamic

environment may contain lots of noise data to prevent

learning methods to distinguish real concept drifts from

false ones. For example, some learning algorithms may

be too sensitive with data accompanied by noise, while

some of them may be characterized by a slow response

to the changes, this results in the algorithm being too

slow to adapt to the latest concepts [20].

The two types of concept drift are: (1) gradual

concept drift and (2) abrupt concept drift. An example

of gradual concept drift is the data set that uses spam

assassin data collection (Katakis et al., 2010), and an
example of abrupt concept drift is the SEA dataset

which represents the streaming ensemble algorithm

[21]. An ideal concept drift detection system should be

able to (1) adapt quickly to a drifted concept, (2)

effectively identify noise data, and (3) recognize

recurrent context and model them as internal rules. The

machine learning and analysis prediction approach of

concept drift is to detect the statistical characteristic of

variables of target objects. The pre-built model is used

to analyze the patterns of the target variable and predict

its possible changes over time. However, such a model

is too reliant on historical data to maintain a high

accuracy, which may be suitable for the dynamic and

real-time applications. In order to build an accurate and

effective learning machine, the designer should

consider the following factors in the modeling process:

(1) Future assumption: the model being able to

accommodate future unstable data distribution.

(2) Classification changes: the model being able to find

the possible variation rules.

(3) Adaptive learning: a learning machine being able to

adapt to emerging contextual concepts via (1) and (2).

(4) Model selection: being able to identify rules from

experiences to choose the appropriate parameters and

model accordingly over time [22].

When over-fitting phenomenon happens, adaptive

approaches should be adopted to adjust the pre-built

model to avoid incorrect prediction results for different

distributions of data [18, 23, 24].

2.3. Dynamic Weighted Majority

The Dynamic Weighted Majority (DWM) based on

a Weighted Majority Algorithm [25], proposed by JZ

Kotler and MA Malo in 2003, is an algorithm which

takes dynamic weights adjustment as the core concept.

DWM is an ensemble method that uses an ‘expert’

group to determine the weights, so each member in the

group assigns a weight to each possible approach for

the algorithm to try. DWM greatly benefits from the

concept drift detection because of the dynamic weight

adjustment. The algorithm changes the weights to the

approaches. If some of the approaches’ weights

decrease and the results start to change, a concept drift

taking place can be concluded. Later in this paper we

will discuss the core concept of DWM and advantages

of DWM over Weight Majority Algorithm along with

the integration of DWM in a dynamic environment.

The Weighted Majority Algorithm (WMA) is one of

the components in the pool of machine learning

methods. WMA presents a pool of prediction

algorithms (e.g. a group of classifiers, a group of the

same or different approaches) without any prior

knowledge. Although it assumes that we have no prior

knowledge about the accuracy of the algorithms in the

pool, there are adequate reasons to believe that one or

more algorithms will perform well [25]. Unlike

common prediction methods, the WMA makes

decisions by group voting. It makes fewer mistakes

than a single prediction approach because it employs a

collection of prediction approaches. The steps of the

algorithm making predictions via WMA are described

below:

 STEP 1: Each prediction method in the WMA pool

makes the prediction individually.

 STEP 2: WMA concludes the result of a class from

its highest total.

 STEP 3: Compare the prediction results with the

actual outcome.

 STEP 4: Increase the weight (𝜔) of experts who

make the prediction correctly, and decrease the

weight (𝜔) of experts who make the wrong

prediction.

Assume that the problem is a binary decision

problem. The process of the algorithm is presented as

follows in each trial: To construct the compound

algorithm, a positive weighted value is given to each of

the algorithms in the pool. Each of prediction

algorithms is executed to make the prediction. The

compound algorithm then collects weighted votes from

all the algorithms in the pool, and gives the final

prediction that has the highest vote. If the compound

algorithm makes a mistake, the algorithms in the pool

that contributed to the wrong prediction will be

discounted by a constant ratio β where 0<β<1. If

Weight Majority Algorithm is applied to a pool of

functions with 𝛽 = 0 then the initial weights are

equal. If 𝛽 > 0, then Weight Majority Algorithm

gradually decreases the influence of functions that

make a large number of mistakes and gives the

inconsistency can eliminate a function. Assume that

the Weight Majority Algorithm is applied to a pool, F,

of functions and that the sequence of trials has m

mistakes with respect to F. For the general case where

Weight Majority Algorithm is applied to a pool F of

algorithms we show the following upper bounds on the

number of mistakes made in a given sequence of trials:

 O(log |F| + m), if one algorithm of 𝐹 makes at

most m mistakes.

 O(log |F| / k + m), if each of a subpool of 𝑘

algorithms of 𝐹 makes at most m mistakes.

 O(log |F| / k + m / k), if the total number of

mistakes of a subpool of 𝑘 algorithms of 𝐹 is

at most m.

As discussed above, the WMA presents weighted

voting based on the ensemble method. It combines a

group of prediction approaches and takes each

approach as an ‘expert’ with its own weight. The

superiority of this algorithm is the use of group

decision, as it can provide a more stable and accurate

output. The Dynamic Weighted Majority (DWM) is

based on the Weighted Majority Algorithm (WMA). It

extends the advantage of WMA by adding a threshold

(Ɵ) in the algorithm to allow weight change in the

runtime, and its weight is reduced by the multiplicative

constant, β, (β is from 0 to 1) when the errors occur in

the prediction process. Therefore, the best algorithm

with the highest weight can be found in the pool of

WMA dynamically.

In this study, we take Naïve Bayes classifiers as the

example to explain the process of the DWM. Naive

Bayes is a simple technique for constructing classifiers.

Models assign class labels to problem instances,

represented as vectors of feature values, where the

class labels are drawn from some finite set. In the

initial stage, each expert makes the prediction for

collecting the results and summarizing the weight of

experts. Secondly, the DWM takes the highest weight

of the results as a global result. Thirdly, it compares

the global result with the actual answer Furthermore,

if the global result makes the wrong prediction, it

decreases the weight of the expert who proposed the

wrong predication, multiplying it by the constant β.

Lastly, it checks if any expert’s weight is below the

threshold Ɵ; it then deletes the expert and adds the new

one with normalized weight. Based on the knowledge

of concepts and processes we described above, it

makes sense that the model of DWM fits the

requirements of DDDAS which includes (1) Dynamic

data environment, (2) Prediction methods (experts),

and (3) feedback (weighting update) and β is the

adjustment value for the learning experience. Thus,

this research will take the concept of DWM to support

our designed method to solve the issues of concept

drift.

3. Parallel Detection and Prediction Method for

Concept Drift in DDDAS

In this section, a parallel detection and prediction

method for concept drift in dynamic data driven

application systems is presented in detail.

Characteristics of big data include dynamics,

uncertainty, variety, complication, and correlation.

Thus, using the traditional prediction methods or

machine learning approaches, which are used to predict

and analyze the static or stationary data, may not be

sufficient enough to satisfy new requirements of big

data, as they also cannot adjust themselves

dynamically to meet new phenomenon when the

concept drift occurs. The proposed method can detect

the concept drift phenomenon in a dynamic

environment, and efficiently adjust the parameters in

the prediction model according to the emerging

context. Furthermore, different configurations of

models for the applications can be simulated and tested

efficiently via the use of distributed parallel

computational nodes. There are three key problems in

this study:

(1) Dynamic concept drift: The first one is to detect

the occurrence of concept drift. Concept drift means

that a prediction model makes a prediction, but the

correlation or characteristic of the data has been

changed over time in unforeseen ways that causes the

predictions to become less accurate over time. The

phenomenon is defined as dynamic concept drift. So,

how to detect and perceive the concept changes in

dynamic environment, is the key problem in this study.

(2) Model adjustment: Model selection (adjustment)

and validation is to choose the most appropriate model

for the data. In a dynamic environment, the values of

model parameters should be adjusted repeatedly

according to dynamic data in order to ensure that the

model behavior is appropriate. Moreover, determining

which segment of the data and the parameters should

be selected for adjustment is also a problem.

(3) Resource balance: The last problem is to balance

the computing resources. Validating models (experts)

in DWM is a time-consuming task. If all the required

resources of the concept detection and adjustment

model are computed in one machine, it will take too

much time to produce the prediction results. In a real-

time application, the slightest difference in time to

produce the outcome for the predication model could

lead to a huge difference in its usefulness.

3.1. Definition and Notations

3.1.1. Definition

Concept drift is a phenomenon in which patterns of

data continuously change over time and lead to the pre-

built model not being able to make accurate

predictions. This study uses three levels of concept

drift and two metrics to compute the prediction results.

One of our goals is to detect concept drift. We use the

error-rate (𝑝𝑖) and the standard deviation (𝑠𝑖) of the

prediction model to obtain the confidence level, which

determines the possibility of concept drift occurrence

[26, 27]. The binomial distribution gives the general

form of the probability or to observe an error, so the

error-rate (𝑝𝑖) is a random variable from a sequence of

Bernoulli trials. For each record 𝑖 in the data stream

and the number of miss-classifications until, noted

as𝑒𝑟𝑟𝑜𝑟𝑖 , the error-rate is 𝑝𝑖 = (𝑒𝑟𝑟𝑜𝑟𝑖 𝑖⁄) and the

standard deviation is 𝑠𝑖 =
√𝑝𝑖(1− 𝑝𝑖)

𝑖
. Moreover, 𝑝𝑚𝑖𝑛

and 𝑠𝑚𝑖𝑛 represent the current minimum 𝑝𝑖 and

𝑠𝑖 respectively in all of the prediction models in

distributed nodes. Three levels of confidences are

listed below:

 Normal Level (NL):

Occurs if 𝑝𝑖 + 𝑠𝑖 < 𝑝𝑚𝑖𝑛 + 2𝑠𝑚𝑖𝑛

 Warning Level (WL):

Occurs if𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 2𝑠𝑚𝑖𝑛

 Drift Level (DL):

Occurs if𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3𝑠𝑚𝑖𝑛

Besides this, this study also uses the following two

metrics to build the prediction mechanism in the

proposed parallel dynamic data-driven model:

 Local Prediction (LPred):

In distributed nodes, each node (worker) will predict

its own local result (LPred) with the built-in model

held by it. All local prediction results will be sent to the

driver, as described in the next section, to do further

prediction and detection work.

 Global Prediction (GPred):

The global prediction result (GPred) is calculated

from a group of prediction models produced by the

drivers in order to get a reliable result.

3.1.2. Notations
Table 1. Notation table.

Notation Definition

α The factor of raising the weight when the
algorithm’s predictor makes the wrong prediction

β The factor of decreasing the weight when the

algorithm’s predictor makes the wrong prediction

𝐿𝑃𝑟𝑒𝑑𝑡,𝑖 Local prediction result of worker 𝑖 in time 𝑡

𝑝𝑖 Error-rate of instances until 𝑖
𝑠𝑖 Standard deviation of instances until 𝑖

𝑝𝑚𝑖𝑛 Current minimum value of 𝑝𝑖

𝑠𝑚𝑖𝑛 Current minimum value of 𝑠𝑖

3.2. The proposed method

As shown in Figure 2, the architecture of the

proposed method has two major roles: the driver and

the worker. These two major roles control the flow of

our programming model.

Driver: The driver is a central controller that

receives streaming data and passes the data to workers

to dispatch tasks. After the worker finishes the task, the

driver will receive the prediction result from the

worker, and it can then select the best prediction result

for the user.

Worker: The worker is a computational device that

will maintain the prediction model and wait for the

driver to call and provide input data. Once the worker

is triggered, it will make the prediction based on the

input data, and then passes the local prediction result

(LRep) back to the driver. While this happens, it

simultaneously invokes another function to evaluate

and determine if a concept drift occurs. These two

actions asynchronously take place in order to improve

the performance. We will now introduce each node in

the architecture in more details.

Figure 2. Overall architecture of the proposed method.

 Start workers

Once the driver receives the data stream, it will

transmit the data to workers and ask them to start

working in parallel.

 Parameters setting

After being awoken by the driver, the worker will

set the parameters and concept drift detection strategy.

Each worker may have different parameters (such as

the time range of training datasets) and adjustment

strategies (see the detailed explanation in Section

3.2.1). In other words, each worker has different model

parameters and adjustment strategies. Through the

dynamic learning and adjustment process of these large

varieties by DWM, we expect to get better results in a

dynamic process.

 Predict

At this stage, the worker will first partially train the

prediction model with pre-defined parameter settings

and data range. The worker will then apply the received

data to the prediction model to obtain the local

prediction result (LPred). After finishing the

prediction, the worker will forward the result in two

directions. The first one is to give feedbacks to the

driver. The other is to invoke the drift detection

function to analyze if the concept drift, based on the

recently received data, did take place.

 Get prediction results

While receiving the LPred made by the worker, the

driver will invoke the drift detection function and best

result selection function respectively. The key point is

that, these two functions are running in the parallel

processes or threads to prevent the driver from being

blocked, so it can continue receiving new input data

streams or other prediction results.

 Output the best results

Because the driver has the weight states of all the

workers, it can determine which LPred is suitable as

the GPred (generally, selecting the worker with the

highest weight). Finally, the driver sends the output of

the GPred to the user.

 Detect drift for each worker’s model

At this stage, the driver will store the LPred of the

data stream, and then each worker waits for the actual

labels of that data stream (target data) at time t+1 to

evaluate the prediction results of worker’s model at

time t. After the evaluation, the driver will update the

weight edvalue and calculate the confidence of concept

drift for each worker’s model.

 Adjust each workers’ model

At this stage, if the concept drift phenomenon has

been detected, the driver will adjust the worker’s

prediction model according to different adjusting

strategies.

Figure 3 is the flow of the proposed method. It is

composed of two major phases, corresponding to the

prediction and the detection respectively. We will

introduce these in detail in the following sections.

3.2.1. Phase 1 – Prediction

In this phase, the main objective is to predict the

unlabeled data coming from the data streams. In order

to analyze huge amounts of data with multiple models

trained with different parameter settings and

referenced training data, our method will distribute the

computational tasks to different computing nodes as

workers. Each worker will work on the data it receives

and use the built-in model to make the prediction. Also,

each worker will check the discard flag to determine

whether it should discard the trained prediction model

or not.

Figure 3. Flow of the Map-Reduce distributed nodes.

When the driver receives the input data stream, it

will ask all of the workers in the cluster that is

controlled by the driver to start working. We use yarn

[28] to cluster computers together in order to start the

jobs in the Map-Reduce paradigm. The overview of

this distributed computing architecture and the

relationship between driver and works is shown in

Figure 4.

 Steps 1-3:

After being triggered by the driver, the worker will

determine the parameters for the model and select the

drift detection strategy. The worker will then take the

existing labeled data as the training set in order to

build the prediction model.

 Steps 4-6:

The worker will first train the prediction model with

the input value and parameters obtained from the

previous stage. Then the worker will get the received

unlabeled data at time t (𝑈𝐷𝑡) to predict (classify) their

label. After the worker finishes the above task, it does

two actions simultaneously; transmits the prediction

results to the driver that will immediately do the reduce

task and checks whether or not the discard flag of its

model has been set to True in Step 7. If the flag is set

to True, the worker will discard its model in Step 8 and

train a new one. If the flag is False, the worker will

continue receiving the unlabeled data stream for

prediction in Step 5.

Figure 4. Architecture of Driver and Worker.

3.2.2. Phase 2 - Detection

In this phase, the aim is to detect the concept drift

phenomenon by comparing the prediction results with

the actual ones. By collecting each prediction result

from each worker, the driver will evaluate the

occurrence of concept drift. If the concept drift

happens, it then stores the data with new concepts for

the worker to build the new prediction model.

 Step 1:

The driver receives the prediction labels of the data

stream at time t from worker 𝑖 as𝐿𝑃𝑟𝑒𝑑t,i. The driver

will then check whether the weight of worker 𝑖 is the

highest of all. If it is True, then the driver will mark the

𝐿𝑃𝑟𝑒𝑑t,i as GPred and then output to the user in Step

2.

 Steps 3-6:

The driver will wait for the actual labels of 𝑈𝐷𝑡 as

𝑅𝐿𝑡 and then compare the 𝐿𝑃𝑟𝑒𝑑t of each workers’

model with RLt to calculate error-rate (𝑝𝑖) and

standard deviation (𝑆𝑖) as well as analyze the possible

concept drift phenomenon. Also, the driver will update

the weight of each worker using the following

equations:

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝛼 (3.1)

𝑊𝑒𝑖𝑔ℎ𝑡𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 − 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝛽 (3.2)

𝛼 is a coefficient that represents the speed of

increasing weight when the model makes a correct

Wait for the
real label of

UDt as RLt

prediction. 𝛽 is a coefficient that represents the speed

of decreasing weight when the model makes an

incorrect prediction. In this method, we use binomial

distribution to calculate 𝑝𝑖 which is equivalent to the

probability of k miss-classifications of n instances:

𝑝𝑖 = (𝑒𝑟𝑟𝑜𝑟𝑖 𝑖⁄) (3.3)

We then use pi to calculate standard deviation:

𝑠𝑖 =
√𝑝𝑖(1 − 𝑝𝑖)

𝑖
 (3.4)

The standard deviation represents the degree of

dispersion of these instances, and then applies the

confidence interval presented in Figure 5, to determine

the probability or confidence of concept drift

happening. It assumes that 𝑝𝑖 will decrease while 𝑖
increases if the data has a stationary distribution. A

significant increase in 𝑝𝑖 indicates that the

distribution of the data is changing. The minimum

values (𝑝𝑚𝑖𝑛 , 𝑠𝑚𝑖𝑛) of 𝑝𝑖 and 𝑠𝑖 are recorded when

𝑝𝑖 + 𝑠𝑖 reaches its minimum value. Here are the

different levels (normal, warning, and drift level) with

different confidences in the confidence interval for

concept drift detection.

Figure 5. Confidence Interval with three levels.

 At level NL, concept drift is considered not

happening.

 At level WL, it is possible for concept drift to

happen. The method will store the labeled data in

the corresponding time frame.

 At level DL, we are 99% confidence that

concept drift happened. The method will set the

discard flag of the workers’ model to True and pass

the labeled data stored from the warning level as a

training set for workers to train the model for the

new concept.

 Step 7-12:

In order to adjust prediction model when concept

drift happens, we first check the confidence level

described previously:

 If the level is “Drift”: The driver will store the

current evaluated data with its real label (𝑈𝐷𝑡 , 𝑅𝐿𝑡)

as a training set and set the worker’s discard flag to

True. So, in the next round, when the worker, based

on new data stream, starts its prediction, it will

discard the old prediction model and use the stored

training set to build a new prediction model.

 If the level is “Warning”: The driver will store the

current evaluated data with its real label (𝑈𝐷𝑡 , 𝑅𝐿𝑡)

from the time slot t.

 If the level is “Normal”: The evaluated result is

good and no adjustment is needed in this level.

 The additional consideration is that, because the

data stream may contain noises, it is necessary to

prevent the worker from mistaking noise as a

concept drift. If the method wrongly determines too

many concept changes as noise data, the model will

not be adjusted enough to model the new concept.

Hence, the following four adjustment strategies can

apply:

(1) Assume that the last warning detection signal is an

exception. If the present status of concept detection

falls in the area of normal level, and the last status fell

in the warning level, the last warning detection signal

is an exception. Therefore, the data instances which

persisted from time t-1 to t are discarded.

(2) Assume that the last warning detection signal is

NOT an exception. If the present status of concept drift

detection falls in the area of normal level, and the last

status fell in the warning level, the last warning

detection signal is NOT an exception. Therefore, the

instances which persisted from time t-1 to t are

continued to be stored for training the next prediction

model when the next concept drift happens.

(3) Assume that the present drift detection signal is an

exception. Because the last detection signal fell in the

normal level, and the present status of concept drift

detection falls in the normal level, it skipped over the

warning level. Therefore, the discard flag does not

reset to TRUE to keep the current prediction model.

(4) Assume that the present drift detection signal is

NOT an exception. The last detection signal fell in the

(4.2)

(4.3)

normal level, and then the present status of concept

drift detection really falls in the normal level suddenly.

Therefore, the discard flag is resetting to TRUE to

retrain the new prediction model in the same worker by

the persisted training dataset.

3.3. Discussions on concept drift

The proposed method uses a DDDAS with Map-

Reduce distributed architecture, a statistic method to

calculate pi and si and confidence interval to detect

concept drift. Furthermore, we use LPred and GPred

to get the best prediction result in the current context in

a dynamic environment. Compared to traditional

machine learning that focuses on stationary

distribution data, the proposed method can detect the

concept drift phenomenon and efficiently adjust the

prediction model. In a dynamic environment, training

a model with historical data is a problem because of the

noise data and unpredictable changes over different

contexts. In the past, handling multiple prediction

models was difficult due to the limited computational

resources. The proposed method uses a Map-Reduce

distributed computing framework, which can easily

cluster multiple computer resources to simultaneously

run the prediction model with different parameters and

related data to analyze concept drifts and detect them.

Finally, the metric of GPred is assigned by the LPred

that is produced by each distributed worker, but it uses

the highest weight to get the best prediction result.

4. Simulation and Analyses of Results

In this section, the manually generated dataset is

applied to verify the proposed method.

4.1. Simulation

In this section, we present the simulation scenarios

and environment in order to verify the proposed

method: the simulation parameters and evaluation

metrics are also shown.

4.1.1. Simulation Assumption

In this experiment, we assume that the unlabeled

data arriving in time 𝑡 can be verified in time: 𝑡 + 1.

I.e. we will know the labeled data shown at time 𝑡 + 1

which was generated at time t.

4.1.2. Simulation Environment

Apache Spark [28] is an open-source Map-Reduce

implementation platform. Its core is written in Scala,

which is also executed by JVM and has integration

with Java. Spark provides wide APIs for different

programming languages, including Scala, Java and

Python. The key point in using Spark is that it provides

a resilient distributed dataset (RDD), which is a

collection of elements partitioned across the nodes of

the cluster that can be operated in parallel. RDD can be

transformed from various sources, such as HDFS,

normal text file or other existing programming

language collections in the driver program.

Furthermore, users can ask Spark to place an RDD in

memory and this allows it to be reused efficiently

across parallel operations. The other point of using

Spark is that it has high integration with Hadoop and it

has a better performance. Also, Spark will guarantee

quality of service, i.e. it will automatically recover

from node failures. We have implemented our method

in the dynamic environment which is a time flow

concept. In this environment, new data will be coming

through and the model generated by the selected

algorithms will do the prediction.

4.1.3. Spark Setup and Parameters Settings

The simulation is required to setup Spark first. In

this experiment, we clustered three Ubuntu computers

as a computation cluster. We set one computer as the

Driver, but also as a Worker. The other two computers

are set only as the Workers. Hence, we have a total of

3 cores and 6 GBs of memory resources in our cluster.

In this experiment, we chose Naïve Bayes Classifiers

to build the prediction model. The types of Naïve

Bayes Classifier, parameter k of binomial distribution

is the result of the amount of received instances at one

time unit to divide 3, and the weighting coefficients

(𝛼, 𝛽) are set to 0.01 and 0.1 respectively.

4.1.4. Case

In this section, the SEA data are generated based on

the rule introduced in [21]. The generated SEA data

exhibit the concept drift phenomenon. A group of data

sets are generated via a specific rule. The data sets are

designed to change concepts over time, and to test

whether or not the proposed method works.

 Initial data setting

In this section, the rule for generating data will be

explained. In this experiment, we generate SEA data to

validate the proposed method. The basic rule

introduced by Street and Kim [21] is considered a

concept drift benchmark. The dataset has two

classes 𝑐1, 𝑐2 and three features with values between

0 and 10. But only the first two features 𝑓1, 𝑓2 are

(4.1)

(4.2)

(4.3)

relevant. The target concept function is (4.1). The

concepts have been changed at positions 100, 200 and

300:

𝑐1: 𝑓1 + 𝑓2 > 𝜃

𝑐2: 𝑓1 + 𝑓2 ≤ 𝜃

We use this formula to generate 500 instances, and

set θ in this way:

0 – 100 instances: 𝜃 = 3

101 – 200 instances: 𝜃 = 5

201 – 300 instances: 𝜃 = 7

301 – 500 instances: 𝜃 = 9

After generating, the distribution of dataset is shown

in Figure 6. We get 10 instances in each time unit to

simulate the data stream. If you are interested in this

dataset, please contact me by mail for more

information and further details of this dataset.

Figure 6. Distribution of dataset with SEA concept.

4.1.5. Evaluation Metrics

 In order to evaluate whether or not the proposed

method can detect the concept drift phenomenon and

improve the prediction accuracy, we use accuracy rate

(AR) (4.2) to evaluate each prediction model and (4.3)

to evaluate the drift detection rate (DDR). Here,

𝑃𝐶𝑖 represents the correct prediction instance, i, in

sequential data, 𝑃𝑖 represents the instance i that was

predicted in the sequential data, 𝐷𝐷𝑖 represents drift

that was detected in sequential data, i, and 𝐷𝑖
represents the drift really happened in sequential data,

i. Furthermore, we record the total prediction time with

processing the specific amount of data in a data stream

to evaluate the efficiency.

𝐴𝑅 =
∑ 𝑃𝐶𝑖

∑ 𝑃𝑖

𝐷𝐷𝑅 =
∑ 𝐷𝐷𝑖

∑ 𝐷𝑖

4.2. Results and Analyses

In this section, we evaluate the performance of the

proposed method by using the metrics: accuracy rate

(AR) (4.2), drift detection rate (DDR) (4.3) and

execution time. The simulation case result is analyzed

in this case, we run three workers and each of them has

its own prediction model. The parameter k is set to

(total prediction instances in a unit time) / 3. Because

there are four adjustment rules (in Section 3.3.2) to

apply, each worker’s parameter and adjustment setting

are listed in Table 2.

Table 2. Each worker’s parameter and adjustment setting.

Worker k Adjustment

strategy

Worker 1 (total prediction instances

in a unit time) / 3

(1) (3)

Worker 2 (total prediction instances

in a unit time) / 3

(2) (3)

Worker 3 (total prediction instances

in a unit time) / 3

(1) (4)

After running the experiments, the result shows that

Worker 1 has accuracy 0.85 on average, Worker 2 has

an average accuracy rate of 0.83 and Worker 3 on

average has an accuracy rate of 0.86. Furthermore, the

GPred held by driver has accuracy 0.88 on average.

The entire concept drift that happened in the SEA

dataset has been detected, so the drift detection rate is

100%. Figure 7 shows the results of each worker with

the proposed method. The accuracy rate with the

proposed method will drop down just after concept

drift occurs, but it will respond to the new concept and

then improve the accuracy rate again.

Figure 7. Comparison of each worker and no drift detection.

In Figure 7, we can also see the comparison between

the results of each worker with and without the

proposed methods. Figure 8 shows the weight of each

worker in each state, and Figure 9 shows the result of

GPred selected from each prediction based on the

weight of each workers.

Figure 8. Weight of each worker.

Figure 9. Result of Global Prediction

4.3. Discussions

Table 3 shows the prediction accuracy of all

workers in all cases. The worker that did not apply the

proposed method decreased its predication accuracy

when the concept drift phenomenon happened.

Although the accuracy of our method still decreased

when concept drift phenomenon happened, it has

quickly responded to the new concept and adjusted the

model to fit the current context. Hence the other three

workers have a higher accuracy compared to workers

without the proposed method. Furthermore, according

to weighting and selection strategy, the GPred gets the

highest accuracy on average. The proposed method

increases by 14% in accuracy in all cases.

Table 3. Accuracy of model for each worker.

 AR in

concept

1

AR in

Concept

2

AR in

Concept

3

AR in

concept

4

Average

AR

Without

method

0.98 0.87 0.75 0.55 0.74

Worker 1 0.98 0.87 0.75 0.82 0.85

Worker 2 0.98 0.87 0.75 0.765 0.83

Worker 3 0.98 0.9 0.77 0.82 0.86

Also, the proposed method uses distributed

computing to improve the efficiency. Table 4 shows

the execution time with/without distributed computing.

It increases by 45% in time efficiency while applying

the same amount of dataset to the system. This feature

makes the proposed method more suitable for real-

time prediction and dynamic environments.

Table 4. Execution time.

 Total execution
time

Amount of
instances

Local computing 1.1s 500

Distributed

computing

0.6s 500

In this research, the proposed method shows the

capability of doing on-line predictions and responding

to the current contexts by adjusting the prediction

model in a dynamic environment. Also, the proposed

method is able to select the most reliable prediction

result as the final output to the user.

5. Conclusions

Data analysis and prediction problems in a dynamic

environment are very important and attractive because

the information hidden within the data may be very

valuable. Dynamic data driven prediction is a popular

research are a due to reported difficulties to use a

normal approach to deal with this problem. Hence, this

paper proposed a method based on a dynamic data

driven application system with parallel concept drift

detection and model adjustment. DDDAS can

dynamically inject data into a system (stream) and gain

their feedback. We use Map-Reduce distributed

computing architecture and a statistic method to detect

the concept drift phenomenon via a probability model.

Furthermore, we use LPred and GPred to get the best

prediction results in the current context in a dynamic

environment. Compared to traditional machine

learning that focuses on stationary distribution data, the

proposed method can detect the concept drift

phenomenon and efficiently adjust the prediction

model. The experimental results show that the

proposed method can detect concept drift in dynamic

concept changing environment. This method improves

the average predication accuracy about 14%.

Furthermore, due to the distributed computing, the

proposed method saves almost 10 seconds for 581,012

instances in total processing time which is a significant

improvement in the real-time prediction world. In the

future, we will look for more realistic datasets as

experiment data for testing the proposed approach.

More workers are also used in the Map-Reduce

distributed architecture to enhance the computing

efficiency.

Acknowledgement

This research work was supported by the Ministry

of Science and Technology, Taiwan under the grant

104-2410-H-033-025 and 105-2410-H-033-027. We

would like to express our gratitude to Po-Chien Chao

for his invaluable comments on the early version of this

paper.

References

[1] I.-T. T. W. B. R. Series, "Ubiquitous Sensor Networks

(USN)," 2008.
[2] K. Ashton, "That ‘internet of things’ thing," RFiD Journal,

vol. 22, pp. 97-114, 2009.

[3] P. Mell and T. Grance, "The NIST definition of cloud
computing," National Institute of Standards and Technology,

vol. 53, p. 50, 2009.

[4] A. McAfee and E. Brynjolfsson. (2012). Big Data: The
Management Revolution.

[5] I. Gartner. (2015). Gartner Identifies the Top 10 Strategic

Technology Trends for 2016. Available:

http://www.gartner.com/newsroom/id/3143521

[6] Gema Bello Orgaz, et.al.,"Social big data: Recent

achievements and new challenges," Information Fusion, vol.
28, pp. 45-59, 2016.

[7] A. Tsymbal, "The problem of concept drift: definitions and
related work," Computer Science Department, Trinity

College Dublin, vol. 106, 2004.

[8] Y. Chen, H. Amiri, Z. Li, and T.-S. Chua, "Emerging topic
detection for organizations from microblogs," in Proceedings

of the 36th international ACM SIGIR conference on Research

and development in information retrieval, 2013, pp. 43-52.
[9] F. Darema, "Dynamic Data Driven Applications Systems: A

New Paradigm for Application Simulations and

Measurements," in Computational Science-ICCS 2004, ed:
Springer, 2004, pp. 662-669.

[10] S.-Y. Lin, "Reinforcement learning-based prediction

approach for distributed Dynamic Data-Driven Application

Systems," Information Technology and Management, vol. 16,

pp. 313-326, 2015.

[11] F. Darema, "Introduction to the ICCS 2007 workshop on
dynamic data driven applications systems," in Computational

Science–ICCS 2007, ed: Springer, 2007, pp. 955-962.

[12] C. C. Douglas, R. Loader, J. D. Beezley, J. Mandel, R. E.
Ewing, Y. Efendiev, G. Qin, M. Iskandarani, J. Coen, and A.

Vodacek, "DDDAS approaches to wildland fire modeling

and contaminant tracking," in Proceedings of the Winter
Simulation Conference, 2006, pp. 2117-2124.

[13] R. Rodríguez, A. Cortés, and T. Margalef, "Data Injection at

Execution Time in Grid Environments Using Dynamic Data
Driven Application System for Wildland Fire Spread

Prediction," in Proceedings of the 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid
Computing, 2010, pp. 565-568.

[14] C. C. Douglas and Y. Efendiev, "A dynamic data-driven

application simulation framework for contaminant transport

problems," Computers & Mathematics with Applications, vol.
51, pp. 1633-1646, 2006.

[15] C. C. Douglas, D. Bansal, J. D. Beezley, L. S. Bennethum, S.

Chakraborty, J. L. Coen, Y. Efendiev, R. E. Ewing, J. Hatcher,
and M. Iskandarani, "Dynamic Data-Driven Application

Systems for empty houses, contaminat tracking, and wildland

fireline prediction," in Grid-Based Problem Solving
Environments, ed: Springer, 2007, pp. 255-272.

[16] G. Allen, "Building a dynamic data driven application system

for hurricane forecasting," in Computational Science–ICCS
2007, ed: Springer, 2007, pp. 1034-1041.

[17] R. Hirschfeld and K. Kawamura, "Dynamic service

adaptation," in Proceedings of the 24th International
Conference on Distributed Computing Systems Workshops,

2004, pp. 290-297.

[18] S. Wang, S. Schlobach, and M. Klein, "What is concept drift
and how to measure it?," in Knowledge Engineering and

Management by the Masses, ed: Springer, 2010, pp. 241-256.

[19] M. B. Harries, C. Sammut, and K. Horn, "Extracting hidden
context," Machine learning, vol. 32, pp. 101-126, 1998.

[20] G. Widmer and M. Kubat, "Learning in the presence of

concept drift and hidden contexts," Machine learning, vol. 23,
pp. 69-101, 1996.

[21] W. N. Street and Y. Kim, "A streaming ensemble algorithm

(SEA) for large-scale classification," in Proceedings of the

seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, 2001, pp. 377-382.
[22] I. Zliobaite, "Learning under concept drift: an overview,"

Overview”, Technical report, Vilnius University, 2009

techniques, related areas, applications Subjects: Artificial
Intelligence2009.

[23] S. R. Rangari, S. Dongre, and L. Malik, "A new classifier for

handling concept drifting data stream," International Jour-
nal of Science and Research, vol. 2, pp. 441-444, 2013.

[24] Agustín Ortíz Díaz, José del Campo-Ávila, Gonzalo Ramos-

Jiménez, et al., “Fast Adapting Ensemble: A New Algorithm
for Mining Data Streams with Concept Drift,” The Scientific

World Journal, vol. 2015, Article ID 235810, 14 pages, 2015.

[25] N. Littlestone and M. K. Warmuth, "The weighted majority
algorithm," Information and computation, vol. 108, pp. 212-

261, 1994.

[26] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, "Learning
with drift detection," in Advances in Artificial Intelligence–

SBIA 2004, ed: Springer, 2004, pp. 286-295.

[27] A. Andrzejak and J. B. Gomes, "Parallel Concept Drift
Detection with Online Map-Reduce," in Proceedings of the

IEEE 12th International Conference on Data Mining

Workshops (ICDMW), 2012, pp. 402-407.
[28] A. Murthy. (2012). Apache Hadoop YARN – Background and

an Overview. Available:

http://hortonworks.com/blog/apache-hadoop-yarn-
background-and-an-overview/

[29] A. foundation and G. contributors. (2010). Apache Spark.

Available: https://github.com/apache/spark

http://et.al/

	jacekparallelcover
	jacekParallel Concept Drift_camera_ready

