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Abstract. The traditional data analysis and prediction method assumes that data distribution is normal and will not change. 

Therefore, it can predict unlabeled data by analyzing the static and historical data. However, in today’s big-data environment, 

which is changing frequently, the traditional approaches can no longer be effective, as they cannot handle concept drift problems 

in a Dynamic Data Driven Application System (DDDAS). This study proposes a parallel detection and prediction method for 

concept drift problems in DDDAS. The proposed method can detect dynamic and changing data, and then feedback to the 

prediction model to revise for better subsequent predictions. Furthermore, this method computes a global prediction result by 

aggregating local predictions in the resource bounded environment. Therefore, the prediction accuracy increases, and the 

computation time decreases. In the simulation, the Map-Reduce technology is used for parallel processing. The simulation results 

show that the prediction accuracy is raised by 14%, and the execution time is improved by almost 45%. 
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1.  Introduction 

In recent years, the Ubiquitous Sensor Networks [1], 

Internet of Things [2], Cloud Computing [3] and Big 

Data [4] have been rapidly developed and advanced to 

meet the changing application’s environments and 

demands. These information technologies are so 

popular that Gartner Inc. listed them in the top 10 

Information Technology Strategies of the Year 2016 

[5]. Fast development of wireless and cellular network 

infrastructures, which took place in recent years, 

enabled mobile devices with computing power to 

communicate with each other with a cheaper rate and 

higher availability. This allowed us to collect a wide 

variety of data through sensors, smart phones or 

wearable devices. Furthermore, with the higher 

efficiency in data storage and the lower cost of storage 

devices, we can handle larger amounts of data in a 

shorter time. The amount of such data accumulates, 

however, quickly. In recent years, big data analysis 

has become one of the hottest research fields. Strong 

interests in the collected data grow from the big data’s 

ability to derive new useful information, which can be 

further used to generate new knowledge and 

applications. These big data (data driven) applications 

could be applied in many fields of social networks, 

cybercrime, energy, or e-health [6]. However, due to 

the volume, velocity and variety of big data, to 

increase the precision of predicting the future trend or 

events in such dynamic, uncertain, and complicated 

environments is still a challenge. Most the existing 

prediction methods are designed to focus on analysis 

of static historical data. However, in the dynamic 

environment, new data can be generated at any time 

which violates the assumption of most traditional 

prediction models which is built upon that idea that the 

population is distributed in a stationary manner.  

Therefore, such prediction models may lose accuracy 

if it relies on the historical data only without   up-to-

date data, which may possess new features with new 

distribution. This phenomenon is called Concept Drift 

[7]. Concept drift means that the focus on the topic 

moves from one concept to another. The definition of 

concept drift in the traditional context differs from the 



one in the context of data mining. Once concept drift 

happens, the prediction model, which does not include 

the new factors, may have the high probability of 

making the wrong predictions. Emerging topic 

detection [8] and the typhoon rain falls predictions are 

the examples of Concept drift. 

This research paper proposes a method to detect 

concept drift and adjust the prediction model to retain 

the precision in a dynamic data stream environment. 

The proposed method leverages the concept of 

Dynamic Data Driven Application System(DDDAS) 

[9] to detect changing concepts, and then adopts the 

available adjustment strategies to increase the 

prediction accuracy. Due to the limited resources (e.g. 

computation, storage), it is not possible to try various 

combinations of datasets and parameter settings of a 

model. In order to allow varied prediction models with 

varied parameter settings to apply to different datasets, 

different models have been deployed to a distributed 

computing architecture and computed in parallel to try 

different combinations in order to optimize the model 

prediction output before the designated deadline. The 

proposed method will include the detection and 

adjustment of these two components. 

2. Related Works 

2.1. Dynamic Data Driven Application System 

(DDDAS) 

A Dynamic Data Driven Application Systems 

(DDDAS) is a real time feedback and control system. 

It is a new paradigm supported by the National Science 

Foundation (NSF) in order to solve the inefficient 

problems in traditional simulations, predictions and 

measurements [10]. DDDAS provides a model which 

is characterized by a more reliable outcome, stable data 

process and accurate prediction or analysis results. It 

allows a model to dynamically receive and respond 

[11] to the changing environments. The DDDAS 

concept describes the dynamic capability of the system 

to process and control data. DDDAS implements real-

time data coordination in a runtime environment. 

Hence, DDDAS does not only provide more just in-

time statistics, but also offers the feedback method to 

enhance the model and improve experimental results 

[11-14]. Recent improvements of computing power 

and models (e.g. Cloud Computing, Grid Computing) 

as well as data technologies(e.g. Sensor Network, data 

storage techniques, data communication techniques), 

speeds up the promotion of DDDAS architecture [14]. 

These components are integrated with automatic 

feedback, measurement, simulation and a control 

method to work in a dynamic way. Users could use the 

DDDAS model via the dynamic visualization module 

to interact with other components: (1) real-time 

dynamic data gathering from others modules; (2) time 

series data gathered from measurement instruments 

(e.g. sensors, database, GIS, open data); (3) dynamic 

computation modules dealing with mathematical 

models and prediction computation.  

Due to these functions, DDDAS is able to provide 

efficiency and stability to handle real-time situations in 

the real world. As Figure 1 shows, the DDDAS 

architecture includes: the user’s controller, dynamic 

visualization interface, dynamic computation and real-

time dynamic data gathering modules [14]. 

 
Figure 1. Basic concept and components of DDDAS. 

In the past, when facing challenges in weather 

prediction, agricultural forecast or contaminant 

tracking, the historical data was used as the input into 

a prediction system. However, when a model relies on 

historical data only, it cannot reflect the real-time 

events or provide real-time feedback. DDDAS 

proposed a real-time feedback method to transfer data 

to a computing model, thereby enhancing the 

predication accuracy. In the field of environmental 

and agriculture sciences, (e.g., Greenhouse Gas 

emission, River Pollution monitoring) DDDAS offers 

the ability to adjust and change parameters. This 

feature makes the model scalable [15]. Moreover, it 

can be used in predicting hurricanes [16]. DDDAS is 

not only able to process numerical data, but it can also 

analyze graphs or diagrams to increase the prediction 

success rate [17]. 

Frederica Darema who proposed the DDDAS 

concept, pointed out that it encompasses more than 

real-time control. However, there are some challenges 

which require further work. One of the challenges is 

the uncertainty of concept drift dynamics, which 

causes the prediction error. The key to solving this 

problem is to find out how to establish data correlation. 

In this research paper, we will try to solve the 



correlation problem and increase the predication model 

accuracy in an efficient way. 

2.2. Concept Drift 

“Concept” is a central structure that is used to 

describe the common properties of a set of objects. The 

states of the world continue to change, and the 

corresponding concepts also change rapidly. A concept 

is mapped to different objects in different places or 

times [18]. “Concept Drift” is a phenomenon that 

happens when the distribution of data shift from its 

original patterns to different ones. This “Drift” will 

possibly cause the prediction model, which was trained 

on historical data, to make the erroneous predictions. 

The tastes of users are often determined by Hidden 

Contexts [19]. It is a challenge to give a clear and 

definite formula to model the tastes of users. An 

example such as: a customer’s shopping behavior 

changes over time due to a number of hidden reasons, 

which can make the modeling process difficult and 

complicated. Furthermore, data generated in a dynamic 

environment may contain lots of noise data to prevent 

learning methods to distinguish real concept drifts from 

false ones. For example, some learning algorithms may 

be too sensitive with data accompanied by noise, while 

some of them may be characterized by a slow response 

to the changes,  this results in the algorithm being too 

slow to adapt to the latest concepts [20].  

The two types of concept drift are: (1) gradual 

concept drift and (2) abrupt concept drift. An example 

of gradual concept drift is the data set that uses spam 

assassin data collection (Katakis et al., 2010), and an 
example of abrupt concept drift is the SEA dataset 

which represents the streaming ensemble algorithm 

[21]. An ideal concept drift detection system should be 

able to (1) adapt quickly to a drifted concept, (2) 

effectively identify noise data, and (3) recognize 

recurrent context and model them as internal rules. The 

machine learning and analysis prediction approach of 

concept drift is to detect the statistical characteristic of 

variables of target objects. The pre-built model is used 

to analyze the patterns of the target variable and predict 

its possible changes over time. However, such a model 

is too reliant on historical data to maintain a high 

accuracy, which may be suitable for the dynamic and 

real-time applications. In order to build an accurate and 

effective learning machine, the designer should 

consider the following factors in the modeling process: 

(1) Future assumption: the model being able to 

accommodate future unstable data distribution.  

(2) Classification changes: the model being able to find 

the possible variation rules.  

(3) Adaptive learning: a learning machine being able to 

adapt to emerging contextual concepts via (1) and (2).  

(4) Model selection: being able to identify rules from 

experiences to choose the appropriate parameters and 

model accordingly over time [22].  

When over-fitting phenomenon happens, adaptive 

approaches should be adopted to adjust the pre-built 

model to avoid incorrect prediction results for different 

distributions of data [18, 23, 24].  

2.3. Dynamic Weighted Majority 

The Dynamic Weighted Majority (DWM) based on 

a Weighted Majority Algorithm [25], proposed by JZ 

Kotler and MA Malo in 2003, is an algorithm which 

takes dynamic weights adjustment as the core concept. 

DWM is an ensemble method that uses an ‘expert’ 

group to determine the weights, so each member in the 

group assigns a weight to each possible approach for 

the algorithm to try. DWM greatly benefits from the 

concept drift detection because of the dynamic weight 

adjustment. The algorithm changes the weights to the 

approaches. If some of the approaches’ weights 

decrease and the results start to change, a concept drift 

taking place can be concluded. Later in this paper we 

will discuss the core concept of DWM and advantages 

of DWM over Weight Majority Algorithm along with 

the integration of DWM in a dynamic environment. 

The Weighted Majority Algorithm (WMA) is one of 

the components in the pool of machine learning 

methods. WMA presents a pool of prediction 

algorithms (e.g. a group of classifiers, a group of the 

same or different approaches) without any prior 

knowledge. Although it assumes that we have no prior 

knowledge about the accuracy of the algorithms in the 

pool, there are adequate reasons to believe that one or 

more algorithms will perform well [25]. Unlike 

common prediction methods, the WMA makes 

decisions by group voting. It makes fewer mistakes 

than a single prediction approach because it employs a 

collection of prediction approaches. The steps of the 

algorithm making predictions via WMA are described 

below: 

 STEP 1: Each prediction method in the WMA pool 

makes the prediction individually. 

 STEP 2: WMA concludes the result of a class from 

its highest total. 



 STEP 3: Compare the prediction results with the 

actual outcome. 

 STEP 4: Increase the weight (𝜔) of experts who 

make the prediction correctly, and decrease the 

weight ( 𝜔 ) of experts who make the wrong 

prediction. 

Assume that the problem is a binary decision 

problem. The process of the algorithm is presented as 

follows in each trial: To construct the compound 

algorithm, a positive weighted value is given to each of 

the algorithms in the pool. Each of prediction 

algorithms is executed to make the prediction. The 

compound algorithm then collects weighted votes from 

all the algorithms in the pool, and gives the final 

prediction that has the highest vote. If the compound 

algorithm makes a mistake, the algorithms in the pool 

that contributed to the wrong prediction will be 

discounted by a constant ratio β where 0<β<1. If 

Weight Majority Algorithm is applied to a pool of 

functions with 𝛽 =  0  then the initial weights are 

equal. If 𝛽 >  0, then Weight Majority Algorithm 

gradually decreases the influence of functions that 

make a large number of mistakes and gives the 

inconsistency can eliminate a function. Assume that 

the Weight Majority Algorithm is applied to a pool, F, 

of functions and that the sequence of trials has m 

mistakes with respect to F. For the general case where 

Weight Majority Algorithm is applied to a pool F of 

algorithms we show the following upper bounds on the 

number of mistakes made in a given sequence of trials: 

 O(log |F| + m), if one algorithm of 𝐹 makes at 

most m mistakes. 

 O(log |F| / k + m), if each of a subpool of 𝑘 

algorithms of 𝐹 makes at most m mistakes. 

 O(log |F| / k + m / k), if the total number of 

mistakes of a subpool of  𝑘 algorithms of 𝐹 is 

at most m. 

As discussed above, the WMA presents weighted 

voting based on the ensemble method. It combines a 

group of prediction approaches and takes each 

approach as an ‘expert’ with its own weight. The 

superiority of this algorithm is the use of group 

decision, as it can provide a more stable and accurate 

output. The Dynamic Weighted Majority (DWM) is 

based on the Weighted Majority Algorithm (WMA). It 

extends the advantage of WMA by adding a threshold 

(Ɵ) in the algorithm to allow weight change in the 

runtime, and its weight is reduced by the multiplicative 

constant, β, (β is from 0 to 1) when the errors occur in 

the prediction process. Therefore, the best algorithm 

with the highest weight can be found in the pool of 

WMA dynamically. 

In this study, we take Naïve Bayes classifiers as the 

example to explain the process of the DWM. Naive 

Bayes is a simple technique for constructing classifiers. 

Models assign class labels to problem instances, 

represented as vectors of feature values, where the 

class labels are drawn from some finite set. In the 

initial stage, each expert makes the prediction for 

collecting the results and summarizing the weight of 

experts. Secondly, the DWM takes the highest weight 

of the results as a global result. Thirdly, it compares 

the global result with the actual answer Furthermore, 

if the global result makes the wrong prediction, it 

decreases the weight of the expert who proposed the 

wrong predication, multiplying it by the constant β. 

Lastly, it checks if any expert’s weight is below the 

threshold Ɵ; it then deletes the expert and adds the new 

one with normalized weight. Based on the knowledge 

of concepts and processes we described above, it 

makes sense that the model of DWM fits the 

requirements of DDDAS which includes (1) Dynamic 

data environment, (2) Prediction methods (experts), 

and (3) feedback (weighting update) and β is the 

adjustment value for the learning experience. Thus, 

this research will take the concept of DWM to support 

our designed method to solve the issues of concept 

drift. 

3. Parallel Detection and Prediction Method for 

Concept Drift in DDDAS 

In this section, a parallel detection and prediction 

method for concept drift in dynamic data driven 

application systems is presented in detail. 

Characteristics of big data include dynamics, 

uncertainty, variety, complication, and correlation. 

Thus, using the traditional prediction methods or 

machine learning approaches, which are used to predict 

and analyze the static or stationary data, may not be 

sufficient enough to satisfy new requirements of big 

data, as they also cannot adjust themselves 

dynamically to meet new phenomenon when the 

concept drift occurs. The proposed method can detect 

the concept drift phenomenon in a dynamic 

environment, and efficiently adjust the parameters in 

the prediction model according to the emerging 

context. Furthermore, different configurations of 

models for the applications can be simulated and tested 

efficiently via the use of distributed parallel 

computational nodes. There are three key problems in 

this study: 



(1) Dynamic concept drift: The first one is to detect 

the occurrence of concept drift. Concept drift means 

that a prediction model makes a prediction, but the 

correlation or characteristic of the data has been 

changed over time in unforeseen ways that causes the 

predictions to become less accurate over time. The 

phenomenon is defined as dynamic concept drift. So, 

how to detect and perceive the concept changes in 

dynamic environment, is the key problem in this study. 

(2) Model adjustment: Model selection (adjustment) 

and validation is to choose the most appropriate model 

for the data. In a dynamic environment, the values of 

model parameters should be adjusted repeatedly 

according to dynamic data in order to ensure that the 

model behavior is appropriate. Moreover, determining 

which segment of the data and the parameters should 

be selected for adjustment is also a problem. 

(3) Resource balance: The last problem is to balance 

the computing resources. Validating models (experts) 

in DWM is a time-consuming task. If all the required 

resources of the concept detection and adjustment 

model are computed in one machine, it will take too 

much time to produce the prediction results. In a real-

time application, the slightest difference in time to 

produce the outcome for the predication model could 

lead to a huge difference in its usefulness. 

3.1. Definition and Notations 

3.1.1. Definition 

Concept drift is a phenomenon in which patterns of 

data continuously change over time and lead to the pre-

built model not being able to make accurate 

predictions. This study uses three levels of concept 

drift and two metrics to compute the prediction results. 

One of our goals is to detect concept drift. We use the 

error-rate (𝑝𝑖 ) and the standard deviation (𝑠𝑖 ) of the 

prediction model to obtain the confidence level, which 

determines the possibility of concept drift occurrence 

[26, 27]. The binomial distribution gives the general 

form of the probability or to observe  an error, so the 

error-rate (𝑝𝑖) is a random variable from a sequence of 

Bernoulli trials. For each record 𝑖 in the data stream 

and the number of miss-classifications until, noted 

as𝑒𝑟𝑟𝑜𝑟𝑖 , the error-rate is 𝑝𝑖 = (𝑒𝑟𝑟𝑜𝑟𝑖 𝑖⁄ )  and the 

standard deviation is 𝑠𝑖 =
√𝑝𝑖(1− 𝑝𝑖)

𝑖
. Moreover, 𝑝𝑚𝑖𝑛  

and 𝑠𝑚𝑖𝑛  represent the current minimum 𝑝𝑖  and 

𝑠𝑖 respectively in all of the prediction models in 

distributed nodes. Three levels of confidences are 

listed below: 

 

 Normal Level (NL): 

Occurs if 𝑝𝑖 +  𝑠𝑖 < 𝑝𝑚𝑖𝑛 + 2𝑠𝑚𝑖𝑛  

 Warning Level (WL): 

Occurs if𝑝𝑖 +  𝑠𝑖  ≥  𝑝𝑚𝑖𝑛 + 2𝑠𝑚𝑖𝑛  

 Drift Level (DL): 

Occurs if𝑝𝑖 +  𝑠𝑖  ≥  𝑝𝑚𝑖𝑛 + 3𝑠𝑚𝑖𝑛  

Besides this, this study also uses the following two 

metrics to build the prediction mechanism in the 

proposed parallel dynamic data-driven model: 

 Local Prediction (LPred): 

In distributed nodes, each node (worker) will predict 

its own local result (LPred) with the built-in model 

held by it. All local prediction results will be sent to the 

driver, as described in the next section, to do further 

prediction and detection work. 

 Global Prediction (GPred): 

The global prediction result (GPred) is calculated 

from a group of prediction models produced by the 

drivers in order to get a reliable result. 

3.1.2. Notations 
Table 1. Notation table. 

Notation Definition 

α The factor of raising the weight when the 
algorithm’s predictor makes the wrong prediction  

β The factor of decreasing the weight when the 

algorithm’s predictor makes the wrong prediction 

𝐿𝑃𝑟𝑒𝑑𝑡,𝑖 Local prediction result of worker 𝑖 in time 𝑡 

𝑝𝑖 Error-rate of instances until 𝑖 
𝑠𝑖 Standard deviation of instances until 𝑖 

𝑝𝑚𝑖𝑛 Current minimum value of 𝑝𝑖 

𝑠𝑚𝑖𝑛 Current minimum value of 𝑠𝑖 

3.2. The proposed method 

As shown in Figure 2, the architecture of the 

proposed method has two major roles: the driver and 

the worker. These two major roles control the flow of 

our programming model. 

Driver: The driver is a central controller that 

receives streaming data and passes the data to workers 

to dispatch tasks. After the worker finishes the task, the 

driver will receive the prediction result from the 

worker, and it can then select the best prediction result 

for the user. 

Worker: The worker is a computational device that 

will maintain the prediction model and wait for the 

driver to call and provide input data. Once the worker 

is triggered, it will make the prediction based on the 

input data, and then passes the local prediction result 

(LRep) back to the driver. While this happens, it 



simultaneously invokes another function to evaluate 

and determine if a concept drift occurs. These two 

actions asynchronously take place in order to improve 

the performance. We will now introduce each node in 

the architecture in more details. 

 
Figure 2. Overall architecture of the proposed method. 

 Start workers 

Once the driver receives the data stream, it will 

transmit the data to workers and ask them to start 

working in parallel. 

 Parameters setting 

After being awoken by the driver, the worker will 

set the parameters and concept drift detection strategy. 

Each worker may have different parameters (such as 

the time range of training datasets) and adjustment 

strategies (see the detailed explanation in Section 

3.2.1). In other words, each worker has different model 

parameters and adjustment strategies. Through the 

dynamic learning and adjustment process of these large 

varieties by DWM, we expect to get better results in a 

dynamic process. 

 Predict 

At this stage, the worker will first partially train the 

prediction model with pre-defined parameter settings 

and data range. The worker will then apply the received 

data to the prediction model to obtain the local 

prediction result (LPred). After finishing the 

prediction, the worker will forward the result in two 

directions. The first one is to give feedbacks to the 

driver. The other is to invoke the drift detection 

function to analyze if the concept drift, based on the 

recently received data, did take place. 

 

 Get prediction results 

While receiving the LPred made by the worker, the 

driver will invoke the drift detection function and best 

result selection function respectively. The key point is 

that, these two functions are running in the parallel 

processes or threads to prevent the driver from being 

blocked, so it can continue receiving new input data 

streams or other prediction results. 

 Output the best results 

Because the driver has the weight states of all the 

workers, it can determine which LPred is suitable as 

the GPred (generally, selecting the worker with the 

highest weight). Finally, the driver sends the output of 

the GPred to the user. 

 Detect drift for each worker’s model 

At this stage, the driver will store the LPred of the 

data stream, and then each worker waits for the actual 

labels of that data stream (target data) at time t+1 to 

evaluate the prediction results of worker’s model at 

time t. After the evaluation, the driver will update the 

weight edvalue and calculate the confidence of concept 

drift for each worker’s model.  

 Adjust each workers’ model 

At this stage, if the concept drift phenomenon has 

been detected, the driver will adjust the worker’s 

prediction model according to different adjusting 

strategies. 

Figure 3 is the flow of the proposed method. It is 

composed of two major phases, corresponding to the 

prediction and the detection respectively. We will 

introduce these in detail in the following sections. 

3.2.1. Phase 1 – Prediction 

In this phase, the main objective is to predict the 

unlabeled data coming from the data streams. In order 

to analyze huge amounts of data with multiple models 

trained with different parameter settings and 

referenced training data, our method will distribute the 

computational tasks to different computing nodes as 

workers. Each worker will work on the data it receives 

and use the built-in model to make the prediction. Also, 

each worker will check the discard flag to determine 

whether it should discard the trained prediction model 

or not. 



 
Figure 3. Flow of the Map-Reduce distributed nodes. 

 

When the driver receives the input data stream, it 

will ask all of the workers in the cluster that is 

controlled by the driver to start working. We use yarn 

[28] to cluster computers together in order to start the 

jobs in the Map-Reduce paradigm. The overview of 

this distributed computing architecture and the 

relationship between driver and works is shown in 

Figure 4. 

 Steps 1-3: 

After being triggered by the driver, the worker will 

determine the parameters for the model and select the 

drift detection strategy. The worker will then take the 

existing labeled data as the training set in order to 

build the prediction model. 

 Steps 4-6: 

The worker will first train the prediction model with 

the input value and parameters obtained from the 

previous stage. Then the worker will get the received 

unlabeled data at time t (𝑈𝐷𝑡) to predict (classify) their 

label. After the worker finishes the above task, it does 

two actions simultaneously; transmits the prediction 

results to the driver that will immediately do the reduce 

task and checks whether or not the discard flag of its 

model has been set to True in Step 7. If the flag is set 

to True, the worker will discard its model in Step 8 and 

train a new one. If the flag is False, the worker will 

continue receiving the unlabeled data stream for 

prediction in Step 5. 

 
Figure 4. Architecture of Driver and Worker. 

3.2.2. Phase 2 - Detection 

In this phase, the aim is to detect the concept drift 

phenomenon by comparing the prediction results with 

the actual ones. By collecting each prediction result 

from each worker, the driver will evaluate the 

occurrence of concept drift. If the concept drift 

happens, it then stores the data with new concepts for 

the worker to build the new prediction model. 

 Step 1:  

The driver receives the prediction labels of the data 

stream at time t from worker 𝑖 as𝐿𝑃𝑟𝑒𝑑t,i. The driver 

will then check whether the weight of worker 𝑖 is the 

highest of all. If it is True, then the driver will mark the 

𝐿𝑃𝑟𝑒𝑑t,i as GPred and then output to the user in Step 

2. 

 Steps 3-6: 

The driver will wait for the actual labels of 𝑈𝐷𝑡  as 

𝑅𝐿𝑡 and then compare the 𝐿𝑃𝑟𝑒𝑑t of each workers’ 

model with RLt  to calculate error-rate ( 𝑝𝑖 ) and 

standard deviation (𝑆𝑖) as well as analyze the possible 

concept drift phenomenon. Also, the driver will update 

the weight of each worker using the following 

equations: 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗  𝛼   (3.1) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑖 −  𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗  𝛽   (3.2) 

𝛼  is a coefficient that represents the speed of 

increasing weight when the model makes a correct 

Wait for the 
real label of 

UDt as RLt 



prediction. 𝛽 is a coefficient that represents the speed 

of decreasing weight when the model makes an 

incorrect prediction. In this method, we use binomial 

distribution to calculate 𝑝𝑖  which is equivalent to the 

probability of k miss-classifications of n instances: 

𝑝𝑖 = (𝑒𝑟𝑟𝑜𝑟𝑖 𝑖⁄ ) (3.3) 

We then use pi to calculate standard deviation: 

𝑠𝑖 =
√𝑝𝑖(1 − 𝑝𝑖)

𝑖
 (3.4) 

The standard deviation represents the degree of 

dispersion of these instances, and then applies the 

confidence interval presented in Figure 5, to determine 

the probability or confidence of concept drift 

happening. It assumes that 𝑝𝑖  will decrease while 𝑖 
increases if the data has a stationary distribution. A 

significant increase in 𝑝𝑖  indicates that the 

distribution of the data is changing. The minimum 

values (𝑝𝑚𝑖𝑛 , 𝑠𝑚𝑖𝑛) of 𝑝𝑖  and 𝑠𝑖  are recorded when 

𝑝𝑖 +  𝑠𝑖  reaches its minimum value. Here are the 

different levels (normal, warning, and drift level) with 

different confidences in the confidence interval for 

concept drift detection. 

 

Figure 5. Confidence Interval with three levels. 

 At level NL, concept drift is considered not 

happening. 

 At level WL, it is possible for concept drift to 

happen. The method will store the labeled data in 

the corresponding time frame. 

 At level DL, we are 99%   confidence that 

concept drift happened. The method will set the 

discard flag of the workers’ model to True and pass 

the labeled data stored from the warning level as a 

training set for workers to train the model for the 

new concept. 

 Step 7-12:  

In order to adjust prediction model when concept 

drift happens, we first check the confidence level 

described previously: 

 If the level is “Drift”: The driver will store the 

current evaluated data with its real label (𝑈𝐷𝑡 , 𝑅𝐿𝑡) 

as a training set and set the worker’s discard flag to 

True. So, in the next round, when the worker, based 

on new data stream, starts its prediction, it will 

discard the old prediction model and use the stored 

training set to build a new prediction model. 

 If the level is “Warning”: The driver will store the 

current evaluated data with its real label (𝑈𝐷𝑡 , 𝑅𝐿𝑡) 

from the time slot t. 

 If the level is “Normal”: The evaluated result is 

good and no adjustment is needed in this level. 

 The additional consideration is that, because the 

data stream may contain noises, it is necessary to 

prevent the worker from mistaking noise as a 

concept drift. If the method wrongly determines too 

many concept changes as noise data, the model will 

not be adjusted enough to model the new concept. 

Hence, the following four adjustment strategies can 

apply: 

(1) Assume that the last warning detection signal is an 

exception. If the present status of concept detection 

falls in the area of normal level, and the last status fell 

in the warning level, the last warning detection signal 

is an exception. Therefore, the data instances which 

persisted from time t-1 to t are discarded. 

(2) Assume that the last warning detection signal is 

NOT an exception. If the present status of concept drift 

detection falls in the area of normal level, and the last 

status fell in the warning level, the last warning 

detection signal is NOT an exception. Therefore, the 

instances which persisted from time t-1 to t are 

continued to be stored for training the next prediction 

model when the next concept drift happens. 

(3) Assume that the present drift detection signal is an 

exception. Because the last detection signal fell in the 

normal level, and the present status of concept drift 

detection falls in the normal level, it skipped over the 

warning level. Therefore, the discard flag does not 

reset to TRUE to keep the current prediction model. 

(4) Assume that the present drift detection signal is 

NOT an exception. The last detection signal fell in the 



(4.2) 

(4.3) 

normal level, and then the present status of concept 

drift detection really falls in the normal level suddenly. 

Therefore, the discard flag is resetting to TRUE to 

retrain the new prediction model in the same worker by 

the persisted training dataset. 

3.3. Discussions on concept drift  

The proposed method uses a DDDAS with Map-

Reduce distributed architecture, a statistic method to 

calculate pi and si and confidence interval to detect 

concept drift. Furthermore, we use LPred and GPred 

to get the best prediction result in the current context in 

a dynamic environment. Compared to traditional 

machine learning that focuses on stationary 

distribution data, the proposed method can detect the 

concept drift phenomenon and efficiently adjust the 

prediction model. In a dynamic environment, training 

a model with historical data is a problem because of the 

noise data and unpredictable changes over different 

contexts. In the past, handling multiple prediction 

models was difficult due to the limited computational 

resources. The proposed method uses a Map-Reduce 

distributed computing framework, which can easily 

cluster multiple computer resources to simultaneously 

run the prediction model with different parameters and 

related data to analyze concept drifts and detect them. 

Finally, the metric of GPred is assigned by the LPred 

that is produced by each distributed worker, but it uses 

the highest weight to get the best prediction result. 

4. Simulation and Analyses of Results 

In this section, the manually generated dataset is 

applied to verify the proposed method. 

4.1. Simulation 

In this section, we present the simulation scenarios 

and environment in order to verify the proposed 

method: the simulation parameters and evaluation 

metrics are also shown. 

4.1.1. Simulation Assumption 

In this experiment, we assume that the unlabeled 

data arriving in time 𝑡 can be verified in time: 𝑡 + 1. 

I.e. we will know the labeled data shown at time 𝑡 + 1 

which was generated at time t. 

4.1.2. Simulation Environment 

Apache Spark [28] is an open-source Map-Reduce 

implementation platform. Its core is written in Scala, 

which is also executed by JVM and has integration 

with Java. Spark provides wide APIs for different 

programming languages, including Scala, Java and 

Python. The key point in using Spark is that it provides 

a resilient distributed dataset (RDD), which is a 

collection of elements partitioned across the nodes of 

the cluster that can be operated in parallel. RDD can be 

transformed from various sources, such as HDFS, 

normal text file or other existing programming 

language collections in the driver program. 

Furthermore, users can ask Spark to place an RDD in 

memory and this allows it to be reused efficiently 

across parallel operations. The other point of using 

Spark is that it has high integration with Hadoop and it 

has a better performance. Also, Spark will guarantee 

quality of service, i.e. it will automatically recover 

from node failures. We have implemented our method 

in the dynamic environment which is a time flow 

concept. In this environment, new data will be coming 

through and the model generated by the selected 

algorithms will do the prediction. 

4.1.3. Spark Setup and Parameters Settings 

The simulation is required to setup Spark first. In 

this experiment, we clustered three Ubuntu computers 

as a computation cluster. We set one computer as the 

Driver, but also as a Worker. The other two computers 

are set only as the Workers. Hence, we have a total of 

3 cores and 6 GBs of memory resources in our cluster. 

In this experiment, we chose Naïve Bayes Classifiers 

to build the prediction model. The types of Naïve 

Bayes Classifier, parameter k of binomial distribution 

is the result of the amount of received instances at one 

time unit to divide 3, and the weighting coefficients 

(𝛼, 𝛽) are set to 0.01 and 0.1 respectively. 

4.1.4. Case 

In this section, the SEA data are generated based on 

the rule introduced in [21]. The generated SEA data 

exhibit the concept drift phenomenon. A group of data 

sets are generated via a specific rule. The data sets are 

designed to change concepts over time, and to test 

whether or not the proposed method works. 

 Initial data setting 

In this section, the rule for generating data will be 

explained. In this experiment, we generate SEA data to 

validate the proposed method. The basic rule 

introduced by Street and Kim [21] is considered a 

concept drift benchmark. The dataset has two 

classes 𝑐1, 𝑐2 and three features with values between 

0 and 10. But only the first two features 𝑓1, 𝑓2  are 



(4.1) 

(4.2) 

(4.3) 

relevant. The target concept function is (4.1). The 

concepts have been changed at positions 100, 200 and 

300: 

𝑐1: 𝑓1 + 𝑓2 >  𝜃 

𝑐2: 𝑓1 + 𝑓2 ≤  𝜃 

We use this formula to generate 500 instances, and 

set θ in this way: 

0 – 100 instances: 𝜃 = 3 

101 – 200 instances: 𝜃 = 5 

201 – 300 instances: 𝜃 = 7 

301 – 500 instances: 𝜃 = 9 

After generating, the distribution of dataset is shown 

in Figure 6. We get 10 instances in each time unit to 

simulate the data stream. If you are interested in this 

dataset, please contact me by mail for more 

information and further details of this dataset. 

 
Figure 6. Distribution of dataset with SEA concept. 

4.1.5. Evaluation Metrics 

 In order to evaluate whether or not the proposed 

method can detect the concept drift phenomenon and 

improve the prediction accuracy, we use accuracy rate 

(AR) (4.2) to evaluate each prediction model and (4.3) 

to evaluate the drift detection rate (DDR). Here, 

𝑃𝐶𝑖 represents the correct prediction instance, i, in 

sequential data, 𝑃𝑖 represents the instance i that was 

predicted in the sequential data, 𝐷𝐷𝑖 represents drift 

that was detected in sequential data, i, and 𝐷𝑖 
represents the drift really happened in sequential data, 

i. Furthermore, we record the total prediction time with 

processing the specific amount of data in a data stream 

to evaluate the efficiency.  

𝐴𝑅 =
∑ 𝑃𝐶𝑖

∑ 𝑃𝑖
 

𝐷𝐷𝑅 =   
∑ 𝐷𝐷𝑖

∑ 𝐷𝑖
 

4.2. Results and Analyses 

In this section, we evaluate the performance of the 

proposed method by using the metrics: accuracy rate 

(AR) (4.2), drift detection rate (DDR) (4.3) and 

execution time. The simulation case result is analyzed 

in this case, we run three workers and each of them has 

its own prediction model. The parameter k is set to 

(total prediction instances in a unit time) / 3. Because 

there are four adjustment rules (in Section 3.3.2) to 

apply, each worker’s parameter and adjustment setting 

are listed in Table 2. 

Table 2. Each worker’s parameter and adjustment setting. 

Worker k Adjustment 

strategy 

Worker 1 (total prediction instances 

in a unit time) / 3 

(1) (3) 

Worker 2 (total prediction instances 

in a unit time) / 3 

(2) (3) 

Worker 3 (total prediction instances 

in a unit time) / 3 

(1) (4) 

After running the experiments, the result shows that 

Worker 1 has accuracy 0.85 on average, Worker 2 has 

an average accuracy rate of 0.83 and Worker 3 on 

average has an accuracy rate of 0.86. Furthermore, the 

GPred held by driver has accuracy 0.88 on average. 

The entire concept drift that happened in the SEA 

dataset has been detected, so the drift detection rate is 

100%. Figure 7 shows the results of each worker with 

the proposed method. The accuracy rate with the 

proposed method will drop down just after concept 

drift occurs, but it will respond to the new concept and 

then improve the accuracy rate again. 

 
Figure 7. Comparison of each worker and no drift detection. 

In Figure 7, we can also see the comparison between 

the results of each worker with and without the 

proposed methods. Figure 8 shows the weight of each 

worker in each state, and Figure 9 shows the result of 

GPred selected from each prediction based on the 

weight of each workers.  



 
Figure 8. Weight of each worker. 

 

 
Figure 9. Result of Global Prediction 

4.3. Discussions 

Table 3 shows the prediction accuracy of all 

workers in all cases. The worker that did not apply the 

proposed method decreased its predication accuracy 

when the concept drift phenomenon happened. 

Although the accuracy of our method still decreased 

when concept drift phenomenon happened, it has 

quickly responded to the new concept and adjusted the 

model to fit the current context. Hence the other three 

workers have a higher accuracy compared to workers 

without the proposed method. Furthermore, according 

to weighting and selection strategy, the GPred gets the 

highest accuracy on average. The proposed method 

increases by 14% in accuracy in all cases. 

Table 3. Accuracy of model for each worker. 

 AR in 

concept 

1 

AR in 

Concept 

2 

AR in 

Concept 

3 

AR in 

concept 

4 

Average 

AR 

Without 

method 

0.98 0.87 0.75 0.55 0.74 

Worker 1 0.98 0.87 0.75 0.82 0.85 

Worker 2 0.98 0.87 0.75 0.765 0.83 

Worker 3 0.98 0.9 0.77 0.82 0.86 

Also, the proposed method uses distributed 

computing to improve the efficiency. Table 4 shows 

the execution time with/without distributed computing. 

It increases by 45% in time efficiency while applying 

the same amount of dataset to the system. This feature 

makes the proposed method more suitable for real-

time prediction and dynamic environments. 

 

 

 

 
Table 4. Execution time. 

 Total execution 
time 

Amount of 
instances 

Local computing 1.1s 500 

Distributed 

computing 

0.6s 500 

In this research, the proposed method shows the 

capability of doing on-line predictions and responding 

to the current contexts by adjusting the prediction 

model in a dynamic environment. Also, the proposed 

method is able to select the most reliable prediction 

result as the final output to the user. 

5. Conclusions 

Data analysis and prediction problems in a dynamic 

environment are very important and attractive because 

the information hidden within the data may be very 

valuable. Dynamic data driven prediction is a popular 

research are a due to reported difficulties to use a 

normal approach to deal with this problem. Hence, this 

paper proposed a method based on a dynamic data 

driven application system with parallel concept drift 

detection and model adjustment. DDDAS can 

dynamically inject data into a system (stream) and gain 

their feedback. We use Map-Reduce distributed 

computing architecture and a statistic method to detect 

the concept drift phenomenon via a probability model. 

Furthermore, we use LPred and GPred to get the best 

prediction results in the current context in a dynamic 

environment. Compared to traditional machine 

learning that focuses on stationary distribution data, the 

proposed method can detect the concept drift 

phenomenon and efficiently adjust the prediction 

model. The experimental results show that the 

proposed method can detect concept drift in dynamic 

concept changing environment. This method improves 

the average predication accuracy about 14%. 

Furthermore, due to the distributed computing, the 

proposed method saves almost 10 seconds for 581,012 

instances in total processing time which is a significant 

improvement in the real-time prediction world. In the 

future, we will look for more realistic datasets as 

experiment data for testing the proposed approach. 

More workers are also used in the Map-Reduce 

distributed architecture to enhance the computing 

efficiency. 
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