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Due of the large number of degrees of freedom of the human body, posture
monitoring of human during activity regimes presents many research chal-
lenges. Several research groups world wide have engaged with the develop-
ment of low-power wireless body sensor networks that are capable of provid-
ing real-time posture tracking for a variety of applications, such as dance and
sports. The work reported here is concerned with the development of a wire-
less body sensor network that, as opposed to posture tracking, can: a) provide
the identification and classification of eight human postures (standing, kneel-
ing, sitting, crawling, walking, laying down on front and back, and laying on one
side) in real-time and b) is able to relate this information wirelessly to a remote
monitoring point. Posture information is an essential part of monitoring opera-
tives in safety critical missions. The work sits within a larger project aiming to
increase general safety of operatives in bomb disposal missions.

The goal of the posture body sensor network developped here is to identify the
eight named postures using data from nine accelerometers placed at various
sites on the human body. A prototype implementation which fulfills the goal has
been produced and evaluated and is reported here.
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Chapter 1

Introduction

1.1 Project Overview

This project looks at posture identification using integrated sensor nodes that include accelerometers.
This will be used as part of a wireless body sensor network which will be applied to wearers of a bomb
disposal (EOD) suit in order to help them to feel more comfortable than currently possible [12]. Due of
the nature of the missions, thick heavy materials protect the wearer, which means they must be provided
with a cooling system. In order to provide good cooling, it is desirable to track the posture of the wearer
and only apply cooling when it will be effective, allowing the life of the batteries that power the fan to
be extended. The overarching project looks at monitoring a variety of bodily parameters within a bomb
disposal suit, including skin temperature and posture, to ensure suitable cooling actuation, of which this
report focuses on the posture aspect.

Tracking posture presents many challenges due of the large number of degrees of freedom of the human
body. One advantage of the system presented here is that it allows an unconstrained environment for
the wearer Due a wireless sensor network is used, which is small and light and doesn’t require the level
of cabling needed for a traditional wired system. Eight basic positions will be identified by this system:
standing, kneeling, sitting, crawling, walking, laying down on front and back, and laying on one side. An
example implementation is presented showing the working system identifying the posture in real time.

1.2 Related Work

The work related to the system presented in this report approaches different ways of finding the movement
or position of a subject. Most of them use a combination of wireless and miniaturized sensor technologies
to monitor a human body. Wireless Sensor Networks are commonly used for monitoring patients in hospi-
tals or at home. In comparison, the work related here is concerned with increasing safety and comfort by
integrating a body sensor network for monitoring the subject’s condition, as well as visualising the position
in real time.

Cogent Computing Applied Research Centre—Report COGENT.006 6



1.2. RELATED WORK CHAPTER 1. INTRODUCTION

Based on sensor location on a human body, tracking systems can be classified as non-vision based, vi-
sion based with markers, vision based without markers, and robot assisted systems. The first category
includes the system that is presented here. The second one, vision based with markers, uses optical
sensors, e.g. cameras, by placing identifiers upon the human body. As the human skeleton is a highly ar-
ticulated structure, twists and rotations make the movement fully three-dimensional. This method is used
also in movies, medical science, sports science and engineering. The third one, vision based tracking
without markers, exploits external sensors like cameras to track the movement of the human body. For
this method high speed cameras are required, as conventionally less than sixty frames a second provides
an insufficient bandwidth for accurate data representation. The last method, robot assisted tracking, is
used in rehabilitation. Human movement is reflected using electromechanical and electromagnetic sen-
sors attached to the body [1, 3, 4, 5].

The most important papers that are related to this work are those presenting methods of finding postures
for particular purposes. Posture tracking systems have been implemented for many uses, such as rehabil-
itation programs and movie graphics production. The system presented by Subir Biswas and Muhannad
Quwaider [9] is the closest to the system that we proposed, but implemented through another perspec-
tive. This system uses the Mica2Dot (a commercial wireless sensor node) with a two-axis piezoelectric
accelerometer incorporated. To determine position, they used a a novel radio frequency based proximity
sensing method to monitor the relative movements of body segments, and then processed this using a
Hidden Markov Model in order to identify the posture. The system is capable of identifying a limited set of
postures: sitting, standing, walking and running. These postures are not determined in real time, which
the system presented here is capable of doing, and the set of postures detected is limited compared to
the full range which can be encountered. An diagram of their implementation is shown in figure 1.1.

Figure 1.1: System implementation used by S. Biswas and M. Quwaider

The work discussed below is also related to wireless body sensor networks and focuses on patient care
using more then one sensing device.

Most of the related work involves patient rehabilitation, for example the system implemented by H Ying et
al. [10] for automatic step detection (locomotion measurement) for patients with Parkinson’s disease. This
system provides several methods of detection, such as the Pan-Tompkins Method, Template-Matching
Method and Peak-detection method based on combined dual axial signals. The system implemented
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consists of a dual axis accelerometer (ADL322), a low drop voltage regulator (TPS77027), and passive
low-pass filtering. The Pan-Tompkins method is easy to implement, but fluctuations in the signal can re-
sult in false peak-searching intervals. The Template-Matching Method has an advantage: the algorithm is
capable of detecting the steps self-adaptively. This, however, depends on the first template, which may be
incorrect. The Peak-detection method was determined to be more suitable. This is based on combined
dual axial signals and can be easily written in fixed-point algorithms which is suitable for microprocessor
of limited computing power. They approach an interesting method of finding the difference between move-
ments, such as walking, and static positions, such as sitting. However, for finding the posture in real-time,
a wireless body sensor network is required that will process the data as it is gathered.

Another interesting system is proposed by J Pansiot et al. [11]. This provides activity recognition by
integrating an ear-worn activity recognition (e-AR) sensor with ambient blob sensors. The system is
composed of an e-AR sensor based on the BSN platform that consists of a Texas Instruments MSP430
processor, Chipcon CC2420 radio transceiver, Atmel 512KB EEPROM, MCC ChipOX SpO2 module and a
3-axis accelerometer. The ambient sensor used is a self-contained module consisting of a video sensor,
on-board processor, wireless communication facility and a battery. From the e-AR acceleration sensor
they extract two types of information: tilt, and a movement frequency spectrum. From the ambient sensor,
the derived information includes the aspect ratio and mean velocity of the blob. Sensor fusion is performed
based on a Gaussian Bayes EM classifier using the e-AR and blob sensor data, and for the implementa-
tion of the classifier they used the Bayes Net Toolkit (BNT). The system differentiates between walking,
standing, standing (head tilted), sitting, sitting (sofa), reading, eating, lounging, and laying down (with
100%, 75%, 80%, 47%, 80%, 81%, 90%, 92%, and 100% accuracies respectively). The problem that is
not solved in the work presented is the spatial dependency between the ambient sensor and the patient.
The system is easy to implement in a home environment but is hard to use in an unknown environment
that is not well monitored.

E. Farella et al. [6, 7] designed and implemented the WiMoCa, a wireless sensor node based on tri-
axial integrated accelerometers used to detected human gestures and postures. The system uses an
RF section (transceiver + antenna), LIS3L02DQ accelerometer, ATmega8 microcontroller, and a power
supply. It is used to detect seven different postures: sitting, standing, and laying in four different manners.
The full system is based on three WiMoCa nodes placed on the trunk, thigh, and shin. A diagram of the
system and a sample of the collected data are shown in figure 1.3 and the system design is shown in
figure 1.2. The system is not implemented to track dynamic postures such as walking and crawling, it is
used only for static postures.

8
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Figure 1.2: System design

Figure 1.3: System diagram and sample data

Finding human posture with inertial (accelerometer and rate gyroscope) and magnetic (magnetometer)
sensors was approached by D Fontaine et al. [2]. The system consists of accelerometers and magne-
tometers mounted on the human body and visualised with Kaydara Filmbox. Postures are not identified
by the system, they are only visualized. The calibration of the magnetic sensors must be performed each
time the system is used in a different environment.

9



Chapter 2

System Hardware and Visualisation

2.1 Main system

For data acquisition an integrated sensor board was used, along with Gumstix embedded computers and
a custom expansion board, all shown in figure 2.1. The assembled system for the upper body is shown in
figure 2.2. The components are each discussed in their own sections below.

2.1.1 Processing unit

Two Connex 400xm-bt Gumstix devices are used as the main processing platform. Nine sensor boards
are connected to the Gumstix devices via an expansion board. The Gumstix devices communicate via
Bluetooth to a computer that receives the data. The Gumstix devices are single board computers that
measure 80mm x 20mm x 6.3mm. I/O options via expansion boards include synchronous and asyn-
chronous serial, USB, Ethernet, Bluetooth and Wifi wireless interfaces. The specific board used here was
the Connex 400xm-bt, which offers an Intel XScale PXA255 400MHz processor, 16MB of flash memory,
a Bluetooth controller and antenna, and 60-pin and 92-pin connectors for expansion boards. The pro-
cessor provides enough processing power to be able to deal with a wide range of tasks, and due to the
combination of this power and the use of Linux as the onboard OS there is very little restriction on the
languages available for use in software development, with both C and Python being routinely used. The
16MB of flash memory allows for storing large programs and data files. The devices are easy to mount or
place around a person due to the small dimension. There is also an I2C bus interface for the attachment
of sensor packages. The processing power available is sufficient to allow real-time data modeling and
decision making. An example of Gumstix device used is shown in figure 2.3.

Later in the project, the system was upgraded to use a different Gumstix device known as the Verdex,
shown in figure 2.4. The specific device used, the Verdex XM4-bt, has a Marvell PXA270 XScale proces-
sor running at 400Hz, 64MB of RAM and 16MB of flash memory, a Bluetooth communications facility. It
also provides USB host and CCD camera signals, a 60-pin Hirose I/O connector, a 120-pin MOLEX con-
nector, and a 24-pin flex ribbon connector. The device weighs 8g and is 80mm x 20mm x 6.3mm, ideal
for application that require mounting the components on to a subject. The advantage that this board has

Cogent Computing Applied Research Centre—Report COGENT.006 10
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1

2

3

4
5

Figure 2.1: System components1) Gumstix device 2) expansion board 3) sensor board 4) Bluetooth
dongle 5) battery pack

Figure 2.2: Assembled system for the upper body

Figure 2.3: Connex 400xm-bt
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Figure 2.4: Verdex XM4-bt

over the basix and connex motherboards is that include USB host and the higher RAM and flash memory
options. Supply voltage is 3.6V to 5.0V DC.

2.1.2 Sensor Nodes

The board used for gathering data was designed by John Kemp, a PHD student with the Cogent Com-
puting Applied Research Center at Coventry University, England. The board is composed of a PIC
microcontroller, temperature sensor, accelerometer, and I2C bus extender. It is designed to be a low-
cost, small size, low-power wearable solution based on commodity components. The microcontroller is
a PIC24FJ64GA002, a 28-pin 16-bit flash device provided by Microchip Technology Inc. The PIC uses a
8MHz internal oscillator with a 4x PLL option and multiple clock divide options. These enable it to be used
between 31KHz and 32MHz if needed.

Table 2.1 shows a summary of the parameters for this device.

12
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Parameter Value

Operating Voltage 2.0V to 3.6V

I/O Sink/Source Current 18mA

Program Memory/SRAM (bytes) 64K/8K

Timers 16-Bit 5

I2C/UART/SPI/Comparators 2/2/2/2

10 Bit A/D Channels 10

Table 2.1: PIC Parameters

The temperature sensor used is a ADT75A chip by Analog Device Inc. It is a 12-bit digital temperature
sensor that can measure temperature from -55°C to +125°C. It contains a bandgap temperature sensor
and a 12-bit ADC to monitor and digitize the temperature to a resolution of 0.0625°C. It operates at supply
voltages from 3V to 5.5V and the average supply current is typically 200µA.

Table 2.2 shows a summary of the parameters for this device.

Parameter Value

Sensing Range -55°C to 125°C

Resolution 12 bits (0.0625°C)

Conversation Time 60ms

Update Rate 100ms

Supply Voltage 3 - 5.5V

Peak Current Consumption 350 - 525µA (excluding I2C)

Shutdown Mode Consumption 3 - 8µA

Table 2.2: ADT75A Parameters

The accelerometer used is a LIS3LV02DQ chip by ST Microelectronics. It is a three axis digital output
linear accelerometer that includes a sensing element and communicates through an I2C/SPI digital serial
interface. The LIS3LV02DQ has a user selectable scale of ±2g or ±6g and is capable of measuring
acceleration over a bandwidth of 640Hz for all axes.

Table 2.3 shows a summary of the parameters for this device

13
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Parameter Value

Sensing Range ±2g / ±6g

Resolution 1.0mg (@ ±2g range)

Supply Voltage 2.16 - 3.6V

Peak Current Consumption 0.65 - 0.8mA

Shutdown Mode Consumption 1 - 10µA

Table 2.3: LIS3LV02DQ Parameters

The I2C bus extender used is the P82B715PN chip by NXP Semiconductors. It is a bipolar integrated
circuit that permits extension of the distance between components on the I2C bus up to a maximum of
50m by buffering the data (SDA) and the clock (SCL) lines.

Table 2.4 shows a summary of the parameters for this device.

Parameter Value

Supply voltage (operating) Vcc 4.5V to 12V

Supply current Icc 16mA

Power dissipation 300mW

Table 2.4: P82B715PN Parameters

The sensor board is showed in figure 2.5.

Figure 2.5: Sensor board
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Figure 2.6: Sensor Position

2.1.3 Sensor Node Positioning

The sensors were positioned on the subject’s body as shown in figure 2.6. The locations used are the
chest, biceps, forearms, calf’s and thighs. A single sensor is used per segment in order to increase
the practical ease of wearing. Through experimentation it was found that the sensors provided enough
information for this choice of positions to be applicable to the posture detection techniques used. The
sensor positions chosen cover all of the body segments and thus allow a view of the overall posture of the
subject.

2.1.4 Accelerometer Characterization

An accelerometer is a device that measures the acceleration and local gravity that it experiences. There
are many types of accelerometers, including single-axis, dual-axis and triple-axis varieties. A triple-axis
MEMS (micro electro-mechanical system) accelerometer, LIS3LV02DQ, is used here. This device is
suitable for a variety of applications such as: free-fall detection, motion activated functions in portable
terminals, anti-theft systems, inertial navigation, gaming and virtual reality input devices, and vibration
monitoring and compensation. Acceleration and gravity are expressed in the SI unit of meters/second2.
Specific force and acceleration are related through Newton’s laws of motion and Einstein’s equivalence
principle. The technology used for the LIS3LV02DQ includes suspended silicon structures which are
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attached to the substrate at a few points called anchors and are free to move in the direction of the
sensed acceleration. When an acceleration is applied to the sensor the proof mass displaces from its
resting position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using
charge integration in response to a voltage pulse applied to the sense capacitor. This enables the sensor
to detect the acceleration motion. When no other accelerations are applied to the device, it will measure
1g acceleration (9.81m/s2) due to gravity. The LIS3LV02DQ is suitable for use with a microcontroller
based system due to an I2C interface, allowing easy connection with minimal wiring.

Directions of the gravitational field are shown in figure 2.7. Methods of finding the data for every axis
manually are shown in figure 2.8.

Z
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g

Figure 2.7: Direction of gravitational field
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Figure 2.8: Example of axis vs gravitation

Accelerometer characteristics

Resolution: the incremental change in the input signal from a nonzero arbitrary value that would cause
a corresponding change in the sensor output. The resolution of the accelerometer is 1mg.

10−3g∗9.81m/s2 = 0.00981m/s2

Sensitivity: the smallest detectable change in output of the sensor in response to a change in the input.
At ±2g scale, sensitivity is quoted as 1024LSb/g.

Offset error: the value that will be output when the ideal value would be zero. At ±2g range, the offset
of the device is quoted as ±20mg (X and Y) and ±40mg (Z)
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Accuracy: a measurement is more accurate if it is closer to what is defined as the “truth” as compared
to a reference standard.

Linearity: a measure of how close the sensor response curve is to being a straight line. A linear re-
sponse means that the output is proportional to the input signal. Linear response is always a
desirable feature. The non-linearity of the accelerometer used is quoted as being ±2% of the full
range.

Calibration

The acceleration sensor is factory calibrated and downloads the data (trimming values for sensitivity and
zero-g offset) from a non-volatile structure each time it is powered up or reset. The best way of providing
additional calibration of the device is by modifying the data once it is received by a host device. This
provides more flexibility, as well as avoiding modifications to the internal state of the accelerometer.

The method used to determine the calibrate values for the sensors doesn’t require a certain series of
pre-defined positions, making it practical in a mobile setting. This can be performed after the system
is assembled. The earth’s gravity force is used as a known static acceleration when the sensor has no
dynamic component applied to it. The equation below is valid for this state:

√

x2+ y2+ z2 = 1

The equation for the offset and scale errors of the accelerometer is:

(

u− cx

mx

)2

+

(

v− cy

my

)2

+

(

w− cz

mz

)2

= 1

In this equation: −→u = (u,v,w) (the uncalibrated data read from the accelerometer), ~c = (cx,cy,cz)(the
measurement offset) and ~m = (mx,my,mz) (the scaling factor). The system would be perfect if −→c =
(0,0,0) and ~m = (1,1,1). Six equations are used to find the offset and scaling factor for all three axes.
Six measurements are necessary and should be different from each other in order to guarantee a stable
convergence of the non-linear solver.

2.1.5 Expansion board

The expansion board used is a custom board which provides connections for I2C devices, a battery, a
USB client interface, and a Gumstix device. This board is shown in figure 2.9.

2.2 Connectivity

The system implemented has five sensor boards for the upper body that sense the acceleration and pass it
through one Gumstix device, and four sensor boards for the lower body passing the sensing acceleration
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Figure 2.9: Expansion board

through a second Gumstix device. The system is designed to sense the acceleration, pass the data
via Bluetooth to a computer, process the data gathered, produce a decision as to posture, and then
send the decision to a visualiser. The communication between the Gumstix devices and the monitoring
point are carried out via Bluetooth. The Bluetooth radio provides a convenient means of establishing a
small network between devices (where the accelerometers are split into groups, each assigned a different
master) or between the Gumstix device and a host computer. Bluetooth transfer rates are limited, but more
than adequate for transmitting the quantity of readings expected for this system. Wireless connectivity is
required for communicating readings to a remote monitoring point. Using a wireless method, we don’t
have restrictions on the mobility of the subject or the location of the monitoring device. The system
connections are shown in figure 2.10.

I
2
C I

2
C

Monitoring point

Bluetooth

Accel4 Accel 8

Bluetooth

Accel 0

Gumstix BGumstix A

Accel 3

Figure 2.10: Connectivity

I2C is a 2-wire (SCL – Serial Clock Line or clock and the SDL – Serial Data Line or data wire) serial 8 bit
communication protocol. LIS3LV02DQ it can be accessed through I2C and also SPI serial interface. The
sensor is using I2C that is a slave bus. It can be used to send and to receive data to/from the interface.
The communication is beginning with a START bit from the master, a transmission of the slave address
(SAD) represented in 7-bits (for LIS3LV02DQ is 0011101b) and 1 single bit representing whether it wishes
to write (0) to or read (1) from the slave. If the slave exists on the bus will respond the Master with and
acknowledge bit so the Master will know to continue his transmission/receiving data to the slave. The
transmission will finish with a STOP bit from the Master. Data is transfer with the Most Significant Bit
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Figure 2.11: VisualisationA) Standing B) Sitting C) Walking D) Kneeling E) Crawling F) Laying down
on one side G) Laying on front H) Laying on back

(MSB) first. The signal diagram are shown in table 2.5.

Table 2.5: I2C functionality

Data transfer is initiated with the START bit (S) when SDA is pulled low while SCL stays high. Then, SDA
sets the transferred bit while SCL is low (blue) and the data is sampled (received) when SCL rises (green).
When the transfer is complete, a STOP bit (P) is sent by releasing the data line to allow it to be pulled up
while SCL is constantly high.

2.3 Visualisation

Data visualisation is shown using stick figures, implemented by the “turtle” drawing method and pro-
gramed in Python. The visualisation of the various postures appears as shown in figure 2.11. The stick
figure corresponding with the result of processing the data is shown in the visualiser in real time. Actual
screenshots of these postures as shown in the visualiser are demonstrated in figure 2.12.
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Figure 2.12: Visualiser screenshots
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Chapter 3

Data processing

3.1 Postures

All of the postures which the system aims to identify are shown in figure 3.1. This set of postures was pre-
defined for use in the experimentation in order to provide a structured means of processing the gathered
data.

3.2 Method of Posture Identification

3.2.1 Training data

Decision trees based on the accelerometer readings were chosen as the method of processing the data.
These were chosen as they are readily generated using available tools, are easily converted into a set of
rules for real-time processing, and work with numerical values.

Data gathered from an initial testing run using the system was processed using Weka (Waikato Environ-
ment for Knowledge Analysis) Explorer generating a J48 tree classifier with 10 fold cross validation. Weka
is a suite of machine learning software written in Java, developed at the University of Waikato. WEKA con-
tains a collection of visualisation tools and algorithms for data analysis and predictive modeling, together
with graphical interfaces for easy access to this functionality. Weka supports several standard data mining
tasks, data preprocessing, clustering, classification, regression, visualisation and feature selection. All
of Weka’s techniques are predicated on the assumption that the data is available as a single flat file or
relation, where each data point is described by a fixed number of attributes. The preprocess panel is
the start point for knowledge exploration from Weka. This panel is shown in figure 3.2. The preprocess
panel is showing : loading data (four buttons at the top of the preprocess section enable the loading of
data into Weka), the current relation box ( the “current relation” is the currently loaded data, which can
be interpreted as a single relational table in database terminology), attributes (list of attributes), selected
attribute, and visualisation.
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Figure 3.1: All identified postures -A) Laying on back B) Laying on front C) Laying on one side D)
Crawling E) Standing F) Sitting G) Walking H) Kneeling
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Figure 3.2: Preprocess panel

The classify panel is shown in figure 3.3. This panel is showing: classifier (choose the classifier), test
options (there are four test modes: use training set, supplied test set, cross-validation, percentage split),
result list (showing which method was chosen and giving options for taking the results out), classifier
output (where the results can be browsed).

Weka uses an ASCII text file for processing the data. This is an ARFF (Attribute-Relation File Format) file
that describes a list of instances sharing a set of attributes. ARFF files have two distinct sections. The
first section is Header information, which is followed the Data information. The header of the ARFF file
contains the name of the relation, a list of the attributes (the columns in the data), and their types. An
example header on the posture detection data set looks like this:

@relat ion movement

@at t r ibute legrux r e a l
@at t r ibute legruy r e a l
@at t r ibute legruz r e a l
@at t r ibute legrdx r e a l
@at t r ibute legrdy r e a l
@at t r ibute legrdz r e a l
@at t r ibute leg ldx r e a l
@at t r ibute leg ldy r e a l
@at t r ibute leg ldz r e a l
@at t r ibute leg lux r e a l
@at t r ibute leg luy r e a l
@at t r ibute leg luz r e a l
@at t r ibute armldx r e a l
@at t r ibute armldy r e a l
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Figure 3.3: Classify panel

@at t r ibute armldz r e a l
@at t r ibute armlux r e a l
@at t r ibute armluy r e a l
@at t r ibute armluz r e a l
@at t r ibute bodyx r e a l
@at t r ibute bodyy r e a l
@at t r ibute bodyz r e a l
@at t r ibute armrdx r e a l
@at t r ibute armrdy r e a l
@at t r ibute armrdz r e a l
@at t r ibute armrux r e a l
@at t r ibute armruy r e a l
@at t r ibute armruz r e a l
@at t r ibute p o s i t i o n { s i t t i n g , s tanding , walking , kneel ing , c raw l ing ,

oneside , layingdown , lay ingup }

The Data of the ARFF file looks like the following:
@data
81,−1032,−59,−1049,69,−245,893,−9,361,−127,−1060,86,1005,−304,134,131,−1042,218,12,992,268,−907,−370,398,−385,−946,226, s i t t i n g
161,−1023,61,−258,−1044,−113,137,−1024,−235,−205,−1048,77,186,−1033,72,−74,−1054,186,−28,1001,203,−236,−1036,196,−136,−1056,45, stand ing
586,−800,47,−371,−977,−40,41,−1007,−327,−148,−1031,−52,162,−1072,63,−383,−789,337,126,1070,75,−218,−1046,191,114,−856,39, walk ing
1067,128,−25,−200,−1054,−103,61,−1044,−166,−990,98,−167,950,−140,437,905,−558,69,−44,1019,102,−839,−123,627,−925,−412,255, kneel ing
1434,119,116,471,−1003,89,561,−890,−352,−778,−27,−651,553,−1004,−51,31,−1038,−184,−106,338,−1161,−55,−1330,−271,681,−1104,−427, c raw l i ng
133,−213,1028,−123,−290,958,123,−32,−1120,94,−121,−991,655,−42,−798,367,−132,−976,−1032,103,191,298,−110,1038,−139,15,934, oneside
1007,107,358,903,−251,360,−943,−144,−603,−1023,81,−105,−35,−79,−1028,−755,−48,−695,1,−110,−1062,160,−124,−995,775,−167,−805,layingdown
−1029,−162,−175,−1022,141,−306,985,89,167,1054,−160,107,969,−113,401,1053,−205,79,44,−210,1006,−992,−86,300,−1060,−77,−187, layingup

Other classifiers were also examined, for example RandomTree that gave 99.2545% correctly classified
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Figure 3.4: Tree visualisation

data items and 0.7455 % incorrectly classified data items. The J48 tree classifier gave 99.3823 % correctly
classified data items and 0.6177 % incorrectly classified data items. The tree is shown in figure 3.4.

The confusion matrix in table 3.1 shows how good the results of the classifier are (based on the training
data only). The confusion matrix is simply a square matrix that shows the various classifications and
misclassifications of the model in an easy to read form. The columns of the matrix correspond to the
number of data items classified as a particular value and the rows correspond to the number of data items
with that actual classification.

a b c d e f g h <– classified as

1197 0 0 0 0 0 0 4 a=sitting

1 1190 9 0 1 0 0 0 b=standing

5 14 1177 0 2 0 0 0 c=walking

0 0 0 1193 1 1 0 1 d=kneeling

0 0 3 2 1191 2 0 0 e=crawling

0 0 0 0 1 1196 0 1 f=oneside

0 0 0 0 2 0 995 1 g=layingdown

4 0 0 2 0 1 0 1193 h=layingup

Table 3.1: Confusion matrix
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The results of the tree generation procedure are presented in Appendix B, and are explained briefly here.
The first three lines of the output from the process is shown below, demonstrating the form of the tree:

legrdy <= -518

| armrux <= -884: kneeling (1193.0/1.0)

| armrux > -884

Each line represents a node in the tree. The second and third lines, those that start with a ’|’, represent
child nodes of the node on the first line. In the general case, a node with one or more ’|’ characters before
the rule is a child node of the node that has one less “|” character and appears most recently before it
in the list. The part of the line after the “|” character declares the rule. There are two “sister” nodes for
each rule, the first which will be evaluated if the relevant variable is less than or equal to the threshold,
and the second which will be evaluated if the variable is greater than the threshold. If the rule is followed
by a semicolon and a class designation (such as “kneeling” in the second line above) then a leaf node
has been reached and the classification of the data is as given. If not then processing continues with the
children of the current node.

Nodes that generate a classification, such as

| armrux <= -884: kneeling (1193.0/1.0)

are followed by a number (sometimes two) in parentheses. The first number represents how many data
items in the training set were correctly classified by the node, in this case 1193. The second number (if
present) represents the number of data items incorrectly classified by the node, in this case 1.

General error output

Correctly Classified Instances 9332 (99.3823%)
Incorrectly Classified Instances 58 (0.6177%)
Kappa statistic 0.9929
Mean absolute error 0.0017
Root mean squared error 0.0381
Relative absolute error 0.7668%
Root relative squared error 11.5186%
Total Number of Instances 9390

In the list of statistics for the tree presented above, three self-explanatory fields can be seen: correctly
classified instances, incorrectly classified instances, and total number of instances. The additional statis-
tics are discussed below.

1. Correlation coefficient

SPA
SpSA

where SPA = ∑i(pi− p̄)(ai−ā)
n−1 , Sp =

∑i(pi− p̄)2

n−1 , and SA = ∑i(ai−ā)2

n−1

The correlation coefficient measures the statistical correlation between the predicted and actual values.
This method does not change when values are scaled for the test cases. A higher number represents
a better model, with a value of 1 meaning perfect statistical correlation and a 0 meaning there is no
correlation at all.
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2. Kappa Statistic
P(A)−P(E)

1−P(E) where P(A) is the proportion of times the modeled value was equal to the actual value and

P(E) is the expected proportion by chance.

Whereas the correlation coefficient is used for numerical data, the kappa statistic (also called the kappa
coefficient), is used as a means of classifying agreement in categorical data. A kappa coefficient of
1 means a statistically perfect modeling whereas a 0 means every model value was different from the
actual value. A kappa statistic of 0.7 or higher is generally regarded as good statistical correlation, but of
course, the higher the value, the better the correlation.

3. Root mean-squared error
√

(a1−c1)2+(a2−c2)2+...+(an−cn)2

n

The root mean-squared (RMS) error is one of the most commonly used measures of success for numer-
ical prediction. This value is computed by taking the average of the squared differences between each
computed value (ci) and its corresponding correct value (ai). The root mean-squared error is simply
the square root of the mean-squared-error. The root mean-squared error gives the error value the same
dimensionality as the actual and predicted values.

4. Mean absolute error
|a1−c1|+|a2−c2|+...+|an−cn|

n

Mean absolute error is the average of the difference between predicted and actual value in all test cases;
it is the average prediction error.

5. Root relative squared error
√

(a1−c1)2+(a2−c2)2+...+(an−cn)2

(a1−ā)2+(a2−ā)2+...+(an−ā)2

Relative squared error is the total squared error made relative to what the error would have been if the
prediction had been the average of the absolute value. As done with the root mean-squared error, the
square root of the relative squared error is taken to give it the same dimensions as the predicted values
themselves. Also, just like root mean-squared error, this exaggerates the cases in which the prediction
error was significantly greater than the mean error.

6. Relative absolute error
|a1−c1|+|a2−c2|+...+|an−cn|
|a1−ā|+|a2−ā|+...+|an−ā|

Relative absolute error is the total absolute error made relative to what the error would have been if the
prediction simply had been the average of the actual values.

In the four previous equations, ci is the numerical value of the prediction in the iTh test case, ai is the
actual value of the ith test case,ā is the average of the actual values of all the test cases, and n is the total
number of test cases. In all above error measurements, a lower value means a more precise model, with
a value of 0 being the statistically perfect model.

Visualisation of data with weka are shown in figure 3.5.
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Figure 3.5: Data visualisation Weka

3.2.2 Processing of training data

The aim with this system is to perform the data modeling within the wireless system on the Gumstix
nodes, with the processed results being relayed to the application in a usable format. On one of the
Gumstix nodes, a program, written in Python, interprets the decision tree generated by Weka. The results
of this are transmitted to the visualiser.

An example of the data gathering process is shown in the figure 3.6 where the upper part of the screen
shows the data gathered from the accelerometers, the left corner shows the visualiser application, and
the right part shows the control terminal. The figure shows the data in the upper portion of the screen from
all accelerometers at the same time in a simple array format. The first twelve numbers are data gathered
from the accelerometers placed on the lower part of the body (x, y, and z for each of four accelerometers)
and the next fifteen numbers are the data gathered from the accelerometers placed on the upper part of
the body. The decision is made based on the classifier tree and is shown on the visualiser.
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Figure 3.6: Data gathering
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Chapter 4

Results and Evaluation

4.1 Experiment setup

For experimentation the postures described previously were recreated by a subject. The sensors were
attached using PVC tape in the positions specified. The subject then undertook an activity regime com-
posed of sitting, standing, walking, kneeling, crawling, laying one side, laying down on front, and laying
down on back. Each posture was maintained for 2 minutes with a break between them to allow reposition-
ing. Accelerometer data was taken via the prototype wireless sensing system as described previously.

4.2 Initial experimental runs

4.2.1 Single accelerometer example

The graphs in figure 4.1 show the data collected from one accelerometer positioned on the lower leg while
the subject moved through the eight postures. The data shows the combination of the actual acceleration
of the subject’s movement and the gravity that the device is experiencing at that moment.. The data shows
considerable difference between postures, showing that this data is suitable for differentiating them. For
the walking and crawling postures it can be observed that we have the acceleration from the movement
of the subject in addition to the gravitational acceleration. It can be observed that there are greater
differences in the acceleration when the subject is walking than when crawling.

The size of data was up to 22 bytes/sample. At 2 samples per second this gives up to 2640 bytes/minute.

4.2.2 All accelerometers

The graphs in figure 4.2 show the acceleration readings taken at 10 samples/second on the lower body
using four accelerometers. The graphs are presented in the order right lower leg (node 0), right upper
leg (node 1), left upper leg (node 2), and left lower leg (node 3). The graphs presented in figure 4.3 are
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Figure 4.1: x, y and z axis data for various postures
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for the upper body taken from five accels at 10 samples/second. The graph are presented in the order
left forearm (node 0), left upper arm (node 1), chest (node 2), right forearm (node 3), right upper arm
(node 4). From the graphs it can be seen that the accelerometers give readings that are different enough
between postures to support the decision-making process. This experiments were proceed to be used in
the decision making tree and data analysis.

4.3 System in use

For the evaluation the sensors were mounted on the subject using PVC tape as described previously.
The subject performed various tasks in order to evaluate the system stability, the communication range,
the collection of data, and the correspondence of the visualizer with the data taken. The subject also
performed the routine discussed previously, composed of sitting, standing, walking, kneeling, crawling,
laying on one side (oneside), laying on front (layingdown), and laying on back (layingup) for the purpose
of data gathering and the evaluation of the effectiveness of the data processing. The routine was sustained
for 2 minutes for each position with a small break between them to allow for repositioning, though due to
technical problems only one minute of data was collected for the layingdown posture.

The gathered data was processed as described in chapter 3 and the results are shown below. Figure 4.5
shows the placement of the sensors on the arms and legs. Figure 4.6 shows a close look at the sensors
placed on various body segments. In figure 4.4 it is shown a processing node that was placed on the
subject body.

4.3.1 Data gathering results

The confusion matrix in table 4.2 shows the results of the data gathering for the evaluation experiment.
The processing step is shown to be largely accurate, detecting six of the postures correctly in real time.
The confusion matrix is also demonstrated graphically in figure 4.7, with lighter squares showing the
concentration of results. Due to the range of values that walking takes during the data gathering, it is very
hard to determine postures very close to walking, such as standing. The incorrect results for kneeling
are expected to be an artifact of decision tree generation and should not be present if larger quantities of
data are made available for the generation of future trees. While it is not shown in the confusion matrix
for this experiment, the decision tree was seen to be very sensitive to limb positioning when the subject
was in the sitting posture in previous experimentation. This is also considered to be an artifact of the data
collected for tree generation: the subject was very still while sitting, meaning that the data stayed within
very narrow bounds with the result that deviation from this was not expected by the tree.

The percentages of correct and incorrect classifications for the data gathered is shown in table 4.1. The
data was 72.06% correctly classified and 27.94% incorrectly classified
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Figure 4.2: Accelerometer readings for all the lower body segments

Postures Correct classified Incorrect classified

Sitting 93.97% 6.03%
Standing 0% 100%
Walking 99.58% 0.42%
Kneeling 0.09% 99.01%
Crawling 99.91% 0.09%
Onseside 98.08% 1.92%

Layingdown 97.67% 2.33%
Layingup 99.83% 0.17%

All postures 72.06% 27.94%

Table 4.1: Classification percentage
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Figure 4.3: Accel reading for all the upperbody part
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Figure 4.4: Processing node

A B C

Figure 4.5: Sensor placement for: A) arms, B+C) legs
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A B C

Figure 4.6: Placing the sensor on the subject- A) leg B) chest C) arm

Posture was...
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1123 0 1 0 0 0 0 1 sitting
0 0 3 3 0 19 0 0 standing
0 1194 1195 1194 1 0 0 0 walking
0 0 1 1 0 1 0 0 kneeling
0 0 0 2 1199 2 14 1 crawling
0 0 0 0 0 1176 0 0 oneside
0 0 0 0 0 1 586 0 layingdown
72 0 0 0 0 0 0 1198 layingup

Posture was
identified as...

Table 4.2: Confusion matrix for evaluation data

Graphs of the evaluation data for the lower part of the body (left and right legs) are shown in figure 4.8.
The graphs for the upper part of the body (chest and arms) are shown in figure 4.9.

4.3.2 Tree regeneration

As noted previously, there are several results generated by the tree which do not reflect the actual posture
of the subject during the experimentation. Due to this, a new tree was generated from the data gathered
during the new experimentation, as it represented a wider range of possible data values. For instance,
the subject no longer maintained their arms in a fixed position in certain postures. This should give the
arms less priority in the decision where they are not quite as relevant (such as sitting). The new tree can
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Figure 4.7: Confusion matrix of the system evaluation
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Figure 4.8: Accelerometer reading for the lower body segments for system evaluation
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Figure 4.9: Accelerometer reading for the upper body segments for system evaluation
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be seen in listing 4.1, and it can be seen that a lot of the upper-level decisions are made based more on
the legs and chest than on the arms. The results of the decisions made by this tree for the data collected
previously are shown in table 4.3. These results show that it does not only make correct decisions for the
training data used. The problem differentiating between walking and standing is still present, though the
problem with identifying kneeling has been solved. There does appear to be a problem with identifying a
subject laying on one side. Training a new tree on all available data would seem to provide a compromise
between the two trees presented here.

Listing 4.1: New tree based on evaluation data
J48 pruned t re e f o r the new data
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l eg rdy <= −473
| bodyz <= −743: crawl ing (1 2 0 2 .0 /2 .0 )
| bodyz > −743
| | l eg ruy <= −1
| | | l eg ruz <= −1
| | | | l eg ruz <= −5: walk ing ( 9 8 2 . 0 / 2 . 0 )
| | | | l eg ruz > −5
| | | | | armruz <= 229
| | | | | | armrux <= 59: standing ( 2 . 0 )
| | | | | | armrux > 59: walk ing ( 1 1 . 0 / 1 . 0 )
| | | | | armruz > 229: knee l ing ( 2 . 0 )
| | | l eg ruz > −1
| | | | l e g l u y <= −1070
| | | | | l e g l u y <= −1074: walk ing (1 2 4 .0 )
| | | | | l e g l u y > −1074
| | | | | | armldx <= 247: standing ( 2 . 0 )
| | | | | | armldx > 247: walk ing ( 7 . 0 )
| | | | l e g l u y > −1070
| | | | | l e g l u y <= −1054
| | | | | | l eg rdy <= −1060
| | | | | | | l eg rdy <= −1082
| | | | | | | | l eg rdy <= −1085: walk ing ( 9 . 0 / 1 . 0 )
| | | | | | | | l eg rdy > −1085: standing ( 9 . 0 )
| | | | | | | l eg rdy > −1082
| | | | | | | | l eg rdz <= −82
| | | | | | | | | l e g l u y <= −1063: walk ing ( 2 . 0 )
| | | | | | | | | l e g l u y > −1063: standing ( 1 3 . 0 )
| | | | | | | | l eg rdz > −82: standing (1165 .0 )
| | | | | | l eg rdy > −1060
| | | | | | | armrdx <= −28: walk ing ( 2 1 . 0 )
| | | | | | | armrdx > −28
| | | | | | | | l eg rdx <= −173: walk ing ( 2 . 0 )
| | | | | | | | l eg rdx > −173: standing ( 2 . 0 )
| | | | | l e g l u y > −1054: walk ing ( 4 4 . 0 )
| | l eg ruy > −1: knee l ing (1195 .0 )
leg rdy > −473
| l e g l d x <= 763
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Figure 4.10: New tree generated with Weka

| | armldy <= −61
| | | armldz <= −1009: layingdown (5 9 5 .0 )
| | | armldz > −1009
| | | | l e g l u y <= −504: walk ing ( 2 . 0 )
| | | | l e g l u y > −504: layingdown ( 6 . 0 )
| | armldy > −61
| | | armlux <= 978
| | | | l eg rdx <= 27
| | | | | l eg rdz <= −29: lay ingup ( 2 . 0 )
| | | | | l eg rdz > −29: knee l ing ( 3 . 0 / 1 . 0 )
| | | | l eg rdx > 27: oneside ( 1 1 . 0 )
| | | armlux > 978: oneside (1188 .0 )
| l e g l d x > 763
| | armluy <= −546: s i t t i n g (1195 .0 )
| | armluy > −546: lay ingup (1198 .0 )

The new tree is shown in figure 4.10.

41



4.4. SYSTEM EVALUATION CHAPTER 4. RESULTS AND EVALUATION

Posture was...

si
tti

ng

st
an

di
ng

w
al

ki
ng

kn
ee

lin
g

cr
aw

lin
g

on
es

id
e

la
yi

ng
do

w
n

la
yi

ng
up

1197 0 0 0 0 0 0 0 sitting
0 0 24 0 0 0 0 0 standing
2 1198 1164 0 1 0 0 0 walking
0 2 3 1192 8 407 0 0 kneeling
0 1 2 2 1187 0 2 2 crawling
0 0 0 0 0 0 0 0 oneside
0 0 0 2 2 791 996 2 layingdown
2 0 0 0 0 0 0 1196 layingup

Posture was
identified as...

Table 4.3: Confusion matrix for older data using new tree

4.4 System evaluation

4.4.1 Network evaluation

Communication range

The communication range of the system is important due to the ability to communicate gathered data to
a remote point is often useful where an observer is unable to be in the same physical location as the
subject. This also means the the subject is not constrained within a particular location. In order to test
this parameter, a subject wearing the prototype system was instructed to walk slowly away from the base
station, and the distance was recorded at which communication was noticeably affected.

The communication range for a Bluetooth class 2 device is approximately 10 meters working at a maxi-
mum permitted power of 2.5mW. The results for this test were that the system communicated successfully
at a range of up to 11.5m.

Bandwidth

Bandwidth refers to a data rate measured in bits per second (sometimes bytes), and is used often to
describe network throughput. It is important to find the bandwidth due this can restrict the data transfer
between nodes. A low bandwidth may result in data buffering due to the new data not being transmitted
fast enough. This will in turn result in delays receiving new data for processing. Bandwidth is calculated
using:

bandwidth (bits/s)= data sent (bits)
time required (s)
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The method used here of measuring the throughput is to transfer a large (5MB) file and record the time
required to do that.

The theoretical maximum transmission data rates for Bluetooth are shown in table 4.4. The results found
are shown in table 4.5.

Version Data Rate Effective transfer rate

Version 1.2 1Mbit/s 721Kb/s
Version 2.0 + EDR 3Mbit/s 2.1Mb/s

Table 4.4: Theoretical transmission rate

Transfer time 1 min 15 secs
Transfer rate 546.13Kb/s

Table 4.5: Discovered transmission rate

Data loss

Data loss is a measure of the quantity of data received compared with the quantity of data sent.

data loss= data received
data sent

This will be measured by trying to gather data at various rates starting at 10 samples/seconds. This is
due to the faster the data is gathered by the system, the greater the stress it is placed under (retrieving
data from the sensors at a faster rate, transmitting more data, etc). The results of this test are shown in
table ??. Across the range of sample rates measured there was no observed data loss. Using the current
system, data cannot be gathered at more than approximately 65 samples/sec. No data loss is sustained
at this rate, and any faster attempt at data gathering results in only approximately 65 samples/sec being
retrieved.

Latency

This measurement refers to the latency of the connection between the node and the base station. Check-
ing this will be carried out by performing 10 pings of each node. A ping measures the round-trip time for
a packet of data to the remote node and back again, meaning that a synchronized time source between
nodes is not required. The results are shown in table 4.6.

Minimum Average Maximum

Round-trip time 15.68ms 26.84ms 35.75ms

Table 4.6: Latency
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4.4.2 Computing evaluation

Code size

The sizes of the various pieces of code for each node in the system are shown in table 4.7. Note that
as Python was used as the development language, space is required for the interpreter and additional
libraries.

Component Code size

Master node 5.4KB + 1.9KB of configuration data
Slave node 1.8KB
Base station 4.5KB

Table 4.7: Code size

Processor usage

The processor usage for the base station is negligible as the vast majority of its time is spent waiting for
data to be received. The processor usage for the master and slave nodes is approximately 100% due to
the use of busy waiting loops in the code. While this will in theory shorten battery life, it produces easier to
understand code and the battery life (see section 4.4.3) is far in excess of that required for experimentation
currently.

4.4.3 Ease of use

Comfort

The subject can move freely without any restriction within the range of the Bluetooth connection, and
assuming the current posture does not place pressure upon the processing nodes (the prototype system
does not include sufficient protection for them to withstand this). The sensors are easy to place as they
are largely flat and this allows for them to be taped to a subject with minimal effort. There are some slight
sharp points on the underside of the sensor nodes, though these can be removed and do not pose a
major problem.

Setup time

Experimentation showed that the system can be set up in 18 minutes. This time includes the sensors
being placed on the subject’s body and wired to the processing nodes. Data gathering can being within
20 minutes.
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Battery life

The results for the current draw of the system are shown in table 4.8. This test was carried out using
a 4.8v source. If four 800mAh batteries are used (3.2Ah total) and if the system is activated and fully
working constantly (drawing 0.376A), the batteries should last for approximately 8 and a half hours.

State Devices Current draw

System stopped Gumstix + expansion board 0.198A
System stopped Gumstix + expansion board + 5 sensor boards 0.286A
System activated Gumstix + expansion board + 5 sensor boards 0.376A

Table 4.8: Current draw

4.5 Future work

Future work for this project includes establishing a firm difference between the dynamic postures (such as
walking) and the static postures (such as standing). One method of this is using a Fast Fourier Transform
(FFT), as discussed in section 4.5.1. Another optimization would be to build a better decision tree by the
considering of more data over a wider range of natural stances.

In practical cases, the maximum frequency of human movement is 30Hz. This means that the gathering
of 60 data points per second (time between samples = 16.7msec) is a sufficient rate for performing full
motion capture without losing information. This would also potentially allow for filtering techniques which
require greater quantities of readings. The data so far was gathered only at 10 sample/seconds and in
the future it may be beneficial to gather at the 60 sample/seconds rate.

4.5.1 FFT

Fast Fourier Transforms (FFTs) are a mathematical tool used for processing a signal that varies with re-
spect to time. The transform accomplishes this by breaking down the original time-based waveform into
a series of sinusoidal terms, each with unique magnitude, frequency, and phase. This process, in effect,
converts a waveform in the time domain that is difficult to describe mathematically into a more manage-
able series of sinusoidal functions that when added together, exactly reproduce the original waveform.
Plotting the amplitude of each sinusoidal term versus its frequency creates a power spectrum, which is
the response of the original waveform in the frequency domain.

The use of FFTs was briefly investigated for distinguishing between similar static and dynamic postures
types (such as standing and walking). Testing code was implemented in Python. The results for the data
collected are shown in figure 4.11 for walking, sitting and crawling using an accelerometer placed on the
lower right leg. As can be seen, the dynamic movement produces an immediately apparent spike on
the relevant graph meaning that this method could be useful for additional processing where appropriate.
Future work could integrate this with the decision trees in order to provide greater accuracy in determining
the posture of a subject.
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Figure 4.11: FFT output for walking, sitting and crawling
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Appendix A

Calibration for one accelerometer

Calibration done in Mathcad

The results are:

cx := 1 mx := 1

cy := 1 my := 1

cz := 1 mz := 1

Given
(

1072−cx
mx

)2
+
(

−13−cy

my

)2
+
(

−37−cz
mz

)2
= 1

(

−1056−cx
mx

)2
+
(

−20−cy

my

)2
+
(

1−cz
mz

)2
= 1

(

54−cx
mx

)2
+
(

1029−cy

my

)2
+
(

4−cz
mz

)2
= 1

(

19−cx
mx

)2
+
(

−1040−cy

my

)2
+
(

42−cz
mz

)2
= 1

(

49−cx
mx

)2
+
(

15−cy

my

)2
+
(

1060−cz
mz

)2
= 1

(

12−cx
mx

)2
+
(

−35−cy

my

)2
+
(

−1041−cz
mz

)2
= 1

















cxval

cyval

czval

mxval

myval

mzval

















:= Find(cx,cy,cz,mx,my,mz)

cxval = 8.469 mxval = 1.065∗103

cyval =−5.287 myval = 1.035∗103
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czval = 9.763 mxzval = 1.051∗103

Evaluation of results for g and g/2:

xcal :=
(

1072−oxval
sxval

)

xcal = 0.999

ycal :=
(

1029−oycal

syval

)

ycal = 0.999

zcal :=
(

1060−ozcal
szval

)

zcal = 0.999

xcalhal f :=
(

538−oxval
sxval

)

xcalhal f = 0.497

ycalhal f :=
(

545−oyval

syval

)

ycalhal f = 0.532

zcalhal f :=
(

518−ozval
szval

)

zcalhal f = 0.483
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Appendix B

Training data Weka

B.1 Run information

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: movement

Instances: 9390

Attributes: 28

legrux

legruy

legruz

legrdx

legrdy

legrdz

legldx

legldy

legldz

leglux

legluy

legluz

armldx

armldy

armldz
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armlux

armluy

armluz

bodyx

bodyy

bodyz

armrdx

armrdy

armrdz

armrux

armruy

armruz

position

Test mode: 10-fold cross-validation

B.2 Classifier model (full training set)

J48 pruned tree

l eg rdy <= −518
| armrux <= −884: knee l ing (1 1 9 3 .0 /1 .0 )
| armrux > −884
| | bodyy <= 752
| | | bodyy <= 33
| | | | l eg rux <= 625
| | | | | l eg rux <= 190: standing ( 3 . 0 )
| | | | | l eg rux > 190: walk ing ( 3 . 0 )
| | | | l eg rux > 625: crawl ing ( 1 0 . 0 / 1 . 0 )
| | | bodyy > 33: crawl ing (1187 .0 )
| | bodyy > 752
| | | armrux <= −106
| | | | armrdx <= −265
| | | | | l e g l u z <= 59: walk ing (2 1 2 .0 )
| | | | | l e g l u z > 59
| | | | | | l e g l u z <= 62: standing ( 5 . 0 / 1 . 0 )
| | | | | | l e g l u z > 62: walk ing ( 4 4 . 0 / 1 . 0 )
| | | | armrdx > −265
| | | | | armldx <= 219
| | | | | | armldx <= 155
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| | | | | | | l eg rdx <= −294: walk ing ( 5 . 0 )
| | | | | | | l eg rdx > −294: standing ( 1 3 . 0 )
| | | | | | armldx > 155: standing (1175 .0 )
| | | | | armldx > 219: walk ing ( 2 0 . 0 )
| | | armrux > −106: walk ing ( 9 1 9 . 0 / 6 . 0 )
leg rdy > −518
| armrdx <= 36
| | armrux <= −667
| | | armrdy <= −93
| | | | l eg rux <= 30: lay ingup ( 1 3 . 0 )
| | | | l eg rux > 30: knee l ing ( 2 . 0 )
| | | armrdy > −93: lay ingup (1184 .0 )
| | armrux > −667
| | | l eg ruy <= −1029: s i t t i n g (1191 .0 )
| | | l eg ruy > −1029
| | | | armldx <= 984
| | | | | l eg rdx <= −69: lay ingup ( 3 . 0 / 1 . 0 )
| | | | | l eg rdx > −69: standing ( 3 . 0 / 2 . 0 )
| | | | armldx > 984: s i t t i n g ( 1 0 . 0 )
| armrdx > 36
| | armlux <= −323: layingdown (9 9 6 .0 )
| | armlux > −323
| | | l e g l d z <= −1119: oneside (1181 .0 )
| | | l e g l d z > −1119
| | | | l e g l u z <= −613: oneside ( 1 6 . 0 )
| | | | l e g l u z > −613: crawl ing ( 2 . 0 )

Number of Leaves : 24

Size of the tree : 47

Time taken to build model: 1.53 seconds

B.3 Stratified cross-validation

B.3.1 Summary

Correctly Classified Instances 9332 (99.3823%)
Incorrectly Classified Instances 58 (0.6177%)
Kappa statistic 0.9929
Mean absolute error 0.0017
Root mean squared error 0.0381
Relative absolute error 0.7668%
Root relative squared error 11.5186%
Total Number of Instances 9390
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B.3.2 Detailed Accuracy By Class

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.997 0.001 0.992 0.997 0.994 0.999 sitting
0.991 0.002 0.988 0.991 0.99 0.997 standing
0.982 0.001 0.99 0.982 0.986 0.992 walking
0.997 0 0.997 0.997 0.997 0.999 kneeling
0.994 0.001 0.994 0.994 0.994 0.998 crawling
0.998 0 0.997 0.998 0.997 0.999 oneside
0.997 0 1 0.997 0.998 0.998 layingdown
0.994 0.001 0.994 0.994 0.994 0.997 layingup

B.3.3 Confusion Matrix

a b c d e f g h <– classified as

1197 0 0 0 0 0 0 4 a=sitting
1 1190 9 0 1 0 0 0 b=standing
5 14 1177 0 2 0 0 0 c=walking
0 0 0 1193 1 1 0 1 d=kneeling
0 0 3 2 1191 2 0 0 e=crawling
0 0 0 0 1 1196 0 1 f=oneside
0 0 0 0 2 0 995 1 g=layingdown
4 0 0 2 0 1 0 1193 h=layingup
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Fast Fourier Transform (Python)

import pylab
import sc ipy
import sc ipy . i o . ar ray_ impor t
import sys
import sc ipy . f f t p a c k

" " "
Generate an FFT ( in terms of both f requency and per iod )

us ing the suppl ied data .
Inputs

data The data to be transformed v ia FFT
sample_freq The sampling f requency of the suppl ied data

( d e f a u l t = 1 sample per second )
Outputs

A tup le c on ta in i ng the frequency , per iod , and power components

Based on example code from h t t p : / / l i n u x g a z e t t e . net / 115 / andreasen . html
" " "
def f f t ( data , sample_freq = 1 . ) :

f f t = sc ipy . f f t ( data )
f f t _ l e n = len ( f f t )
power = abs ( f f t [ 1 : ( f f t _ l e n / 2 ) ] ) * * 2
ny qu i s t = sample_freq / 2
f req = sc ipy . ar ray ( range ( f f t _ l e n / 2 ) ) / ( f f t _ l e n / (2 .0 * sample_freq ) ) * ny qu i s t
per iod = sample_freq / f req
return ( f req , per iod , power )

" " "
Add a generated FFT to the c ur ren t graph .
Inputs

f f t d a t a Data f o r the FFT to be p l o t t e d ( as returned from the
f f t f u n c t i o n )

name A name to use in the graph legend
" " "
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def p l o t f f t ( f f t d a t a , name = " " ) :
f req = f f t d a t a [ 0 ]
per iod = f f t d a t a [ 1 ]
power = f f t d a t a [ 2 ]
py lab . p l o t ( per iod [ 1 : len ( per iod ) ] , power , l a b e l = name)

" " "
Output the c ur ren t graph to a f i l e

( s e r i es are added to the graph v ia the p l o t f f t f u n c t i o n ) .
Inputs

f i lename The f i l e to output the graph to
t i t l e The t i t l e of the graph
ax is L i m i t s f o r the axes ( d e f a u l t = None [ auto−se lec ted ] )
legend Whether to output a legend on the graph

( d e f a u l t = False )
" " "
def outputgraph ( f i lename , t i t l e = " " , axes = None , legend = False ) :

py lab . x l abe l ( " Period ( seconds ) " )
py lab . y l abe l ( " | FFT | * * 2 " )
i f t i t l e != " " : py lab . t i t l e ( t i t l e )
i f axes != None : py lab . ax is ( axes )
i f legend : py lab . legend ( )
py lab . s av e f i g ( f i lename )

" " "
Clear the c ur ren t graph , removing a l l p l o t t e d f f t s .

" " "
def c leargraph ( ) :

py lab . c l f ( )

i f __name__ == " __main__ " :

c leargraph ( )

tempdata = sc ipy . i o . ar ray_ impor t . read_array ( ’ walk ing . dat ’ )

t ime = tempdata [ : , 0 ]
datax = tempdata [ : , 1 ]
datay = tempdata [ : , 2 ]
dataz = tempdata [ : , 3 ]
py lab . x l abe l ( " Time [ s ] " )
py lab . y l abe l ( " Accel data " )
py lab . p l o t ( t ime , datax )
py lab . s av e f i g ( ’ o r i g i n a l . png ’ )

p l o t f f t ( f f t ( datax , 1 0 . ) , " x " )
p l o t f f t ( f f t ( datay , 1 0 . ) , " y " )
p l o t f f t ( f f t ( dataz , 1 0 . ) , " z " )
outputgraph ( " f f t . png " , " Accel 0 data " , [ 0 , 6 , −1e9 , 7e9 ] , True )
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Tree implementation for Gumstix

# ! / usr / b in / python

" " "
This module prov ides c l a s s i f i c a t i o n f u n c t i o n a l i t y based on a dec is ion
t ree generated by the Weka t o o l .

The f u n c t i o n a l i t y a v a i l a b l e i s prov ided by the Tree c lass .
" " "

import sys

# Recurs ive ly p r i n t a node and a l l o f the t ree descending from i t .
def PrintNode ( node , depth = 0 ) :

pr in t "%s%s " % ( " | " * depth , node )
for c h i l d in node . c h i l d r e n :

i f c h i l d != None :
PrintNode ( c h i l d , depth + 1)

# P r i n t an e n t i r e t ree ( t h i s i s an a l i a s f o r c a l l i n g PrintNode wi th the
# roo t node of a t ree ) .
def Pr in tT ree ( t ree ) :

PrintNode ( t ree [ 0 ] )

# This c lass represents a s ing le node w i t h i n a t ree .
class TreeNode :

def _ _ i n i t _ _ ( s e l f , parent ) :
s e l f . parent = parent
s e l f . c h i l d r e n = [ None , None ]
s e l f . p o s i t i o n = " "

def __repr__ ( s e l f ) :
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i f s e l f . p o s i t i o n != " " :
return "%s " % ( s e l f . p o s i t i o n )

else :
return "%s %u " % ( s e l f . v a r i ab le , s e l f . value )

def AddChild ( s e l f , node ) :
s e l f . c h i l d r e n . append ( node )

# This c lass represents an e n t i r e t ree made up of TreeNode ob jec t s .
class Tree :

def _ _ i n i t _ _ ( s e l f ) :
s e l f . nodes = [ ]

# Maximum depth of t ree = 20 nodes
s e l f . last_nodes = [ None ] * 20

# Create a roo t node wi th no parents
s e l f . nodes . append ( TreeNode (None ) )

# Read in a c o n f i g u r a t i o n f i l e s p e c i f y i n g the v ar i ab les used
# in the t ree ( t h i s a lso determines the order ing of data f o r
# c l a s s i f i c a t i o n )
conf_f i lename = " t ree_conf / use_tree . conf "
c o n f _ f i l e = open ( conf_f i lename , " r " )
s e l f . co ls = { }
index = 0
for l i n e in c o n f _ f i l e :

l i ne_s = l i n e . s p l i t ( )
i f ( len ( l i ne_s ) > 0 ) :

s e l f . co ls [ l i ne_s [ 0 ] ] = index
index += 1

c o n f _ f i l e . c lose ( )

# Helper f u n c t i o n to d iscover the c ur ren t depth in a t ree represented
# wi th t e x t
def NumPipes ( s e l f , l i n e ) :

pipes = 0
for element in l i n e :

i f element == ’ | ’ : p ipes += 1
return pipes

# Read in a t ree from a f i l e ( on ly t rees generated by Weka are c u r r e n t l y
# supported )
def I n t e r p r e t T e x t ( s e l f , f i l ename ) :

i n _ f i l e = open ( f i lename , " r " )

for l i n e in i n _ f i l e :
l i ne_s = l i n e . s p l i t ( )

curr_depth = s e l f . NumPipes ( l i ne_s )
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i f curr_depth != 0:
# Most nodes have the l a s t one we saw at the prev ious
# depth as the parent
parent_node = s e l f . last_nodes [ curr_depth − 1]

else :
# Except the top−l e v e l one , which has our roo t node
# as i t s parent
parent_node = s e l f . nodes [ 0 ]

v a r i a b l e = l i ne_s [ curr_depth ]
c ond i t i on = l i ne_s [ curr_depth + 1]

value = l i ne_s [ curr_depth + 2]
# Are we at a l e a f node?
i f value [ −1: ] == ’ : ’ : value = i n t ( value [ : −1 ] )
else : value = i n t ( value )

s e l f . nodes . append ( TreeNode ( parent_node ) )

this_node = s e l f . nodes [ len ( s e l f . nodes ) − 1]

i f l en ( l i ne_s ) > curr_depth + 3:
this_node . p o s i t i o n = l i ne_s [ curr_depth + 3]

# Which c h i l d are we look ing at ?
i f c ond i t i on == "<=" :

parent_node . c h i l d r e n [ 0 ] = this_node
i f c ond i t i on == ">" :

parent_node . c h i l d r e n [ 1 ] = this_node

parent_node . value = value
parent_node . v a r i a b l e = v a r i a b l e

s e l f . last_nodes [ curr_depth ] = this_node

i n _ f i l e . c lose ( )

def P r i n t ( s e l f ) :
P r i n tT ree ( s e l f . nodes )

# C l a s s i f y a set of data according to the t ree read in
def C l a s s i f y ( s e l f , data ) :

# S t a r t a t the roo t node
curr_node = s e l f . nodes [ 0 ]

# Non−l e a f nodes have p o s i t i o n == " "
while curr_node . p o s i t i o n == " " :

pos = s e l f . co ls [ curr_node . v a r i a b l e ]

# I f the data rece ived has a value f o r t h i s v a r i a b l e of less
# than the th res ho ld in the t ree then move to the f i r s t c h i l d
# e lse move to the second
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i f data [ pos ] <= curr_node . value :
curr_node = curr_node . c h i l d r e n [ 0 ]

else :
curr_node = curr_node . c h i l d r e n [ 1 ]

return curr_node . p o s i t i o n

i f __name__ == " __main__ " :
t ree = Tree ( )
t ree . I n t e r p r e t T e x t ( " t ree_conf / ramona_tree_2 " )
t ree . P r i n t
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Visualiser code

E.1 Posture visualisation module

# ! / usr / b in / python

" " "
Posture v i s u a l i s a t i o n module .

Code c a l l i n g t h i s module should c a l l i n i t _ v i s ( ) to i n i t i a l i s e the
v i s u a l i s e r ( i n c l u d i n g c re a t i n g the d i sp l a y window ) , and then use
draw_posture (name) to d i sp l a y s p e c i f i c postures . Other f u n c t i o n s
and va r i a b l e s are f o r i n t e r n a l use .

" " "

import pygame , pygame . t ransform , pygame . image , socket
from pygame . l o c a l s import *
import math

foreground = (255 ,255 ,255) # foreground co lour ( t e x t and posture d i sp l a y )
background = (0 ,0 ,0 ) # background co lour
w = 450 # window width
h = 400 # window he igh t

# Postures are de f ined by a se t o f angles , as we l l as two values f o r x and
# y s t a r t i n g o f f s e t ( to a l low ce n te r i n g )
postures = {

" stand ing " : [ 0 , 45 , 90 , 45 , −45, 120 , 120 , 250 , 350] ,
" s i t t i n g " : [ 45 , 40 , 180 , −40, −45, 130 , 130 , 250 , 350] ,
" walk ing " : [ 45 , 0 , 100 , −30, −10, 120 , 120 , 270 , 350] ,
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" knee l ing " : [−80 , 150 , 180 , −150, −160, 160 , 160 , 200 , 350] ,
" c rawl ing " : [−80 , 130 , 180 , −130, −210, 180 , 100 , 150 , 300] ,
" oneside " : [−90 , 45 , 90 , 45 , 225 , 140 , 140 , 100 , 300] ,
" layingdown " : [−90 , 45 , 90 , 45 , 225 , 190 , 110 , 100 , 300] ,
" lay ingup " : [−90 , 45 , 90 , 45 , 225 , 170 , 270 , 100 , 300]

}

t = None
screen = None
f o n t = None

" " "
Th is c lass implements the " t u r t l e " method o f drawing . Th is i s used to
s i m p l i f y the posture drawing process i n the person ( t , angles ) f u n c t i o n .

" " "
class T u r t l e ( o b j e c t ) :

def _ _ i n i t _ _ ( s e l f , screen , s ta r t p o s =(250 ,350) ) :
s e l f . pos=s ta r t p o s
s e l f . angle=0
s e l f . screen=screen
s e l f . s tack = [ ]
s e l f . pen = 1

def fo rward ( s e l f , d ) :
newpos= [0 ,0 ]
newpos[ 0 ] = s e l f . pos [ 0 ] + math . s i n ( math . rad ians ( s e l f . angle ) ) * d
newpos[ 1 ] = s e l f . pos [ 1 ] + math . cos ( math . rad ians ( s e l f . angle ) ) * d
i f s e l f . pen :

pygame . draw . a a l i n e ( s e l f . screen , foreground , s e l f . pos , newpos)
s e l f . pos=newpos

def r o t a t e ( s e l f , angle ) :
s e l f . angle+=angle

def push ( s e l f ) :
s e l f . s tack . append ( ( s e l f . pos , s e l f . angle ) )

def pop ( s e l f ) :
i f l en ( s e l f . s tack ) >0:

s e l f . pos , s e l f . angle= s e l f . s tack [−1]
s e l f . s tack = s e l f . s tack [ : −1]

def c i r c l e ( s e l f , rad ius ) :
pygame . draw . c i r c l e ( s e l f . screen , foreground , s e l f . pos , rad ius , 1)

def pen_up ( s e l f ) :
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s e l f . pen = 0

def pen_down( s e l f ) :
s e l f . pen = 1

" " "
Th is f u n c t i o n draws a s t i c k f i g u r e using the supp l ied se t o f angles .

Inpu ts
t A o b j e c t o f type T u r t l e to use f o r drawing
angles The se t o f angles d e f i n i n g the posture to draw

" " "
def person ( t , angles ) :

t . push ( )

t . pos = ( angles [ 7 ] , angles [ 8 ] )

# leg1
t . r o t a t e ( angles [ 0 ] )
t . forward (50)
t . r o t a t e ( angles [ 1 ] )
t . forward (40)

# leg2
t . push ( )
t . r o t a t e ( angles [ 2 ] )
t . forward (40)
t . r o t a t e ( angles [ 3 ] )
t . forward (50)
t . pop ( )

t . r o t a t e (−angles [ 0 ] )

# t ru n k
t . r o t a t e ( angles [ 4 ] )
t . forward (70)
t . push ( )
t . r o t a t e ( angles [ 5 ] ) #arm 1
t . fo rward (50)
t . pop ( )
t . push ( )
t . r o t a t e (−angles [ 6 ] ) #arm 2
t . fo rward (50)
t . pop ( )
t . forward (30)

#head
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t . pen_up ( )
t . forward (20)
t . pen_down( )
t . c i r c l e (20)
t . pop ( )

" " "
I n i t i a l i s e the v i s u a l i s e r , i n c l u d i n g s e t t i n g up the d i sp l a y window . This
should be c a l l e d before any o ther f u n c t i o n s i n t h i s module .

" " "
def i n i t _ v i s ( ) :

global t
global screen
global f o n t

# Create and se t up d i sp l a y window
pygame . i n i t ( )
window = pygame . d i sp l a y . set_mode ( (w, h ) )
pygame . d i sp l a y . se t_cap t ion ( ’ Posture V i s u a l i s e r ’ )
screen = pygame . d i sp l a y . ge t_sur face ( )
screen . f i l l ( background )
f o n t = pygame . f o n t . Font (None , 24)

# Disp lay i n i t i a l message
t e x t = f o n t . render ( "No data a v a i l a b l e " , True , foreground , background )
tex tRect = t e x t . g e t_ re c t ( )
tex tRect . cen te rx = screen . g e t_ re c t ( ) . cen te rx
tex tRect . cen te ry = 40
screen . b l i t ( t e x t , tex tRect )

pygame . d i sp l a y . update ( )

t = T u r t l e ( screen )
t . r o t a t e (180)

" " "
Draw a named posture . I f no posture wi th t h a t name i s known then no th ing
w i l l be done .

Inpu ts
name The name of the posture to draw

" " "
def draw_posture (name ) :

global t
global screen
global f o n t
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i f postures . has_key (name ) :

# Clear d i sp l a y and draw new posture
screen . f i l l ( background )
person ( t , postures [name ] )

# Disp lay name of posture
t e x t = f o n t . render (name, True , foreground , background )
tex tRect = t e x t . g e t_ re c t ( )
tex tRect . cen te rx = screen . g e t_ re c t ( ) . cen te rx
tex tRect . cen te ry = 40
screen . b l i t ( t e x t , tex tRect )

pygame . d i sp l a y . update ( )

E.2 Communication via Bluetooth

# ! / usr / b in / python

" " "
Th is code simply accepts data from a Blue too th socket and passes i t back
out v i a a TCP socket .

Th is i s used to rou te posture names sent by a remote node to the
v i s u a l i s e r . To use t h i s , s t a r t the v i s u a l i s e r , s t a r t t h i s code , and then
s t a r t the data ga ther ing / c l a s s i f i c a t i o n process on the remote node .

" " "

import b l u e to o th
import socket

ethc_sock = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)
ethc_sock . connect ( ( " 127 .0 .0 .1 " , 8557))

bts_sock = b l u e to o th . BluetoothSocket ( b l u e to o th .L2CAP)
bts_sock . b ind ( ( " " , 0x1001 ) )
bts_sock . l i s t e n ( 1 )

btc_sock , address = bts_sock . accept ( )

data = btc_sock . recv (1024)
while data != " " :

ethc_sock . send ( data )
data = btc_sock . recv (1024)
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bts_sock . c lose ( )
ethc_sock . c lose ( )

E.3 Interface to the posture visualisation module

# ! / usr / b in / python

" " "
Th is i s a simple i n t e r f a c e to the posture v i s u a l i s a t i o n module . Posture
names are accepted v i a a TCP socket and these are passed s t r a i g h t to
the v i s u a l i s a t i o n module .

" " "

import socket
import posture as p
import sys
import t ime

p . i n i t _ v i s ( )

sock = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)
sock . b ind ( ( ’ ’ , 8557))
sock . l i s t e n ( 5 )

while 1 :
c l i e n t_ so ck , c l i e n t _ a d d r = sock . accept ( )

data = c l i e n t_ so ck . recv (1024)
while data != " " :

p . draw_posture ( data )
data = c l i e n t_ so ck . recv (1024)
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