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Abstract— The electric motor is the electric vehicle's heart. It 

is crucial that any occurring faults are detected promptly so that 

a catastrophic failure is avoided. At the same time, a deep 

knowledge of the degradation mechanisms is required to allow 

maximum performance at minimum cost. This paper focuses on 

this balance. Statistical results from measurements of unaged and 

accelerated aged winding insulation samples provide information 

about the degradation processes, enabling steps towards a 

reliable prognosis model of the motor's remaining life. 

 
Index Terms— Ageing, Dielectric properties, Electric motor, 

Electric vehicle, Winding Insulation. 

 

I. INTRODUCTION 

LECTRIFIED vehicles are important in addressing the 

challenges of air pollution and climate change [1]. To 

increase the uptake of this technology, it is crucial to reduce 

cost and at the same time increase reliability. 

At the heart of the electric vehicle is the electric motor. 

There are many factors (thermal, electrical, ambient and 

mechanical, abbreviated TEAM) which influence the 

degradation and ageing of the motor components or may even 

cause an unexpected catastrophic failure [2]. When faults 

appear in electric motors, various methods have been proposed 

to diagnose the fault, categorize it and in many cases to detect 

its severity [3]-[5]. Significant work has also been 

accomplished in the area of prognosis, which is strongly 

connected with the overall assessment of the motor condition 

and estimation of remaining life [6]-[8].  However, in order to 

make machines cheaper, lighter (low carbon) and more 

reliable it is necessary to understand the degradation 

mechanisms and consequently design and operate motors 

closer to their limits. 

Research reviews like [3] have shown that, in induction 
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motors most faults occur in the bearings and the winding 

insulation materials. In both cases there have been some 

research studies that aimed to understand the physical and 

chemical properties, which lead to failure, some of which will 

be highlighted now.  

In [9], an investigation using Finite Element Analysis 

(FEA), Hashin and Shtrikman performed approximation and 

experimental testing on the thermal properties for both 

infiltrated and non-infiltrated copper windings. In that case, 

FEA did not provide satisfactory results. Moreover, there have 

been numerous contributions dealing with the properties of 

electrical machine windings [10]-[12]. In [13]-[14] the authors 

have presented a reliable way to monitor the winding 

insulation by measuring and analyzing the windings phase 

currents.    Furthermore in [15], the authors applied a Design 

of Experiments (DOE) approach to define and validate a 

theoretical life span model. Moreover, twisted pair samples 

were used in [16] and the authors experienced a decrease of 

the Partial Discharge Inception Voltage (PDIV) with a 

simultaneous increase of the turn-to-turn capacitance. Finally, 

in [17] the thermal modelling of an electrical traction motor 

was applied for a hybrid drive.    

Many different insulation materials (mica, polyamide-imide 

or PAI, polyester, epoxy etc.) are used in electric machines, 

each typically serving a different purpose [15]-[18]. Amongst 

these, PAI is mostly used in the form of an enamel coating on 

conductor wires which form the machine windings. PAI is 

chosen because it has good high temperature performance. 

However, more work needs to be undertaken to investigate the 

properties of these materials when used as an enamel coating 

on copper conductor wires [19].  

The purpose of this work here is the study of the dielectric 

properties of PAI insulation material used for coating copper 

wires. Firstly, measurements on a large population of unaged 

(i.e. aged at room temperature) samples were taken, since this 

is crucial for extracting information about manufacturing 

imperfections of the coating process. Secondly, samples of 

insulated wire were subjected to accelerated thermal ageing 

tests in order to study the impact of temperature and ageing 

time on their dielectric properties, which could be indicative 

of degradation and failure.  
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II. EXPERIMENTAL SETUP AND PROCEDURE 

Firstly, 20 samples were left aside unaged in order to 

measure and extract baseline information about the expected 

spread of properties after manufacture. Then, 180 additional 

samples were divided into 6 groups of 30 samples each. Each 

group was placed in a separate temperature controlled oven. 

The 6 ovens were set at 200 °C, 215 °C, 230 °C, 245 °C, 260 

°C and 275 °C internal temperature respectively. The ageing 

time periods were selected to be 100 hrs, 200 hrs, 400 hrs, 800 

hrs and 1600 hrs. At the end of each ageing period, 6 samples 

were removed from the oven. One of the ovens with some 

samples inside is shown in Fig. 1.  

 
 

 

Fig. 1. One of the six identical ovens with samples inside. 

For measurement, each sample was placed in a specially 

fabricated plastic case and its dielectric properties measured 

with a custom built electrode at 6 different positions, each 

separated by 3.8 cm, as shown in Fig. 2. The equipment used 

is the PSM1735 from N4L.  

 

 

Fig. 2. The measuring bench: white arrow shows the plastic case, blue shows 

the tested sample, red arrows shows the electrodes (applied voltage) and green 
shows the prototype moveable electrode.  

Table I summarises the number of measurements taken for 

each case. In some samples the insulation was aged to the 

point of catastrophic failure and consequently no 

measurements were taken from these specimens, see (Fig. 3).  

 

 

Fig. 3. Catastrophic insulation failure of samples at 260°C after 1600 hours. 

 

III. EQUIVALENT CIRCUIT MODEL 

A plot of an example impedance measurement from an 

insulation sample is presented in Fig 4. The insulation 

impedance is characterised by capacitive behaviour for 

frequencies above 1 kHz and mainly resistive behaviour for 

frequencies below 1 kHz. Therefore, the impedance within the 

considered frequency range can be modelled using an 

equivalent circuit model (ECM) comprising a resistor R and 

capacitor C connected in parallel. The impedance of the 

considered ECM is given by 

      
 

      
                                                                     (1) 

where   is the frequency expressed in radians per second and 

     .  

 

 

Fig. 4. Impedance spectroscopy of the insulation sample. 
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TABLE I 

MEASUREMENTS PERFORMED/EXPECTED 

    Ageing Period (hours)    

State 100 200 400 800 1600 

unaged     120/120     

200 °C 36/36 36/36 36/36 36/36 36/36 
215 °C 36/36 36/36 36/36 36/36 36/36 
230 °C 36/36 36/36 36/36 36/36 13/36 

245 °C 36/36 36/36 36/36 25/36 0/36 

260 °C 36/36 36/36 33/36 4/36 0/36 

275 °C 36/36 36/36 7/36 0/36 0/36 
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A. Estimation of C 

Note that for      the impedance of the ECM (1) 

becomes 

              
 

   
                                                  (2) 

Hence, for     , the magnitude of the impedance is 
 

  
, 

whilst the phase angle is approximately constant and equal to 

    degrees. Thus, the magnitude of the impedance 

measurement has been used for estimation of C in this region. 

In order to avoid numerical inaccuracies due to round-off 

errors, the logarithm of the impedance magnitude has been 

used to calculate C, noting that: 

                                                                     (3) 

Using the notation         , the parameter C has been 

estimated as a mean value of                     for 

1 kHz < f < 5 MHz [20].  Subsequently, C has been calculated 

as      .  
 

B. Estimation of R 

For      the impedance of the ECM (1) becomes 

                                                                          (4) 

Thus, measurements of the impedance magnitude for  

f < 100 Hz have been used to estimate the value of R [20]. 
 

IV. EXPERIMENTAL RESULTS 

A. Unaged Samples Results 

The histogram of estimated values of C of unaged samples 

is presented in the Fig. 5a) The mean is 22.2 pF and the 

standard deviation is 2.5 pF. Similarly, the histogram of 

estimates of R is presented in the right subfigure of Fig. 5-b. 

Unlike the high frequency (above 1 kHz) data, the low 

frequency impedance measurements are strongly affected by 

measurement noise; in this case the mean was 32.0MΩ and the 

standard deviation 3.2MΩ. Tables II and III illustrate the 

samples capacitance and resistance measurements in more 

detail respectively. Additionally, Fig. 6 illustrates the scatter 

plot of the measured points’ capacitance versus their 

resistance values.  
 

 

a) 

 

b) 

Fig. 5. Histogram of estimated: a) capacitance and b) resistance values from 
all unaged samples. 

 

Fig. 6.  Scatter plot of the unaged samples measured capacitance versus 

resistance.  

 

B. Aged Samples Results 

In the following Fig. 8-Fig. 13 scatter plots of the estimated 

capacitance and resistance values for the aged samples are 

presented for each temperature case at various time lengths of 

exposure. Moreover, Fig. 7 is provided for the reader’s 

convenience, categorizing the samples points’ coloured 

shapes.  
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TABLE II 

SAMPLES CAPACITANCE DISTRIBUTION 

Limits 

[pF] 

Number of 

points 

Percentage 

(%) 

10.0 – 12.5 1 0.83     

12.5 – 15.0 1 0.83     

15.0 – 17.5 3 2.50    

17.5 – 20.0 16 13.33    

20.0 – 22.5 33 27.50    

22.5 – 25.0 53 44.17    

25.0 – 27.5 13 10.83 

 

TABLE III 

SAMPLES RESISTANCE DISTRIBUTION 

Limits 

[MΩ] 

Number of 

points 

Percentage 

(%) 

20.0 – 22.5 1    0.83     

22.5 – 25.0 1 0.83     

25.0 – 27.5 6 5.00    

27.5 – 20.0 27 22.50    

30.0 – 32.5 34 28.33    

32.5 – 35.0 31 25.83    

35.0 – 37.5 12 10.00 

37.5 – 40.0 6 5.00     

40.0 – 42.5 2 1.67 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

Additionally, Tables IV and V present the average values of 

capacitance and resistance respectively of all measured 

samples of the same temperature-ageing time group. 

 

 
 

Fig. 7.  Classification of the symbolism for Figures 8-13. 

 

 
Fig. 8. Scatter plot of the samples measured capacitance versus resistance at 

200°C.  

 

  
Fig. 9. Scatter plot of the samples measured capacitance versus resistance at 

215°C. 

 

 
Fig. 10. Scatter plot of the samples measured capacitance versus resistance at 

230°C. 

 

 

Fig. 11. Scatter plot of the samples measured capacitance versus resistance at 

245°C. 

 

 
Fig. 12. Scatter plot of the samples measured capacitance versus resistance at 

260°C. 

 

 
Fig. 13. Scatter plot of the samples measured capacitance versus resistance at 

275°C. 

 

 

 

 

 

C. Discussion on the Experimental Results 

Firstly, it is important to note the properties of the unaged 

samples, whose average capacitance value was about 22 pF. In 

contrast, the capacitance of the aged samples is less than 20 pF 

in almost all cases except some measurements on the set aged 

at 230 °C. This indicates a rapid drop of the capacitance 

during the early ageing period ( 100hrs ). As a consequence 

Fig. 6 and Table II reveal that, there exist a serious percentage 

of weak points of low capacitance, possibly because of the 
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TABLE IV 

AVERAGE CAPACITANCE (PF) FOR ALL AGED CASES 

 100 h 200 h 400 h 800 h 1600 h 

200°C 13.6±0.9 14.0±1.0 14.1±0.9 14.5±0.9 14.4±1.1 

215°C 14.4±1.0 14.8±0.7 14.7±0.8 15.3±0.8 15.1±1.1 

230°C 22.4±1.1 22.7±1.0 18.8±1.7 14.1±1.0 14.3±1.9 

245°C 15.1±0.8 14.4±1.1 15.2±0.9 13.0±1.3 ---- 

260°C 14.7±0.8 15.0±1.1 15.1±1.0 13.3±2.8 --- 

275°C 16.4±0.8 18.0±0.8 17.0±3.4 --- --- 

 

TABLE V 

AVERAGE RESISTANCE (MΩ) FOR ALL AGED CASES 

 100 h 200 h 400 h 800 h 1600 h 

200°C 33.5±1.3 34.4±0.8 31.6±2.0 25.4±0.8 28.4±0.9 

215°C 37.5±1.1 25.8±1.3 22.2±1.0 28.3±1.0 25.0±2.3 

230°C 34.4±1.0 35.1±2.0 16.2±1.4 23.6±1.1 29.0±2.3 

245°C 29.0±1.2 33.1±1.5 27.9±1.0 25.5±0.9 --- 

260°C 29.0±1.4 30.6±0.8 34.1±1.2 21.0±2.5 --- 

275°C 33.3±1.1 33.2±1.3 34.1±2.3 --- --- 
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manufacturing process of the insulation. More specifically, 

about 17 % of all measurements of the unaged samples present 

similar capacitance to the aged samples. Amongst them, about 

1 % exhibits half the average capacitance value. 

The average resistance of the unaged samples was about 32 

MΩ. It can be seen that, the resistance is less negatively 

affected by the manufacturing process compared to the 

capacitance. That is because the worst case is about 1% of the 

points, which was characterized by about 2/3 of the average 

resistance.  

It becomes clear that, for proper prognosis of insulation in 

electric machines, the manufacturing variations and 

subsequent variation in dielectric properties need to be 

seriously considered. 

Moving on to the aged samples, it can be seen in Fig. 8 that, 

the capacitance is not practically affected by the ageing 

temperature. This is also supported by the average values 

given in Table IV. On the other hand, a gradual decrease of 

the insulation resistance is observed for the first 800 hrs. After 

that period the insulation resistance starts increasing again. 

This is probably due to the air bubbles, which have started to 

develop together with the chemical change of the insulation 

material properties.  

A similar behavior is noticed for the case of 215 °C (Fig. 9). 

The main difference here is that the insulation resistance 

clearly decreases for the first 400 hrs and then it increases 

again. Despite this, some points aged up to 1600 hrs maintain 

low resistance values. The capacitance does not seem to be 

affected by the ageing temperature for this case also.  

The samples which were aged at 230 °C are very interesting 

(Fig. 10). It can be seen that, for the first two ageing period 

cases, 100 hrs and 200 hrs, the insulation material seems to 

have statistically the same behavior. Then, when the insulation 

material ages for 400 hrs there is a distinct decrease in 

resistance of about 50%. Moreover, a 17 % capacitance 

(compared with 200 hrs) decrease is observed. When reaching 

800 hrs, the material is characterized by a 38% decrease of its 

capacitance (compared with 200 hrs). At the same time its 

average resistance starts to increase again (about 46% 

compared to the samples from 400 hrs). Finally, at 1600 hrs 

the capacitance remains unchanged with the samples from 800 

hrs, but on the other hand the resistance keeps increasing 

(about 26% compared to the samples from 800 hrs). It is to be 

noted that, for the case of the samples at 1600 hrs, the average 

capacitance and resistance are calculated with 13 instead of 32 

expected measurements (Table I). It is safe to consider that the 

dielectric properties of the remaining points, which were 

actually measured, represent critical insulation material 

values. 

Furthermore, for the case of 245 °C ageing, the capacitance 

does not vary with ageing time and the resistance presents an 

initial increase up to 200 hrs and then it progressively 

decreases again. Unfortunately no samples survived the 1600 

hrs ageing process at this temperature.  

Additionally, for the last two temperature cases, it becomes 

clear that the ageing progresses rapidly. Generally both the 

capacitance and the resistance of the insulation material do not 

vary much with the ageing time. The only exception is the 

30% decrease of resistance from 400 hrs to 800 hrs for the 

samples at 260 °C, however this result is not reliable since 

only 4 out of 36 expected measurements were able to be 

performed (Table I). 

Finally, the visual inspection of the tested samples revealed 

that, there are two different ageing mechanisms depending on 

the applied temperatures. In the first case, the material ages 

slowly, bubbles are formed on the surface of the conductor 

and then the insulation eventually cracks in a zigzag shape 

(Fig. 14). This was not observed in the samples at 275°C 

where, the insulation was very rapidly aged and cracked, 

resulting to local spots of copper bar without any insulation 

coating (Fig. 15). 

 

 

 
a) 

 
b) 

 
c) 

Fig. 14. Zigzag shaped crack of the insulation material for the samples: a) at 

260°C after 400hrs,b) at 245°C after 800hrs and c) at 260°C after 800hrs. 
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Fig. 15. Aged samples at 275°C after 400hrs. 

 

V. CONCLUSION 

In this work, the polymer insulation coating copper wire for 

electric motor vehicle winding applications was studied. 

Dielectric measurements of unaged as well as accelerated aged 

samples at different temperatures were performed. The results 

reveal that even unaged insulation samples have 

manufacturing variations that lead to low capacitance or 

resistance values. The resistance weak points were found to be 

less critical than the capacitance ones. Moreover, the aged 

samples measurements have shown a distinct immediate drop 

of the insulation capacitance even for light ageing process 

(200 °C, 100 hrs) which could indicate a change in dielectric 

permittivity of the material. Furthermore, it is shown that the 

resistance of the insulation material decreases with increased 

ageing time up to a critical point when it starts increasing 

again. This is suspected to be caused by delamination effects, 

which are permanent material changes in the region between 

the wire and the insulation material. 
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