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The structure of parallel layers in steady
two-dimensional magnetohydrodynamic �ows in
sudden duct expansions and contractions

S. Aleksandrova and S. Molokov
Applied Mathematics Research Centre, Coventry University,

Priory Street, Coventry CV1 5FB, United Kingdom

May 7, 2010

Abstract. The structure of non-linear, steady, two-dimensional parallel
layers at high values of the Hartmann number, Ha, the Reynolds number, Re,
and the interaction parameter, N , for duct expansions and contractions has
been investigated. The magnetic �eld is transverse to the �ow. For the �ow
regime, in which the electromagnetic force balances the inertial force in the
layer, a viscous sublayer at the solid wall parallel to the magnetic �eld has been
obtained, in which the �ow is driven by the pressure gradient induced in the
outer, inviscid layer.
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1 Introduction

Magnetohydrodynamic (MHD) �ows are of great importance to liquid metal
blankets for fusion reactors [1]. At the entrance a duct feeding liquid metal
to the blanket expands into a larger one, which is followed by a manifold of
ducts cooling the plasma chamber and/or breeding tritium. At the exit from
the blanket there is a sudden contraction of a duct. The �ows in the expansion
and contraction regions greatly in�uence the global �ow distribution and ulti-
mately heat and mass transfer in cooling (or breeding) ducts and thus a¤ect the
e¢ ciency of the whole blanket [2], [3].
Although �ows in fusion applications are in general 3-D, here we will be

interested in a simpli�ed problem of 2-D expansions and contractions in the
presence of a transverse magnetic �eld. We pursue the following aim: to in-
vestigate the asymptotic structure of the so-called parallel layers [4], [5] (�gure
1) formed in a high magnetic �eld at the junction between narrow and wide
channels. We will be particularly interested in the case when the �ow in layer P
is governed by the electromagnetic-inertia interaction, which is important not
only for expansions but in a wider context of MHD �ows in high magnetic �eld.
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Figure 1: Schematic diagram of the �ow in an expansion and main �ow sub-
regions in a high magnetic �eld: cores C1 and C2, Hartmann layers H, and
parallel layer P:

2 Formulation

We will be concerned with the steady, 2-D �ow of a viscous, electrically con-
ducting, incompressible �uid in the plane (x; y) in a sudden expansion or a
sudden contraction in the presence of a strong, uniform, transverse, external
magnetic �eld B0 = B0by (Fig. 1). The walls of the narrow and wide channels
are separated by distances 2a� and 2h�, respectively, yielding the aspect ratio
of h = h�=a�. The junction between the narrow and wide channels is located at
x = 0.
The dimensionless, steady, inductionless equations governing the �ow are

[5], [4]:

Ha�2r2v � v � x̂ = rp+N�1(v � r)v; (1)

r � v = 0; (2)

where the length, the �uid velocity v = ux̂ + vŷ, and the pressure p are nor-
malized by a�, v0, and a��v0B20 , respectively; � is the electrical conductivity of
the �uid; v0 is the average �uid velocity in the narrow channel.
The second term in Eq. (1) represents the Lorentz force, which in the case

of a 2-D �ow reduces to linear anisotropic damping a¤ecting the axial compo-
nent of momentum only. The constant electric �eld is incorporated into the
pressure gradient. This corresponds to lateral walls being perfectly conducting
and electrically short-circuited.
The dimensionless parameters in Eq. (1) are the Hartmann number, Ha =

B0a
�p�=��, the square of which characterises the ratio of the electromagnetic

to viscous forces, and the interaction parameter, N = �a�B20=�v0, which char-
acterises the ratio of the electromagnetic to inertial forces in the narrow duct.
Here � and � are the density and kinematic viscosity of the �uid, respectively.
The Reynolds number is expressed as follows: Re = Ha2=N . In fusion reactor
blankets Ha � 103 � 105; N � 103 � 104; Re � 102 � 106:
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In the wide channel the electromagnetic parameters are higher, while the
Reynolds number is the same. Indeed, introducing subscript h, gives: Hah =
B0h

�p�=�� = hHa; Nh = �h�2B20=�v0 = h2N; and Reh = Ha2h=Nh =
Ha2=N = Re:
The boundary conditions are the no-slip-, and the fully-developed-�ow- con-

ditions, which yield:

v = 0 at all walls; (3)

v ! 0; @u=@x! 0 as x! �1: (4)

The average �uid velocity is �xed, i.e.

1

2

1Z
�1

u(x < 0)dy =
1

2h

hZ
�h

u(x > 0)dy = 1: (5)

3 Scaling

For Ha � 1 and N � 1 most of the �ow domain is occupied by the inviscid
and inertialess cores C1 for x < 0 and C2 for x > 0 (Fig. 1). Neglecting viscous
and inertial terms in Eq. (1) and using Eq. (5) yields: uC1 = 1; vC1 = 0;
dpC1=dx = �1; and uC2 = h�1; vC2 = 0; dpC2=dx = �h�1: Thus the �ow in
both cores remains fully developed up to the junction.
The cores C1 and C2 are separated from walls y = �1 for x < 0 and y = �h

for x > 0, respectively, by the exponential Hartmann layers. The analysis of
these layers is standard [6] and is not presented here.
At the junction there is an O(1)�jump in the x-component of the core

velocity, which is smoothed out in the parallel layer P (Fig. 1). The thickness
of this layer and the events at the parallel walls at x = 0; jyj > 1 are the main
concern of this paper.
We introduce scaling for layer P as follows: u = uP ; v = �

�1vP ; p = �pP ; � =
��1x; where � (� Ha�1; � N�1) is the thickness of the layer, and quantities
with subscript P are O(1). Substituting this scaling into Eqs. (1) and (2), and
neglecting terms of smaller order with respect to those retained yields :

uP = �
@pP
@�

; (6)

@uP
@�

+
@vP
@y

= 0; (7)

1

Ha2�4
@2vP

@�2
=
@pP
@y

+
1

N�3

�
uP
@vP
@�

+ vP
@vP
@y

�
: (8)

Equation (6) implies that the axial pressure gradient balances the electro-
magnetic force for all values of �: Concerning Eq. (8), three cases are possible
depending on the relation between Ha and N .

3
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Case I. For N � Ha3=2 the balance in Eq. (8) is between the electromag-
netic and viscous forces, which yields � = Ha�1=2: Note that the electromag-
netic force enters the balance indirectly, via the y�component of the pressure
gradient.
Case II. For N � Ha3=2 the balance is electromagnetic-inertial, which gives

� = N�1=3:
Case III. Finally, for N = O(Ha3=2); all the three forces are in balance,

which yields � = Ha�1=2 = �N�1=3; where � = Ha3=2N�1:
Notice that the scaling for the layer thickness is the same as for duct ex-

pansions being linear functions of x [7]. However, the magnitude of the velocity
is di¤erent. In all the three cases, the �ow is diverted in the �y�direction by
the y�component of the pressure gradient to form jets in the �y�direction of
magnitude ��1:
The analysis for Case II is yet incomplete. As the main balance in layer P

is inviscid, there must be a viscous sublayer, PS , at the solid walls at x = 0.
Let 
 be the thickness of the sublayer. Introducing scaling for the sublayer,
u = 
N1=3uPS ; v = N1=3vPS ; p = N�1=3pP (x = 0) + 
2N1=3pPS ; � = 
�1x;
and keeping leading terms as Ha;N !1 yields

N1=3

Ha2
2
@2vPS

@�2
=

1

N1=3

dpP
dy

����
x=0

+
1

N1=3

�
uPS

@vPS
@�

+ vPS
@vPS
@y

�
:

The balance between all the three terms gives the thickness of the sublayer:


 =
N1=3

Ha
=

1

(HaRe)1=3
: (9)

Note that the �ow in the sublayer is driven by the y�component of the pressure
gradient induced by the �ow in the outer, inviscid layer P .

4 Results and discussion

The problem de�ned by Eqs. (1) - (5) has been solved numerically using the
commertial, �nite-volume code CFX [8]. Typical computational mesh consists of
160 points in the x� and 320 points in the y� direction. The grid is nonuniform,
clustered at the Hartmann walls and in the parallel layers with the minimum
grid spacing of 5�10�5: There are 8-10 points in layers H and the sublayer SP
each. The code has been veri�ed on the results for the non-magnetic case [9],
which include bifurcations to the asymmetric solutions. An excellent agreement
has been achieved.
We employed time-stepping until convergence to a steady �ow. No 2-D

instabilities have been observed for the range of parameters used here. 3-D
instabilities of the jets in the parallel layers have not been studied. They are
possible but do not necessarily occur [10].
The results for a 1:4 expansion are shown in Figs. 2-8. Figure 2 shows the

streamlines in the inertialess �ow (Case I ) for Re = 0; Ha = 103 (Ha3=2 =
31623; N =1). There are no separation zones and the �ow is symmetric about

4
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Figure 2: Streamilnes in the inertialess �ow for Ha = 103.

y
0.96 0.97 0.98 0.99 1.00

u

0

1

2

3

4
Re = 0
Re = 1000
Re = 5000

Figure 3: Axial jets at x = 0 for Ha = 103, and for several values of Re.

the axis y = 0. The pressure gradient diverts the �uid into the �y�direction
in a parallel layer of thickness O(Ha�1=2). The magnitude of velocity in the
jet is O(Ha1=2). Before the junction there is a slight out�ow of the �uid away
from the Hartmann walls into the core. Then, as the �uid needs to �ll the wide
channel right after the corners at y = �1, x = 0, small axial jets develop at the
Hartmann walls in the narrow channel region as shown in Fig. 3.
At Re = 1620 (N = 617) �rst pair of separation zones appears (Fig. 4).

What is interesting is that they are born not at the corners of an expansion but
at the parallel walls, at y = �3:2 (5a): As Re increases their size increases as
well and at Re = 1670 (N = 599) the ends of the separation zones reach the
outer corners at y = �4 (5b). For Re = 2300 (N = 435) a second pair of the
separation zones appear at corners at y = �1. Typical streamlines in this case
are shown in Fig. 5c for Re = 6600 (N = 152) and y � 0. For Re = 6950
(N = 144) the two pairs of separation zones merge and a single pair remains,
beginning at y = �1 and ending at y = �4.
The thickness of the parallel layer P is obtained by the projection of the slope

at the in�exion point of the jet onto the axis. The results are shown in Fig. 6
for y = 2:57 and Ha = 103. It is seen that the thickness becomes proportional
to N�1=3 for N < 1000 as expected from the scaling analysis. Similar pro�les

5
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Re
2000 4000 6000 8000

y

1.0

1.5

2.0

2.5

3.0

3.5

4.0

first zone begins
first zone ends
second zone begins
second zone ends

Figure 4: Positions of the beginning and the end of separation zones for Ha =
103 against Re.

may be obtained for di¤erent values of Ha and y.
The thickness of the inner sublayer has been determined indirectly by the

behaviour of friction at the vertical wall. From scaling for the sublayer with (9)
follows that @v

@x (x = 0) � Ha independent of the Reynolds number. Figure 7
shows that for Re = 104 the linear dependence on Ha is achieved for jyj � 1:5
close to the inner corners of the duct where the recirculating �ow is strong.
For jyj > 1:5 a much higher value of Re is required to get the sublayer with
viscous-inertia balance. The dependence of friction on Re is shown in Fig. 8.
The friction becomes independent of Re as Re increases, as predicted.
The results for a 4:1 contraction are shown in Figs. 2, 6, 9 and 10. It is seen

that the thickness of layer P is proportional to N�1=3 for N < 2000 (Fig. 6)
and that friction linearly varies with Ha and is independent of Re (Figs. 9 and
10), which proves the existence of sublayer PS.
In conclusion, electromagnetic-inertia balance is dominant in the parallel

layer. Viscous sublayer exists at the parallel walls in most cases studied here.
The �ow in the sublayer is driven by the pressure gradient in layer P .
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Figure 6: Thickness of the outer layer for Ha = 103 and for y = 2:57:

Figure 7: Variation of friction at the parallel wall with Ha for Re = 104 for an
expansion at various positions.

Figure 8: Variation of friction at the parallel wall with Re for Ha = 103 for an
expansion at various positions.
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Figure 9: Variation of friction at the parallel wall with Ha for Re = 104 for a
contraction at various positions.
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Figure 10: Variation of friction at the parallel wall with Re for Ha = 103 for a
contraction at various positions.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[5] S. Molokov, "Two-dimensional parallel layers at high Ha, Re and N,"
in Proc. 4 th pamir international conference on magnetohydrodynamics,
France, 2000, 153 (2000).

[6] R. Moreau and S. Molokov, "Julius Hartmann and his followers: a review
on the properties of the Hartmann layer," in: Magnetohydrodynamics: His-
torical Evolution and Trends (S. Molokov, R. Moreau, H.K. Mo¤att, eds).
Springer, 155 (2007).

[7] J. C. R. Hunt and S. Leibovich, "Magnetohydrodynamic �ow in channels
of variable cross-section with strong transverse magnetic �elds," J. Fluid
Mech. 28, 241 (1967).

[8] S. Aleksandrova, S. Molokov and, C. B. Reed "Modelling of liquid metal
duct and free-surface �ows using CFX," Argonne National Laboratory Re-
port, ANL/TD/TM02-30 (2002) .

[9] N. Alleborn, K. Nandakumar, H. Raszillier and F. Durst, "Further con-
tributions on the two-dimensional �ow in a sudden expansion," J. Fluid
Mech. 330, 169 (1997) .

[10] R. Stieglitz, L. Barleon, L. Bühler and S. Molokov, "Magnetohydrodynamic
�ow in a right angle bend in a strong magnetic �eld," J. Fluid Mech. 326,
91 (1996).

10


	cover2
	TCFD-D-09-00115[1]



