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A scheme originally proposed by G. Wei [Physica A 222, 152 (1995); Physica A 222, 155 (1995)] is
redesigned to produce numerical shape parameters of arbitrary tree-branched polymers based on the
Kirchhoff matrix eigenvalue spectrum. This method and two different Monte Carlo techniques (pivot
and growth) are employed to investigate the asphericity of three and four junction comb polymers in
both the ideal and excluded volume regimes. It is found that the extrapolated g-ratio and asphericity
values obtained by all of these methods are in excellent agreement with each other and the available
theory in the ideal regime and that polymers with a complete set of interior branches display a more
sphere-like shape. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905101]

I. INTRODUCTION

It is well known1–3 that the presence of branching alters
the behavior of polymeric materials. Star polymers have one
central junction connecting the various branches. H-combs
are the simplest polymers containing two junctions. These
molecules have a central branch connecting the two junc-
tions, each of which has two other branches attached to it.
Hence, there are a total of five branches: one internal and four
external. The simplest three junction polymers are the TTT and
HH-comb molecules. TTT polymers have seven branches (see
Figure 1). Two are internal (e.g., connect junctions) and five
are external whereas in HH-combs there are eight branches:
two internal and six external. The simple four junction comb
polymers examined herein have either nine or eleven branches
(see Figure 1); now three of the branches are internal and either
six or eight are external. If m is the number of monomers in a
branch and b is the number of branches, there are a total of
N = b∗m+1 units in these uniform combs.

An overall polymer size can be measured by the mean-
square radius of gyration, ⟨S2⟩, where ⟨ ⟩ denotes an average
over the polymer configurations. If ⟨S2⟩b and ⟨S2⟩l are the
mean-square radii of gyration of a branched and linear structure
with an identical number of monomers, then the g-ratio is
defined as

g =
⟨S2⟩b
⟨S2⟩l . (1)

Casassa and Berry4 obtained a general equation for the g-ratio
of uniform, ideal non-excluded volume (NEV) comb polymers
with f three-functional junctions regularly spaced along the
backbone,

g = 1−r− r2(1−r)
( f +1) +

2r(1−r)2
f

+
(3 f −2)(1−r)3

f 2 . (2)

a)Electronic mail: c.vonferber@coventry.ac.uk
b)Electronic mail: marvin.bishop@manhattan.edu

Here, r is the ratio of the number of units in the comb backbone
to the total number of units in the polymer. In case of five branch
combs, r = 3/5 and f = 2, so g = 89/125 = (0.7120). In the
seven branch case, r = 4/7, f = 3, and g = 229/343 = (0.6676)
whereas for nine branches, r = 5/9, f = 4, and g = 155/243
= (0.6379). The g-ratios of NEV eight and eleven branch
polymers were determined by von Ferber et al.5 from the
form factor. These values are 37/64= (0.5781) and 683/1331
= (0.5131) for eight and eleven branches, respectively.

Note that a more general formula allowing for the two
outer junctions to have functionality f1 while the inner junc-
tions display a functionality f2 has been derived in Ref. 5 from
the scattering functions.

Details about the shapes of polymers can be determined
from the radius of gyration tensor. Its eigenvalues ordered by
magnitude are e1 ≤ e2 ≤ e3. These are the principal moments
of gyration along the principal orthogonal axes.6 The average
trace of this tensor, e1+e2+e3, is equal to ⟨S2⟩. The eigenvalues
of each simulated configuration are ordered by magnitude as
above giving triplets e1 ≤ e2 ≤ e3. Rudnick and Gaspari7,8 have
defined the asphericity, A, of polymers in three dimensions
as

FIG. 1. Sketch of comb polymers discussed in this work. Top row: 5, 8, and
11 branch combs; bottom row: 7 and 9 branch combs.
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A=
⟨3

i> j(ei−e j)2⟩
⟨2�3

i=1ei
�2⟩

, (3)

where the averages ⟨. . .⟩ are over all triplets as produced by the
simulation. The average asphericity, ⟨A⟩, in turn is determined
as

⟨A⟩= ⟨
3

i> j(ei−e j)2
2
�3

i=1ei
�2 ⟩. (4)

Again, the averages are over all triplets of eigenvalues deter-
mined from the simulated configuration. Note that in these
equations, A involves a ratio of averages whereas ⟨A⟩ involves
an average of a ratio.

The shape of a three dimensional linear polymer can vary
from a fully extended rod in which e2 and e3 essentially vanish
so that A and ⟨A⟩ have unit value, to a sphere for which e1= e2
= e3. In the latter case, both A and ⟨A⟩ are zero. More complex
polymer structures such as those studied here can obtain a fully
extended rod shape only in the NEV regime where the units can
overlap each other. Nevertheless, even in the excluded volume
(EV) regime, a nearly extended rod shape is possible if the
external branches line up parallel to the backbone. In between
the extremes of a rod and a sphere, a polymer configuration
can be imagined as approximately enclosed inside an ellipsoid
with semi-major axis equal to e1 and semi-minor axes equal to
e2 and e3.

In this article, we compute the g-ratio, A, and ⟨A⟩ from
both theoretical equations and accurate Monte Carlo (MC)
computer simulations for NEV and EV multi-branch comb
molecules.

II. METHODS

A. Theory

Various universal ratios for Gaussian (NEV) tree-branched
macromolecules may be computed by a method originally
developed by Wei,9,10 in the following referred to as “Wei’s
method.” This approach is exact in two dimensions and gives
a very good approximation in three dimensions. In general,
Wei’s method can be applied to any structure for which the
Kirchhoffmatrix and its corresponding eigenvalues are known.
Here, this method is employed to predict universal shape ratios
of branched combs.

A specific feature of the present implementation of the
approach is that the universal ratios are determined by extrap-
olating to infinite size branches. For completeness, we give a
short comprehensive account of Wei’s method. Let λ1, . . ., λN−1
be the N - 1 non-zero eigenvalues of the N × N Kirchhoff
matrix, K , of a Gaussian structure with N beads. Define the
diagonal matrix

ΛN(y)=
*....
,

λ1+ y 0
. . .

0 λN−1+ y

+////
-

. (5)

Then a reduced variant of the characteristic polynomial of K
can be written as

PN(x)=Det[ΛN(−x)]=
N−1
j=1

(λ j− x). (6)

Here, Det[·] denotes the determinant of the corresponding
matrix excluding the zero eigenvalue λN = 0. The N −1 zeros
of the polynomial PN are the non-zero eigenvalues of K . The
essential functions needed for the calculation of the shape
parameters can now be defined. Using the notation y = x/N ,
we write these as

DN(x) = Det[Λ−1
N (0)]Det[ΛN(y2)]= P−1

N (0)PN−1(−y2) (7)

= [
N−1
j=1

λ
−1
j ]

N−1
j=1

(λ j+ y2) (8)

and

S1,N(x)= 1
N2 Tr[Λ−1

N (y2)]= 1
N2

N−1
j=1

(λ j+ y2)−1. (9)

Following Wei,9,10 the functions Sk,N for k = 2,3,. . . corre-
spond to traces of higher powers of Λ−1

N ,

S2,N(x) = 1
N4

N−1
j=1

(λ j+ y2)−2, (10)

S3,N(x) = 1
N6

N−1
j=1

(λ j+ y2)−3. (11)

The asphericity, A, in two or three dimensions, d = 2,3, can
now be obtained using9,10

⟨Ad⟩ = d(d+2)
2

 ∞

0
x3D−d/2

N (x)S2,N(x)dx (12)

=
d(d+2)

2

 ∞

0
dy

N−1
j=1

y3

(λ j+ y2)2


N−1
k=1

λk

λk+ y2



d/2

.

(13)

Independent of the dimension, the g-ratio of the radius
of gyration of the branched structure with respect to that of a
linear chain with the same number of beads is given by

g = S1,N(0)/Schain
1,N (0)=

N−1
j=1

λ
−1
j /

N−1
k=1

λ̂
−1
k . (14)

Here, the λ̂k are the non-zero eigenvalues of the Kirchhoff
matrix of a linear chain with N beads.

B. Numerical evaluation applying Wei’s method

For certain specific comb-like structures, Wei9,10 has
derived analytical results for the shape parameters. Here, how-
ever, we seek to determine shape parameters for standard comb
structures. For this purpose, we pursue another approach by
extrapolating results for combs composed from finite discrete
chains of beads. As an example, let us explain how we deter-
mine the shape parameters for the 7-branch comb—see the 7-
branch structure in Fig. 1. Here, we initially set up the Kirchoff
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FIG. 2. Extrapolation for the three dimensional g -ratios of the comb poly-
mers discussed. Note that in order to show all the extrapolated results in a
single graph, the target g -ratio is normalized to 1 for all five combs.

matrix, K , for this structure with 64 beads per branch. Avoiding
double counting, this results in a structure with N = 449 beads
corresponding to 1/N ≈ 0.0022. We then calculate the shape
parameters for this initial structure. The corresponding values
for the g-ratio and the asphericity of the 7-branch comb are
marked by rightmost disk-shaped markers in Figs. 2 and 3.
We continue by increasing the number of beads per chain by
factors of

√
2, up to a structure with 4096 beads per chain

and thus a total of N = 28 673 beads corresponding to 1/N
≈ 3.49×10−5.

Wei’s method as detailed in Sec. II A is then applied to
determine the shape parameters of the given structures as a
function of the total number of beads N . The extrapolated
value for the given shape parameter is determined in the limit
of 1/N → 0. As displayed in Figs. 2 and 3, the results scale
perfectly with 1/N as seen from the straight line extrapolations.
Thus, extrapolated results may be extracted from these series.
This procedure is illustrated in Fig. 2 for the g-ratio and in
Fig. 3 for the asphericity. The final results concerning the
combs discussed in this paper are given in Table I for the g-
ratio and in Table II for the average asphericity ⟨A⟩. Estimated

FIG. 3. Extrapolation for the three dimensional asphericities of the comb
polymers discussed. Note that in order to show all the extrapolated results in
a single graph, the target asphericity is normalized to 1 for all five combs.

TABLE I. Comparison of extrapolated pivot MC, growth MC, and Wei’s
method g -ratios to the theoretical infinite bead values reported in the literature
for NEV combs.

Pivot MC Growth MC Wei Theory

5 branch 0.712(1)a 0.711(5) 0.7120(0) 0.7120b

7 branch 0.666(1)c 0.668(5) 0.6676(1) 0.6676b

8 branch 0.578(1)c 0.574(4) 0.5781(0) 0.5781c

9 branch 0.638(2)c 0.6378(6) 0.6379b

11 branch 0.512(2)c 0.5131(1) 0.5131c

aSee Reference 13.
bSee Reference 4.
cSee Reference 5.

errors given for Wei’s method in Tables I and II are based on
the statistical error taken from the extrapolation.

C. Monte Carlo

In the first MC method employed here, tangent hard sphere
polymer models have been simulated using a Monte Carlo
pivot11 algorithm. These polymer models are essentially the
same as those previously used by Zweier and Bishop12,13 for
H-combs. We have simulated systems with N ranging from
211 to 1431. The details of the simulations are contained in
Kosmas, Reid, and Bishop.14

In our second MC method, chain growth on a simple cubic
lattice has been employed to examine five, seven, and eight
branched NEV combs. Details of this approach are contained
in Zajac and Bishop.15 Here, N ranged from 100 to 480 since
the starting beads of each branch were overlapped at the junc-
tions.

If X (α)
j denotes the α component of the three dimen-

sional position vector of the j-th bead, then the center of mass

TABLE II. Comparison of extrapolated pivot MC, growth MC, and Wei
method for A and ⟨A⟩.

NEV

A ⟨A⟩ ⟨A⟩ ⟨A⟩
Pivot MC Pivot MC Growth MC Wei

5 branch 0.379(1)a 0.296(1)a 0.297(2) 0.29747(4)
7 branch 0.385(2) 0.294(1) 0.296(2) 0.29455(7)
8 branch 0.332(1) 0.261(1) 0.260(1) 0.26087(5)
9 branch 0.394(4) 0.295(2) 0.29579(4)
11 branch 0.327(3) 0.253(2) 0.25323(4)

EV

A ⟨A⟩
Pivot MC Pivot MC

5 branch 0.385(2)a 0.318(2)a

7 branch 0.393(3) 0.321(2)
8 branch 0.334(2) 0.280(2)
9 branch 0.411(8) 0.333(4)
11 branch 0.350(4) 0.288(4)

aSee Reference 12.
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TABLE III. The ratio of the averages, A, for three junction combs.

7 branch 8 branch

N NEV EV N NEV EV

211 0.380(2) 0.400(1) 241 0.328(2) 0.341(1)
351 0.383(2) 0.400(1) 401 0.331(2) 0.339(1)
561 0.384(2) 0.397(2) 561 0.330(2) 0.339(1)
631 0.383(2) 0.397(1) 721 0.332(1) 0.338(1)
701 0.383(2) 0.397(2) 881 0.330(1) 0.338(1)

coordinates, X (α)
CM

, of a given configuration are

X (α)
CM
=

1
N

N
j=1

X (α)
j , for α = 1,2,3 (15)

and the matrix components of the gyration tensor, Q, may be
written in the form

Qαβ =
1
N

N
j=1

(X (α)
j −X (α)

CM
)(X (β)

j −X (β)
CM

). (16)

The square radius of gyration of this configuration is then
calculated as

S2=Q11+Q22+Q33. (17)

The set of values was then further averaged over the total
number of saved samples to determine the values of the mean
and the standard deviation from the mean, employing the usual
equations.

III. RESULTS

The pivot MC g-ratios have been previously calculated5

from the radius of gyration data, and the errors in these quan-
tities have been computed from the standard equation relating
the error in a ratio to the error in the numerator and the error
in the denominator. However, these computer results are for
finite N whereas the theories are for infinite N . Infinite N g-
ratio values have been obtained by fitting a scaling law as
explained in Zweier and Bishop.12 These extrapolated g-ratios
for NEV systems are compared to other findings in Table I.
The extrapolated data of Zajac and Bishop15 are less accurate
than the pivot MC simulation results. Nonetheless, the growth
algorithm data agree with the other findings well within two
standard deviations of the mean, or the 95% confidence limit. In

TABLE IV. The ratio of the averages, A, for four junction combs.

9 branch 11 branch

N NEV EV N NEV EV

775 0.392(2) 0.413(2) 771 0.329(2) 0.349(1)
847 0.393(2) 0.413(2) 881 0.329(2) 0.349(2)
901 0.393(1) 0.413(2) 991 0.329(2) 0.349(1)
991 0.393(3) 0.413(2) 1101 0.329(2) 0.350(2)

1171 0.393(3) 0.413(1) 1211 0.330(2) 0.350(1)
1261 0.393(2) 0.413(2) 1321 0.329(2) 0.349(1)
1351 0.393(2) 0.412(2) 1431 0.328(1) 0.349(1)

TABLE V. The average of the ratio, ⟨A⟩, for three junction combs.

7 branch 8 branch

N NEV EV N NEV EV

211 0.292(1) 0.333(1) 241 0.258(1) 0.290(1)
351 0.293(1) 0.332(1) 401 0.260(1) 0.287(1)
561 0.294(1) 0.329(1) 561 0.259(1) 0.287(1)
631 0.292(1) 0.328(1) 721 0.260(1) 0.286(1)
701 0.293(1) 0.328(1) 881 0.260(1) 0.285(1)

all the results reported in the tables, the number in parenthesis
denotes one standard deviation in the last displayed digits.

Both Wei’s method and the MC simulations are in
excellent agreement with each other and the theoretical
predictions. The g-ratios of the eight and eleven branch
combs, which have a complete set of interior branches, have
a relatively lower value than those found for the five, seven,
and nine branch combs.

The pivot MC simulation results for the asphericities A
and ⟨A⟩ are contained in Tables III–VI, respectively. The error
in the A calculation, which involves the division of separately
averaged quantities, was determined similarly as the data in
Table I. One would not expect A and ⟨A⟩ to be the same since
the numerator and denominator in Eqs. (3) and (4) are highly
correlated. The data display only a weak dependence on N .
The EV values of A and ⟨A⟩ are larger than their respective
NEV values because of the repulsions in the EV polymers.

As was the case for the g-ratio, the data have been
extrapolated to predict values for an infinite polymer. Table II
lists these extrapolated values. The value found for ⟨A⟩ of
NEV H-comb polymers is in excellent agreement with the
theoretical prediction of Wei;16 0.297. As expected, the results
indicate that the polymers become more sphere-like in their
shape as the structure changes to higher branching and a
complete set of interior branches. There are currently no
theoretical predictions for the asphericity of these branched
combs in the EV regime. We plan to obtain these predictions
for EV branched comb polymers by building on our previous
work on EV star polymers.17

IV. CONCLUSIONS

Wei’s method and the Monte Carlo pivot and growth
algorithms have been used to investigate branched comb

TABLE VI. The average of the ratio, ⟨A⟩, for four junction combs.

9 branch 11 branch

N NEV EV N NEV EV

775 0.295(1) 0.337(1) 771 0.252(1) 0.291(1)
847 0.295(1) 0.337(1) 881 0.252(1) 0.291(1)
901 0.295(1) 0.337(1) 991 0.252(1) 0.291(1)
991 0.294(1) 0.337(1) 1101 0.253(1) 0.292(1)

1171 0.295(1) 0.336(1) 1211 0.253(1) 0.291(1)
1261 0.295(1) 0.337(1) 1321 0.252(1) 0.290(1)
1351 0.295(1) 0.336(1) 1431 0.252(1) 0.290(1)
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polymers in the ideal and excluded volume regime. The
g-ratio, the asphericities, and their respective error bars have
been determined for a wide range of N . It is found that
the extrapolated g-ratio and asphericity values of all the
techniques are in excellent agreement with each other and the
available theory in the NEV regime but that more theoretical
work is needed in order to determine these quantities in the EV
regime.
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