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An analysis of the successive regimes of the two-dimensional (2D) flow through a
sharp 180◦ bend is performed by means of parametric numerical simulations where
the Reynolds number Re and the opening ratio β (defined as the ratio of bend
opening to the inlet width) vary in the respective ranges [0–2500] and [0.1–10]. In
the outlet, the sequence of flow regimes is found to bear similarities with the flow
behind a two-dimensional cylinder, despite being asymmetric by nature: when Re
was increased, we found a laminar flow, then a flow with a first recirculation attached
to the inside boundary, then one with a second recirculation attached to the top
boundary. The onset of unsteadiness occurs through instability of the main stream
and vortex shedding from the inside boundary. For β ≤ 0.2, the flow is characterised
by the dynamics of the jet generated at the very small turning part whereas for
β ≥ 0.3, it behaves rather like the flow behind an obstacle placed in a channel. This
difference is most noticeable in the unsteady regimes where the vortex shedding
mechanisms differ. While the former generates a more turbulent flow rich in small
scale turbulence, the latter produces large structures of the size of the channel. In
the turning part, further series of recirculation develop in each corner, akin to those
identified by Moffatt [“Viscous and resistive eddies near a sharp corner,” J. Fluid
Mech. 18, 1 (1964)]. For β > 1 corresponding eddies merge to form a series of
alternately rotating recirculating cells, which occupy the whole width of the turning
part. We find that for β > 1, the effective opening ratio β∗, which correspond to the
area occupied by the mainstream while passing from the inlet to the outlet, tends
towards a value of �0.7. The combination of regimes in the outlet and the turning
part yields a wealth of flow regimes, which open interesting possibilities to tailor
the design of 180◦ bends to suit particular applications involving mixing, heat, and
mass transfer. Selected 3D simulations show that with a few noticeable exceptions,
2D dynamics determine the main features of the flow (drag and recirculation length),
even in a wide bend, while 3D structure tends to slow down the shedding mechanism.
2D simulations are thus not only relevant to configurations where the flow is expected
to be 2D (thin bend, MHD flows), but also to 3D flows where they can predict some
of the global flow features at a low computational cost. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4807070]

I. INTRODUCTION

Flows in bends present generic features that are common to a vast class of separated flows, such
as flows around obstacles or behind a backward facing step. As such, their relevance extends well
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FIG. 1. Key points of 180◦ bend duct have been studied: turning part shape (a), turning part width (b), divider thickness (c),
and secondary flow recirculations (d).

beyond that of their own dynamics.1–3 Nevertheless, their study has been mainly driven by the need
to optimise heat exchangers, many of which are made of a many-fold succession of sharp bends,
mainly 180◦ bends, such as that sketched in Fig. 1. Blankets of nuclear fusion reactors, including the
ITER prototype, are one recent and particularly complex example: these consist of an arrangement
of bends in which a liquid metal flow transports away the heat generated in the fusion plasma.
Obviously, the efficiency of this process is key to the efficiency of the whole reactor. Two of the
difficulties to overcome are the very large head losses incurred as the flow passes through the blanket
on the one hand, and to avoid the occurrence of dangerous hot spots where heat accumulates on
the other hand.4 Both are directly linked to the flow structure, which can be controlled by altering
the inner or the outer geometry of the bend. This problem is a highly complex one involving the
combined effects of the strong magnetic field that confines the plasma, convective heat, and mass
transport as well as fluid dynamics. Nevertheless, even the presumably simpler question of how
variations in the duct geometry affect the hydrodynamic flow regimes inside the bend is not known,
even though the answering it would greatly help to optimise the blanket design. Our approach in this
regard is rather modest: rather than solving a full problem, such as that of the fusion blanket, this
paper is concerned with the precise determination of how changes in the bend geometry affect the
nature of the purely hydrodynamic flow in a generic bend. In particular, we aim at characterising the
dynamics of local recirculations and the onset of vortex shedding. Beyond their interest as generic
separated flows, these structures directly determine head losses, heat transfer, and the occurrence of
hot spots.

Unsurprisingly, the majority of studies concerned with the flow in 180◦ bends focuses on aspects
related to heat transfer. Wang5 studied the relationship between the turning part shape (Fig. 1(a))
and the heat transfer coefficient, to show that out of straight-corner (sharp bend) turn, rounded-
corner turn, and the circular turn, the straight-corner turn produced the strongest turn-induced heat
transfer enhancement. The width of the turning part of the sharp bend also influences the heat
transfer coefficient (Fig. 1(b)): when the width changes from 50 mm to 30 mm, the mean Sherwood
number (ratio of convective to diffusive mass transport) increases by 30%.6 For a sharp bend duct,
the maximum Nusselt number Nu (ratio of convective to conductive heat transfer) over the whole
domain occurs in just downstream of the turning section.7, 8 The divider thickness (distance between
the inlet top wall and the outlet bottom wall) also affects heat transfer process9, 10 (Fig. 1(c)): value of
the dimensionless divider thickness (ratio of divider thickness to sum of inlet width and outlet width)
around 0.25 produces the maximum total average Nusselt number. In practice, heat exchangers may
contain more than one sharp turn section. Analyses of a three-pass passage show that heat transfer
processes around the second sharp turn are virtually identical to those around the first one.11 This
confirms the relevance of single 180◦ bends to more realistic configurations.

The reasons behind these variations in heat transfer performances between different geometries
originate in alterations of the flow patterns, and in particular of the dynamics of the recirculating
flows that exist there9 (Fig. 1(d)). The flow also becomes unsteady for large flow velocities, causing
a dramatic heat transfer enhancement.12 The dynamics of the recirculation that arises on the inside
wall of the outlet part received most attention.6 In a 180◦ sharp bend, the numerical simulations
of Ref. 12 showed that its length increased with the Reynolds number in the range [50–600], until
the flow becomes unsteady for Re > 600. This behaviour resembles that of recirculations behind
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obstacles13 and downstream of a backwards facing step (BFS). In the latter configuration,1 it was
showed that the length of recirculation behind the step strongly depended on Re, with the flow
becoming unsteady for Re > 1200. The length increases linearly at low Re3 and decreases in the
unsteady regime, as for recirculations behind cylinders. Another feature common to the BFS and
180◦ sharp bend is the existence of a second recirculation downstream of the first one, but attached
to the opposite duct wall. Downstream of a BFS, Ref. 3 found that it was displaced downstream
as Re increased, because of the lengthening of the first recirculation. A similar secondary flow was
noted in flows behind cylinders confined in a channel, at high blockage ratio.14 Bouda et al.15 and
Schafer et al.16 also found two recirculations behind a step with different directions for a turbulent
wall jet flow. The 180◦ sharp bend, however differs from these two other configurations through the
presence of two sharp corners in the turning part. In the vicinity of each of them, an infinite sequence
of eddies of decreasing size and intensities when approaching the corner point always exist,17–19

which were visualised in Mochizuki’s experiments.20

From this short review, the influence of the duct geometry on heat transfer is well established
and it operates by altering the flow regimes. Yet the precise effect of the geometry on the flow
regimes themselves was never investigated systematically. Before characterising heat transfer in
each flow regime, it is therefore necessary to determine the occurrence of these regimes and their
hydrodynamic features when the geometry is altered. This shall be the focus of this paper: our
analysis relies on a parametric numerical simulation based on an unsteady finite volume code. In
the light of the aforementioned results on heat transfer in bends, we choose the configuration of
a 180◦ sharp bend with a straight corner. We shall focus on the influence of the non-dimensional
opening ratio β, between distance b in Fig. 1 and the inlet diameter. In order to cover an extensive
range of parameters in terms of Reynolds number and β, we shall combine a detailed analysis of
a purely two-dimensional (2D) flow with targeted numerical simulations of the full 3D problem.
Beyond a great importance as an academic problem, understanding the 2D dynamics in detail is a
crucial step in the analysis of this class of flow. First, it is directly relevant to a number of realistic
configurations where the bend is very thin, such as laboratory experiments in Hele-Shaw cells21, 22

or soap films or in heat exchangers designed for small electronic components, and also to flows
in high magnetic fields such as in ITER.23, 24 This class of flow can indeed exhibit boundary layer
separation, instabilities, and turbulence with a clear two-dimensional dynamics.25, 26 Second, even
in 3D flows, 2D and 3D dynamics are likely to coexist, as recently discovered in turbulent flows,27

so not only do 2D simulations remain partly relevant to 3D flows but they are essential to understand
the full dynamics. The goal of the subsequent 3D simulations will be to determine the limits of the
strict validity of the 2D simulations and also to measure their relevance to the flow, when three-
dimensionality is present. This will also serve as a first step for future work dedicated to aspects of
the 3D flow.

The geometry and governing equations are given in Sec. II. The numerical setup is presented
in Sec. III. We shall distinguish between the flow regimes in the outlet and in the turning part
of the bend, which are, respectively, discussed in Secs. IV and V. 3D simulations are presented in
Sec. VI.

II. PROBLEM GEOMETRY AND GOVERNING EQUATIONS

We consider an incompressible flow (density ρ, kinematic viscosity ν) in a 2D 180◦ sharp bend,
represented in Fig. 2. The origin is placed at the middle of the inner wall of the turning part, with x
coordinate along the inlet streamwise direction. The duct widths are a in the inlet and outlet and b
in the turning part. c is the divider thickness and the lengths of the bottom and top boundaries are d
and e, respectively. The ratios c/a and e/d are set to 0.04 and 3, while inlet and outlet, respectively,
over (d − b)/a = 15 and (e − b)/a = 30 duct widths. β is defined as the ratio of b/a. It shall be
referred to as the opening ratio, by analogy with the blockage ratio used for flows around obstacles.23

Values of β in the range [0.1,10] are studied in order to investigate the influence of the geometry
on the flow regimes. The flow dynamics are governed by the Navier-Stokes equations. Using a, the
maximum inlet velocity, U0, ρU 2

0 , and a/U0 as reference length, velocity, pressure, and time, the
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FIG. 2. The geometry of 180◦ bend duct for the whole domain. Boundaries are labelled as follows: 1, top boundary (T); 2,
inside boundary (I); 3, bottom boundary (B); 4, end wall boundary (E).

non-dimensional equations can be written as

∂t u + (u · ∇)u + ∇ p = 1

Re
∇2u, (1)

∇ · u = 0, (2)

where u is the non-dimensional flow velocity, p is the non-dimensional pressure, and Re = U0a/ν
is the Reynolds number. Along each of the walls B and E, a no-slip impermeability condition is
imposed:

u = 0. (3)

A Poiseuille velocity profile is imposed at the inlet at x = −0.9:

ux (y) = [1 − (
2(y + 0.052)

a
)2]. (4)

The outlet boundary condition is designed so that the flow is back to streamwise invariance:

u · ∇u|x=− e−b
a

= 0. (5)

At the same time, the length of the outlet was chosen to be sufficiently long for all vortical structures
to have been dampened out before the flow reached the outlet, in order to avoid any upstream
influence of this condition. In this regard, our choice of e−b

a = 30 results from an comfortable
application to the bend of the length recommended for cylinder wakes,28 taking the duct width as a
reference length. It turned out a posteriori that the flow was indeed back to streamwise invariance
well before reaching the outlet in all of our calculations.

Finally, as we shall see in Sec. III, we shall use a highly regular, structured mesh, together
with the finite volume method, which can be artificially stabilising: in flows around cylinders this
combination is known to exhibit transitions to recirculating or unsteady flows at higher critical Re
than those experimentally observed. This behaviour can be compensated by introducing arbitrary
velocity perturbations during a short initial period of the simulation. In the same spirit, as in the
simulation of wakes, where it is customary to rotate the cylinder clockwise and counterclockwise,
moving wall conditions are applied in the first stages of all calculations in near-critical regimes so
as to artificially introduce some perturbative vorticity in the flow.29 For instance, for instabilities
originating near the inside boundary, the no-slip boundary condition on boundary (I) shall be replaced
with

u =

⎧⎪⎨
⎪⎩

0.1 0 ≤ t ≤ 1,

−0.1 1 ≤ t ≤ 2,

0 otherwise.
(6)
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3.5a

0.0035a

FIG. 3. Details of the meshes around turning part area.

A similar treatment was applied to boundary T, in near-critical conditions for flows subject to
instabilities originating there.

III. NUMERICAL SETUP

Equations (1) and (2) are solved using the finite volumes method, with an unsteady solver. The
spatial discretisation is of second order upwind and the time scheme is a second-order implicit
pressure-velocity formulation. The velocity-pressure coupling is solved with the PISO algorithm.30

Our code is based on the OpenFOAM framework, where these methods are implemented. It is
essentially identical to its 3D counterpart, which we used and tested in Ref. 31. The mesh is fully
structured and is refined in the vicinity of the walls (see Fig. 3). The size of the cell near all walls is
about 0.0035a. The detail of the meshes is given in Table I. During the simulations, the time step is
constant and it must satisfy the Courant-Lewy-Friedrich condition, such that the maximum Courant
number is always smaller than 1. For each fixed value of β, we first perform a simulation at Re = 1.
In subsequent simulations Re is increased in small steps, starting from the established state of the
previous step. Values of β in the range [0.1, 10] are selected in order to investigate how the flow
regimes depend on the geometry of the bend.

A first test is performed to determine the required number of cells in the mesh. We perform
simulations for β = 1 at Re = 100, for which the flow is steady and Re = 800, for which the flow is
unsteady. The drag coefficient Cd, the lift coefficient Cl, and Strouhal number St are, respectively,
defined as

Cd = 2F · ex
ρU 2

0 A
, (7)

Cl = 2F · ey
ρU 2

0 A
, (8)

TABLE I. Characteristics of different meshes and Cd, St, and U errors at Re = 100 and 800 for β = 1.

Meshes Mesh1 Mesh2 Mesh3 Mesh4 Mesh5

Total number of nodes 35 770 49 134 71 622 100 602 144 530
Number of nodes along boundary T 188 222 268 320 384
Number of nodes across the duct 48 56 68 80 96
εSt = |1 − St(Mi)/St(M5)| 7.11 × 10−1 1.56 × 10−1 1.45 × 10−2 8.67 × 10−3 . . .

ε100
Cd

= |1 − Cd (Mi)/Cd (M5)| 8.09 × 10−4 5.23 × 10−4 2.70 × 10−4 1.27 × 10−4 . . .

ε800
Cd

= |1 − Cd (Mi)/Cd (M5)| 1.74 × 10−2 8.18 × 10−3 3.55 × 10−3 2.38 × 10−4 . . .

ε100
u = ∑ |uMi − uM5|/

∑ |uM5| 6.73 × 10−3 4.97 × 10−3 3.13 × 10−3 8.81 × 10−4 . . .

ε800
u = ∑ |uMi − uM5|/

∑ |uM5| 5.84 × 10−2 4.56 × 10−3 3.42 × 10−3 8.56 × 10−4 . . .
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St = f aβ

U0
, (9)

where F is the total force exerted by the fluid on the inside boundary, and A is the total surface of
I and f is the frequency of vortex shedding. The latter corresponds to the peak of lowest frequency
in the frequency spectrum found at Re = 800. We compute the errors εSt , εCd , and εu on St, Cd,
and U relative to the finest mesh M5 (see Table I, where the exact definition of these quantities is
given). All three decrease when the total number of cells of the mesh increases, which shows good
convergence. Thereafter, all the simulations are based on mesh M4, which ensures a good precision
at a reasonable computational cost.

A further validation test was computed to investigate the accuracy of the numerical scheme for
flows in bends. Chung12 considered nearly the same geometry as in the present paper for β = 1, but
with c = 0.05 instead of c = 0.04. They found that the flow became unsteady for 500 < Re< 600,
which is consistent with our more precise result in the range 560 < Re< 570.

IV. FLOW IN THE OUTLET PART OF THE BEND

A. Flow regimes

1. General features

In all cases considered in this paper, the flow remains laminar in the inlet branch of the bend (y
< 0, x < 0). In the whole of Sec. IV, we shall first focus on the dynamics of the flow in the outlet
branch of the bend (y > 0, x < 0). Features of the flow in the turning part of the bend (x > 0) and its
influence on the outlet flow shall be analysed in Sec. V.

For all opening ratios β, we were able to distinguish five different regimes as Re was increased,
which we shall, respectively, refer to as regimes I, II, III, IV, and V (see Figs. 4–6 and 9). Rec

1, Rec
2,

Rec
3, and Rec

4 denote the first critical values of Re at which regimes II, III, IV, and V were, respectively,
detected. The first three flow regimes are steady whilet subsequent regimes are unsteady. Up until
unsteadiness is established, the flow follows the same scenario at all values of β, with some minor
differences, whereas the evolution of the flow within regime IV and beyond exhibits fundamental
differences, whether β is smaller or larger than about 0.3.

In regime I, encountered at the lowest Re, the flow is laminar and attached to the walls all
the way through the bend. At very low Re, it is close to being symmetric about the y = 0 plane
(see Figs. 4–6(a)), but when Re increases within regime I, streamlines are progressively displaced
towards the upper part of the bend. More and more marked inflexion points around x = −0.05 to 0
can be noticed, and a region of low pressure develops downstream of the inside corner of the outlet.
For Rec

1 < Re < Rec
2, the resulting adverse pressure gradient near the inside corner becomes strong

enough to drive a return flow that leads to the appearance of a first recirculation R1 (Figs. 4–6(b)).
This regime is defined as regime II and the corresponding flow is strongly reminiscent of the steady
recirculating flow found behind an obstacle.13 As Re increases within regime II, R1 lengthens and
broadens, with direct consequence that the section of the bend available to pass the total flow rate
is locally reduced. Downstream of the recirculation, the passage widens again so the pressure has a
local minimum, as in a Venturi tube. This leads to the development of an adverse pressure gradient
at the downstream edge of R1. For Rec

2 < Re < Rec
3, this adverse pressure gradient becomes strong

enough to drive a second steady recirculation R2, which defines regime III (see Figs. 4–6(c)). Since
R1 is attached to the inside wall, the adverse pressure gradient is stronger near the top boundary so
the second recirculation develops there, rather than on the inside wall. In this flow regime, R1 and
R2 coexist mostly in a steady state. Towards the end of regime III, however, oscillations of small
amplitude appear that originate downstream of the recirculation in the main stream (about 3% of the
max inlet velocity). The phenomenon is reminiscent of the oscillations that are detected in the tail of
recirculations behind 2D obstacles, at slightly lower Re than the critical Reynolds number for vortex
shedding. These fluctuations appear far downstream and propagate upstream as Re approaches the
critical value for the onset of the next regime.
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0 0.02ωmax

Re=1, Regime I.

Re=50, Regime II.

Re=400, Regime III.

Re=700, Regime IV.

Re=900, Regime V.

R1

R2

(a)

(b)

(c)

(d)

(e)

Inflexion point

FIG. 4. Sequence of flow regimes in the outlet part for β = 1. (a)–(c) Streamlines of steady flow. (d)–(e) Snapshot of vorticity
contours taken from the unsteady flow. The outlet part is only represented up to 15 duct widths for clarity, when the simulated
domain extends in fact to 30 duct widths. ωmax stands for the dimensionless maximum vorticity which is normalised by U0/a.

For Re > Rec
3, a first kind of vortex shedding sets in, but unlike in the symmetric flows behind

obstacles, it does not originate in the roll-up of the shear layers wrapped around any of the recircu-
lations. Vortices of smaller scale are generated by the instability of the shear layer that carries the
main stream between R1 and R2. This instability is of the Kelvin-Helmholtz type (see for instance
Ref. 32) and takes place towards the downstream end of R1. The unstable shear layer induces a
collapse of R2 to a much shorter length, but without any shedding associated to this structure. In this
sense, R2 remains a recirculation and does not become a vortex formation region, as recirculations
behind cylinders do at the onset of vortex shedding. By contrast, R1 remains essentially steady (see
Figs. 4–6(d), and corresponding animations). Another distinctive feature of this regime is that in none
of our simulations do flow quantities exhibit any simple periodic behaviour. Although a dominating
mode could clearly be identified in the fluctuations of drag coefficient, the pattern of their variations
is chaotic.

2. Influence of the geometry on regimes I–IV

The sequence of regimes described in Sec. IV A applies to all the values of β we investigated.
Nevertheless, the flow within these regimes does exhibit some noticeable variations when spanning
small to large values of β. Most noticeably, the internal structure of both recirculations is altered:
at low values of β, the stream is carried around the first recirculation by a jet of typical size β.
As the first recirculation lengthens in regimes I and II, it cannot expand transversally and adopts
an increasingly elongated shape in the streamwise direction. As a consequence, closed streamlines
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Re=1, Regime I.

Re=50, Regime II.

Re=300, Regime III.

Re=400, Regime IV.

Re=900, Regime V.

(a)

(b)

(c)

(d)

(e)

FIG. 5. Flow regimes in outlet part of bend for β = 0.5. See legend of Fig. 4. The outlet part is only represented up to 15
duct widths for clarity, when the simulated domain extends in fact to 30 duct widths.

Re=1, Regime I.

Re=20, Regime II.

Re=100, Regime III.

Re=180, Regime IV.

Re=300, Regime V.

00 .01ωmax

(a)

(b)

(c)

(d)

(e)

FIG. 6. Flow regimes in outlet part of bend for β = 0.1. The outlet part is only represented up to 15 duct widths for clarity,
when the simulated domain extends in fact to 30 duct widths.
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Re=120 Re=140

Re=160 Re=200

R2 R1

Rin

FIG. 7. Streamlines of the steady flow at β = 0.2, showing the stages of the development of the inside recirculation within
R1 at different values of Re.

concentrate near its downstream end, leaving a mostly stagnant zone on the upstream end. The
proximity of this new intense vortex with the wall induces a counter-rotating vortex inside R1,
the stages of developments of which are shown in Fig. 7. For larger β, the constraint imposed by
the upper wall on the development of R1 only appears in the late stages of its lengthening, so the
appearance of the inside recirculation is postponed to much higher values of Re. The variations of
the corresponding critical Reynolds number Rec

in are shown in Fig. 8. For β > 1, increasing the
opening ratio does not change further the width of the main stream in the outlet so the confine-
ment constraint on R1 is essentially the same as for β = 1, consequently, Rec

in(β) does not vary
further.

A somewhat similar influence of the boundaries on a recirculating flow was reported by
Refs. 33–35: the authors noticed that a low pressure induced by a local suction through a channel wall
led to the appearance of secondary vortices inside the main recirculation behind a backward-facing
step.

 

0
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0 2 4 6

1

Re

β

FIG. 8. Relationship between the critical Reynolds number Rein for the appearance of the inside recirculation within R1,
and β.
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3. Geometry-dependent unsteady regimes for β ≥ 0.3

From regime IV onwards, a fundamental difference appears in the mechanisms that characterise
subsequent regimes with β ≤ 0.2 and those with β ≥ 0.3. For β ≥ 0.3, these unsteady regimes relate
closely to those found in the wake of a 2D cylinder: as soon as Re exceeds Rec

4, R1 in turn collapses,
but unlike R2 it breaks up and sheds vortices (Figs. 4 and 5(e)). These are generated by the rolling
of the outer shear layer that defined R1. Consequently, their size is of the order of that of R1 in the
y direction, in contrast to vortices shed at the onset of regime III, whose size is determined by the
thickness of the shear layer that separates R1 and R2, initially of the order of β (even though these
tend to grow as they are released downstream). Again, unlike the von Karman street just after the
onset of vortex shedding, the vortex street that results from the breakup of R1 is chaotic and not
periodic. This can be attributed to the presence of smaller vortices generated by the instability of
the mainstream, as well as the strong influence of the channel walls. Strong geometric confinement
indeed leads to counter-rotating secondary vortices being torn away from the wall boundary layers,
which perturb the vortex street. The passing of these large vortices also results in the disappearance
of R2.

For β ≤ 0.2, the flow becomes quickly turbulent right after the onset of unsteadiness. This
renders the identification of flow structures significantly more difficult than for β ≥ 0.3. Regime
V appears at Re = Rec

4, when R1 collapses, as for β ≥ 0.3. On these grounds, we shall also label
as V this new regime. Yet, its features exhibit three major differences with regime V for β ≥ 0.3:
first, no rolling up of the shear layer around R1 occurs. Instead, the layer undergoes an instability
of the Kelvin-Helmholtz type as did the mean stream in regime IV. Since the layers around both
recirculations essentially form one structure, this translates into Kelvin-Helmholtz vortices being
generated right in the vicinity of x = 0, rather than further downstream as in regime IV: the vortex
generation mechanisms are therefore radically different in regime V for β ≤ 0.2 and β ≥ 0.3: instead
of the large vortices of the size of R1 shed for β ≥ 0.3, small ones of typical size β shed for β ≤ 0.2.
The second major difference is that the recirculating region is not completely destroyed. The strong
inner vortex that formed inside R1 in the steady regime is brutally displaced to become attached at
x = 0, and essentially constitutes what remains of R1 in this regime. It transports Kelvin-Helmholtz
vortices generated near point O, thus generating the highly identifiable “wheel” pattern that is visible
in Fig. 6(d). In other words, rather than the collapse of the entire recirculation, the onset of regime V
corresponds to the collapse of its inner stagnant region. Third, the small shed vortices squeeze under
R2, which therefore survives the collapse of R1. The flow being turbulent, the internal structure of
R2 however becomes very complex: it is dominated by an intense vortex near its downstream edge
which results from the same mechanism as that present inside R1 during the steady regime (see
Sec. IV A 2).

Finally, it should be noticed that our simulations do not allow us to conclude as to whether the
important differences which we noticed between the regimes of “jet flow” at β ≤ 0.2 on the one
hand and those reminiscent of the wake behind an obstacle in a channel at β ≥ 0.3 on the other hand,
reflect a bifurcation, or whether the flow smoothly evolves from one scenario to the other.

4. Phase diagram

The variations of {Rec
i }i∈(1,2,3,4) with β are summarised in the phase diagram in Fig. 9, along

with the regimes discussed in this section and in Sec. V, which deals with the turning part. It can be
seen that Rec

1 is only weakly sensitive to β when β < 0.3, whereas the value of Rec
1 increases rapidly

with β when 0.3 < β < 1. For β > 1, Rec
1 becomes weakly dependent on β and the geometry again.

By contrast, the curves for Rec
2, Rec

3, and Rec
4 only exhibit two distinct regions: one where Rec

2, Rec
3,

and Rec
4 are sensitive to β (β < 1), and the other one where they are both robust to the variations of

β (β > 1). This can be understood as follows: the “robust” region at β < 0.3 corresponds to the jet
flow regimes identified previously, where the mainstream is injected in the outlet through a small
aperture: in the bend, the flow direction is almost parallel to ey and impacts the upper outside wall
where it turns brutally along ex . Progressively increasing β therefore modifies the flow near the top
boundary directly, but has little influence on the region near the inside boundary where R1 appears.
This explains why Rec

1 varies little in this range of parameters. For 0.3 < β < 1, the main flow
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053605-11 L. Zhang and A. Pothérat Phys. Fluids 25, 053605 (2013)

Rec
1

Rec
2

Rec
3

Rec
4

Rec
5

Rec
6

β

Re

I0

II0

III0

IV0

IV0

V0

V0

Rec
7

I1

II1

III1

IV1

V1

II2

III2

IV2

V2

III3

IV3

V3

I2

FIG. 9. Phase diagram of 180◦ sharp bend: flow regimes are labelled by Roman characters followed by numbers. These,
respectively, stand for the outlet flow regimes and the number of merged recirculations in the turning part section. A schematic
representation of each combined flow regime is given for each distinct region of the phase diagram. Error bars span the interval
between numerical simulations showing the “last stable” and those showing “first unstable” one.

direction gradually changes along ey within the bend, and starts to affect the flow near the inside
boundary. In this regime, Rec

1 becomes therefore sensitive to β. When β > 1, the bend end wall is far
from the inside corner and influences the flow there very little. Consequently, Rec

1 becomes robust to
β again, as do Rec

2, Rec
3, and Rec

4 for the same reason. The cause of the dependence on β of Rec
2 for

β < 0.3 is somewhat indirect: in jet flow regimes, for Re > Rec
1, mainstream consists mainly of a jet

of width of the order of β, which circulates around the first recirculation. Increasing β increases the
jet section, and thus reduces the adverse pressure gradient associated to the stream widening behind
the first recirculation. This effect becomes visible when comparing Figs. 4(c), 5(c), and 6(c). Higher
values of Re must therefore be reached to trigger the appearance of the second recirculation, when
β increases. Similarly, the dependence of Rec

3 and Rec
4 on β for β < 0.3 can be attributed to the

alteration of the jet thickness too.

B. Dynamics of the outlet recirculation

1. General features

We shall now explore the dynamics of the recirculation regions which characterise the five
regimes found in the outlet branch. Since all recirculations are attached to walls, we use the points
where the friction force ρν∂yux changes sign on the upper and lower outlet walls to pinpoint the
exact locations of the separation and re-attachment points where recirculations begin and end. These
are schematically represented in Fig. 10, for R1, R2, and Rin and The variations of these locations
with Re are represented in Fig. 11 for several values of β.

For all values of β, the length L1 of R1 increases linearly with Re in the first stages of regime II,
again a similar behaviour to that of the steady recirculations observed behind 2D obstacles. Unlike
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FIG. 10. Sketch of separation and re-attachment points defining the locations of all recirculations.

them, however, the length saturates, and more so when R2 is present. The lengthening is due to
the friction exerted by the main stream. Because of the confinement, however, the adverse pressure
gradient caused by the widening of the mainstream just downstream of the main recirculation opposes
further lengthening. This effect is reinforced by the appearance of R2, which incurs a much larger
adverse pressure gradient. The length L2 of R2 follows similar dynamics. Remarkably, its separation
point is hardly displaced in the whole of regime III, most likely because it is determined by the
length of R1, which varies little itself throughout this regime, for the reasons outlined above. As
vortices disrupt the outer shear layer that surrounds R2 (for Re ≥ Rec

3), the time average of its length
〈L2〉 collapses, as in flows behind obstacles. The collapse of R2 slightly releases the confinement
of the main stream, downstream of R1, so the latter sees its length slightly increases at Re � Rec

3,
and remains practically constant over Rec

3 < Re < Rec
4. At Re = Rec

4, either vortex shedding starts
(β ≥ 0.3), or Kelvin-Helmholtz vortices are released near point O (β ≤ 0.2). In both cases, R1

collapses and so does the time average of L1, 〈L1〉.

2. Influence of the geometry on the recirculation length

The most obvious effect of varying β on this picture is that steady recirculations and unsteady
vortex formation regions are overall shorter at smaller β. This can be seen in Fig. 11, and also on
the streamlines and vorticity contours represented in Figs. 4–6. Furthermore, the range of Re over
which R2 remains steady and keeps a practically constant length shrinks when β is reduced, to the
point of practically disappearing at β = 0.1 (see Fig. 11).

Further insight on the role of the geometry is gained by plotting L1 and L2 against critical
parameters for the onset of regimes II and III, respectively (see Fig. 12). Critical parameters are
defined as r1 = Re/Rec

1 − 1 and r2 = Re/Rec
2 − 1. For R1, the curves collapse to L1 � r0.3

1 over the
interval 0 ≤ L1 � 1.4, indicating that increasing β in this regime mainly results in postponing the
appearance of the R1, without affecting its overall dynamics. For 3 � r1 � 20, the curves separate,
as R1 lengthens more noticeably with r1 at higher values of β. In this range, R2 is present and
influences the development of R1. Since this effect is not controlled by r1 anymore, it appears that
the variations of opening ratio β do not influence R1 and R2 in the same way, a point which already
reflected on the difference in the variations of Rec

1 and Rec
2 noted in Sec. IV A 4. The sharp drop in

all curves over the range 20 � r1 � 80 corresponds to the onset of regimes V (Re = Rec
4), when R1

collapses, as discussed in Sec. IV B 1.
By contrast, L2 does not obey any universal behaviour controlled by r2. For β ≥ 0.3 (channel

regimes), L2 increases with r2 when r2 < 1 and a first drop of L2 occurs in the range 1 <r2 < 2,
which corresponds to the onset of unsteadiness. A second, sharper drop is visible at the onset of
vortex shedding from R1, following which 〈L2〉 remains very low as R2 is essentially destroyed.
The residual value can be attributed to the presence of vortices forming on the upper wall near
x = 0, under the influence of vortex formation region that replaces R1. For β ≤ 0.2 (jet regimes), L2

increases with r2 and drops at r2 = 2.3 and 3.1 for β = 0.2 and β = 0.1, respectively. As previously,
this drop is caused by fluctuations at the onset of unsteadiness, that cause R2 to collapse. Unlike for
larger values of β, however, this is followed by a new increase in L2(r2) over a small interval. The
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FIG. 11. Time average of separation and re-attachment points in the outlet branch of the bend vs. Re. (a) β = 2, (b) β = 1,
(c) β = 0.2, and (d) β = 0.1.

collapse of R1 causes this phenomenon, as illustrated in Fig. 13. We noticed that as R1 collapses for
β ≥ 0.3, the whole of R2 was displaced to follow the position of the re-attachment point that marks
the end of R1. For β ≤ 0.2, by contrast, only separation point C recedes when this happens, while
re-attachment point D essentially remains in the same position, thus causing a lengthening of R2 by
an amount equal to that by which R1 shrinks. Further in regime V, L2(r2) decreases smoothly.

An alternate way to appraise how the geometry affects the recirculations is to examine how
their respective lengths vary when Re is held constant but β varies. This can be seen in Fig. 14.
The values Re = 50 and Re = 250 are selected for R1 and R2, respectively, to ensure that the flow
remains within the same regime at a given value of Re (respectively, regimes II and III for Re = 50
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FIG. 12. Variations of recirculation lengths 〈L1〉 (top) and 〈L2〉 (bottom) against their respective critical parameters for
several fixed values of β.

and Re = 250). Both curves exhibit similar behaviour: L1 first increases with β for low β (β ≤ 0.2)
and then decreases (0.3 < β < 1). The increase in the jet regimes reflects the fact that the growth
of R1 is governed by the scale of the mainstream jet β. The decrease of L1(β) for β ≥ 0.3 is due
to the sharp increase of Rec

1(β) in this range. Indeed, increasing β in this range places the flow in a

  

L2

L2

L1

L1

β=0.2 Re=300

β=0.2 Re=380

FIG. 13. Sketch of L1 and L2: just before (top) and just after (bottom) the collapse of R1 (top), in the sense of increasing
Reynolds.
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FIG. 14. Variations of the length of the steady and unsteady recirculations with β for fixed values of Re.

much less supercritical regime, where L1 is significantly reduced. In the last part of the diagram, L1

then becomes practically independent of β for β ≥ 1. This is a consequence of the duct profile for
x ≤ 0 becoming essentially independent of the bend geometry in this range of parameters. Similar
dynamics explain the variations of L2(β) in regime III at Re = 250.

C. Flow coefficients

1. Drag and lift coefficients

An important aspect of flows in bends from the engineering point of view is the feedback force
of the flow onto the structure. Not only does it set constraints in design, but it also provides a
convenient way to diagnose the flow, provided the measure of these forces can be linked back to
the flow dynamics. Having determined the dynamics of the flow in the outlet part, we shall now
establish this link. To this end, we analyse the dependence of the drag and lift coefficients, Cd and
Cl, with the control parameters Re and β. These are defined by (7) and (8) for the inside boundary,
which is akin to a 2D obstacle, for which these quantities are usually defined.

These are better understood recalling that the total drag and lift forces on the inside boundary
both include a contribution due to viscous forces and one due to pressure forces. Both act on the
inlet and outlet parts of the inside boundary, and also on the much smaller part in the turning area
of the bend. We shall refer to the latter as the IVS (inside-vertical surface). Fig. 15 summarises the
different components of these forces. Figs. 16 and 17 show the variations of Cd and Cl with Re,
for fixed β. These share approximately the same features at all values of β: Cd first increases, then
decreases past a peak value, whereas Cl decreases to a minimum in steady regime, then increases
before dropping a little at the onset of unsteadiness. This can be understood as follows: for values
of Re of a few units, the flow is almost symmetric about the y = 0 plane so the values of Cd and Cl

result mostly from the force exerted on the IVS. The vertical friction and horizontal pressure forces

FI
p · ey >0

Fν · ey >0FO
p · ey

FI
ν · ex <0

Fp · ex <0FO
ν · ex

Inlet

Outlet

FIG. 15. Force direction on inside boundary: Cd (up) and Cl (bottom).
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FIG. 16. The relationship between Cd with Re of inside boundary.

there, respectively, incur a positive lift and a negative drag. As Re increases, the flow progressively
looses its symmetry and tends to turn closer to the upper right corner of the bend. This reduces the
curvature of streamlines near O, and reduces the pressure deficit there. Furthermore, the main stream
thus enters the outlet part with a small incidence with respect to the inside boundary, that incurs
increased pressure and drag on it. Both these effects are enhanced as Re increases and, since they
tend to oppose the force on the IVS, Cd and Cl, respectively, increase and decrease towards 0.

The appearance of R1 mostly affects Cd, as it introduces a region of positive drag. This effect
is however partly counteracted by the increased incidence of the flow onto the inside boundary just
downstream of the recirculation. The consequence is that Cd becomes positive for Re slightly larger
than Rec

1, and reaches a maximum as the length of R1 saturates. Subsequently, both the negative
friction outside R1 and the positive friction inside it increase with the flow intensity. Nevertheless,
the flow incidence downstream of R1 is increased by the presence and the growth of R2, and thereby
the negative friction there, so that Cd overall decreases. The appearance of R1 is of little consequence
on the variations of Cl, as the pressure drop inside it is mostly balanced by the increased pressure
due to the expansion of the main stream downstream of R1. The appearance of R2, on the other hand,
precedes (in the sense of increasing Re) a minimum in Cl. As R2 grows, so does the region of low
pressure, the outlet where the main stream is squeezed and accelerated against the inside boundary.
This alteration in the flow geometry therefore induces a Venturi effect which is responsible for the
increase in Cl past the minimum.
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FIG. 17. The relationship between Cl with Re of inside boundary.
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053605-17 L. Zhang and A. Pothérat Phys. Fluids 25, 053605 (2013)

At the onset of regime V, the important distinction between jet regimes (β ≤ 0.2) and channel
regimes (β ≥ 0.3) reflects mostly on the evolution of Cl: in the latter, R1 collapses and is replaced by
a vortex formation region: the associated low pressure region above the inside boundary disappears,
and the lift thus drops. For β ≤ 0.2, by contrast, a large recirculating flow remains when R1 collapses,
that maintains a low pressure locally. The corresponding change in Cl is hardly noticeable.

With this noticeable exception, the variations of β affect the relative importance of these effects,
rather than the global picture. For small values of β, the flow passes through a narrow gap in the
turning part so the forces on the IVS are high. As β is increased, the flow in the turning part is
displaced towards the end wall, and both viscous force and pressure force on the IVS correspondingly
decrease. The values of Cd and Cl therefore decrease with β, particularly so at low Re where the
influence of the turning part is more important. At lower values of β, the region where the flow
changes direction is partly inside the outlet (see Fig. 6). The consequences are that the flow enters
the outlet with a stronger incidence and incurs a stronger pressure drop along R1. Since these two
effects drive the variations of Cd and Cl, these are amplified. In particular, the peak value of Cd

that follows the onset of the R1 is more pronounced at a low value of β (see the magnified part of
Fig. 16, middle).

2. Strouhal number

The Strouhal number was defined by Eq. (9). Since it characterises unsteady flows, we shall
discuss its dependence on the Reynolds number separately for jet and channel regimes. Fig. 18 shows
the relationship between St and Re for β = 1 and β = 0.5, i.e., both in “channel” regime. Both curves
follow the same tendency, with a sharp increase in regime IV, a slower increase in regime V followed
by a maximum. In regime IV, smaller scale vortices are generated in the main stream between
R1 and R2. The corresponding sharp increase of St(Re) reflects the intensification of shedding that
follows the onset or regime IV. This effect is favoured by the growth of both recirculations, which
induces a thinning of the main stream, and intensify the shear where the Kelvin-Helmholtz instability
occurs. At the onset of regime V ( Re = Rec

4), larger structures shed from R1 with a slower dynamics.
Consequently, St(Re) continues to increase, exactly as it does at after the appearance of a Von Karman
street in the wake of 2D obstacles, but along a significantly smaller slope. Remarkably the shedding
frequency at the onset of regime V matches that of smaller vortices in regimes IV just before the
onset, so that the curve St(Re) does not seem to exhibit any discontinuity. The maximum of St(Re)
occurs well into regime V and can be attributed to the influence of the channel walls: Fig. 19 shows
two snapshots of vorticity contours near (Re = 1500) and well past the maximum (Re = 2000) of
St for β = 1. At Re = 1500, although some secondary vortices are generated at the wall in the wake
of the main shed vortices, the vortex street flows downstream relatively unaltered. At Re = 2000,
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FIG. 18. The relationship between St with Re of β = 1 and β = 0.5. Black and white symbols, respectively, refer to shedding
in regimes IV and V.
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(a)

(b)

FIG. 19. Snapshot of vorticity contours taken from unsteady flow for β = 1: (a) At Re = 1500, near the Maximum of St(Re),
the vortex street is still well defined; (b) at Re = 2000, past the Maximum of St(Re), the interaction with the walls destroy
the vortex street.

by contrast, strong vorticity plumes and secondary vortices are torn away from the wall boundary
layers. These impede the progression of the main shed vortices, and even their formation near
x = 0. As this effect is amplified at higher Reynolds numbers, the St drops correspondingly. Once
the vortex street is destroyed, it remains constant at a low value. The flow is then strongly turbulent,
and it is more difficult to distinguish a dominating frequency. Similarly, experiments and numerical
simulations23, 36 showed that in the wake of a 2D obstacle in a channel, the Von Karman vortex street
could also destroyed by secondary vortices. The onset of this regime was also characterised by a
maximum in St(Re).

The variations of St(Re) for the jet flow (here β = 0.2) are depicted in Fig. 20. The shape of
the curve at β = 0.2 is similar to those at β = 1 and β = 0.5, but for two noticeable features: first,
there is no brutal change in the slope of St(Re) at the onset of regime V and second, the values of St

are much higher at β = 0.2. The continuity in the slope at Re = Rec
5 stems from the fact that in jet

regimes, the shedding mechanism in regime V is essentially the same as in regime IV. Small vortices
are generated with fast dynamics in both regimes and the values of St reached in regime V are
consequently much higher than those at β ≥ 0.3, which are dominated by larger, slower structures.
As for β = 0.5 and β = 1, an obvious drop in St can be seen (here for Re > 600), which, here again,
can be attributed to the influence of the walls.

0.2

0.4

0.6

400 600 800 1,000 1,200 1,400

St

IV

Re

V

FIG. 20. The relationship between St with Re of β = 0.2.
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V. FLOW OF TURNING PART OF THE BEND

A. Flow regimes

We shall now analyse the turning part of the bend, which corresponds to the region x > 0, where
the flow changes direction from the inlet towards the outlet. The dynamics of this region is dominated
by the presence of the two corners. According to Ref. 18, an infinite sequence of vortices of alternate
spin exists near each of them, even for arbitrary low Reynolds numbers. Their size and intensity
decrease geometrically as the distance to the corner decreases. For finite but low Reynolds numbers,
the out-most vortex gives birth to a noticeable but small recirculation in each of the corners. We shall
denote these, respectively, RU

1 and RL
1 for the upper and the lower corner. When Re is increased,

asymmetry develops between the two corners recirculations as the flow is displaced towards the
upper corner. This can be seen in Fig. 21. The length of RU

1 in the y direction, measured along the
side wall, increases correspondingly slower with Re than that of RL

1 . This reflects on the position
of the re-attachment points on the side boundary, whose evolution with Re is depicted for several
values of β in Fig. 22. Unlike for the outlet flow, the succession of flow regimes in the turning part
of the bend depends strongly on the value of β, right from low values of Re. In all simulations at
β ≤ 1, we observed that when Re is further increased, both RU

1 and RL
1 continue to grow but eventually

saturate (around Re = 400 for β = 0.2 and Re = 800 for β = 0.5). For β � 1, a second steady regime
exists as the growth of RU

1 and RL
1 leads to their merging at critical Reynolds number Re = ReM

1 .
Examples of flows in this regime are depicted in Fig. 21. The reason for the absence of merging at
low β is that the proximity of the inside wall pinches the flow near the middle of the side wall. This
imposes a local pressure minimum that prevents the build-up of the adverse pressure gradient that is
necessary to drive a return flow along the end wall. In all cases, as Re is increased, more and more
of the initially infinitesimal corner vortices grow to our finest mesh size and appear as detectable
recirculations along the end wall. We shall denote these as RU

i and RL
i / i ∈ N. Unlike the sequence

of recirculations that develop on alternate walls of the outlet, though, these do not appear at a critical
value of Re, as they are all already present at arbitrarily small values of Re, even though they may
remain below the local mesh size.

For β ≥ 5, further pairs of recirculation RU
i and RL

i merge so the turning part of the bend is
progressively filled with a sequence of alternately rotating, steady recirculations that extend between
the top and bottom walls. Fig. 21 shows an example where two counter-rotating recirculations
are present for β = 5 and Re = 200. The merging of pair RU

i and RL
i occurs at a critical Reynolds

number ReM
i , which decreases with β. The variations of ReM

i (β) are represented on the phase diagram
(Fig. 9). Since they intersect the curves Rei, the combination of the dynamics of the turning part
of the bend and of those of the outlet defines a wealth of regimes corresponding to different flow
configurations in either parts of the bend.

B. Effective turning dimension of 180◦ sharp bend

As β increases, the main flow could have been expected to change direction from the inlet
(x direction) to outlet (−x direction) over an extended area. It was established in Sec. V A, however,
that instead, one or several recirculations appear there, that effectively reduce this area and push the
main stream back into the x < 0 direction. This implies that only a fraction of the turning part area
of the bend is effective in passing the main stream. To quantify this phenomenon, we define b∗, the
effective width of the main stream across the bend section at y = 0. Accordingly, β∗ is defined as

β∗ = b∗

a
. (10)

Fig. 23 shows the relationship between β∗ and Re for several fixed values of β. In the absence of
recirculation extending over the whole turning part of the bend, the main stream reaches the outer
vertical wall and so β∗ = β. For β ≤ 1, this remains the case at all Reynolds numbers. For β ≥ 2,
β∗ remains equal to β at low values of Re. It then drops sharply as soon as the first pair of corner
recirculations merge to extend along the full height of the turning part. As Re is increased, the
flow intensity in the recirculation increases, and the curvature of the streamlines there diminishes.
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FIG. 21. Flow regimes of the turning part section of 180◦ sharp bend.

This causes the recirculation to occupy an increasingly large part of the turning part of the bend,
thus restricting the passage for the main stream. When Re ≥ 250, the curve becomes flat and β∗

is insensitive to Re. A similar trend was observed on the recirculation lengths (see Sec. IV B 2). It
reflects that in these regimes, the flow topology does not evolve significantly in the turning part when
Re is further increased. Remarkably, all curves β∗(Re) collapse into a single one βN(Re) shortly
after the appearance of the first recirculation, which confirms that in this regime, the position of the
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FIG. 22. Time average of separation and re-attachment points in the turning part area of the bend vs. Re. (a) β = 0.5,
(b) β = 1, (c) β = 3, and (d) β = 5.

outer wall does not influence the flow topology in the main stream. At large values of Reynolds, βN

saturates around the value of 0.7, which therefore represents the “natural” extension required by the
flow to turn from inlet to outlet directions.

A second noticeable feature of the curves β∗(Re) is that around each point where a new merging
occurs, all of them overshoot the universal curve βN(Re) before rejoining it. This means that in the
overshoot region, the flow extends a little further than its “natural” width. Indeed, for a recirculation
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FIG. 23. β∗ vs. Re for different β.

to exist in this regime, it has to be strongly elongated in the ey direction, with extreme streamline cur-
vatures. A dedicated stability analysis is needed to determine the actual conditions of appearance of
such a flow but our results suggest that such a solution may not be stable. Interestingly, for values
of β slightly greater than β∗ (see curve for β = 1), the overshoot extends over the whole range
of values of Re we explored. In terms of design, values of β that place the flow in the overshoot
region are therefore optimal, since they make it possible to extend the main stream width beyond its
“natural” width, thus reducing local head losses, without incurring any energy loss in driving extra
recirculations in the turning part.

VI. FLOW IN A 3D 180◦ SHARP BEND

We shall now evaluate the relevance of the 2D dynamics analysed in Secs. II–V to the full 3D
flow. To this end, we simulate the flow in the configuration sketched in Fig. 24. This geometry is
identical to that considered for the 2D simulations (Fig. 2) in the (x, y) plane but the domain now
extends by 2a in width (dimensionally, in the z direction). Periodic boundary conditions are applied
at z = −1 and z = 1, while other boundary conditions remain those enforced previously (see Sec. II).
The corresponding 3D mesh was obtained by extrusion along z of mesh M4, with 40 equidistantly
spaced points along z (grid size 0.05), so that (y, z) sections of cells near the duct centreline are
squares (see Fig. 25). To make sure the that these choices of resolution and domain width have a
limited influence on the results, two extra simulations are carried out. For the first test case (TC1),
we increase the mesh resolution in the spanwise resolution to 80 equidistantly spaced points, while
keeping the same width of 2a. For the second test case (TC2), we increase the spanwise length
from 2a to 4a without increasing the resolution. Both simulations are performed at Re = 2000 for
β = 1. The relative discrepancies on the time averaged of Cd and Cl (on the inside boundary)
between TC1, TC2, and the case with 40 points over a spanwise length of 2a (C0) are reported in
Table II: they all remain around 1%. We also compared the Strouhal number St built on the main

2az

FIG. 24. Sketch of 3D geometry.
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FIG. 25. Details of the meshes for 3D geometry: (a) domain near the turning part and (b) mesh view from the end wall.

shedding frequency (obtained as the dominant peak in the time-FFT of Cl). The relative discrepancy
turns out to be very small as well (see Table II). This confirms that results obtained with (C0)
are sufficiently precise for the purpose of this work. The high computational cost of unsteady 3D
numerical simulations makes it impossible to reproduce the 2D simulations in 3D. Instead, we shall
target a limited representative number of cases: a reduced incremental analysis was conducted for
β = 1 (Re = 400, 1000, 1500, 2000) where the flow was initialised in the established state at the
preceding Reynolds number. To probe regimes of high and low β, further simulations were performed
at β = 0.2 (Re = 65, 520) and β = 5 (Re = 400, 500, 2000), where the flow was initialised in the
state found in the 2D computations in order to avoid the computationally prohibitive computational
cost incurred by the transient in these regimes.

Figs. 26 and 27(a) show the streamlines for cases above where the flow was steady. In all
instances, the flow remained perfectly 2D, and the corresponding 2D flow was identical to that found
in the 2D simulations for all three values of β, in both the turning and the outlet parts, and whether
in regime II (β = 0.2, Re = 65 in Fig. 29(a)) or III (β = 1, Re = 400 in Fig. 26(a) and β = 5,
Re = 400 in Fig. 27(a)). This was further confirmed after comparing the values of Cd and Cl with
width units, L1 and L2 to those previously obtained (see Table III).

For β = 1, the flow was found unsteady at Re = 1000: as in 2D simulations, the shear
layer between the two steady recirculations becomes unstable and sheds structures that extend
across the whole width of the duct. This phenomenology is that of regime IV, with two noticeable
differences: first, three-dimensionality is present under two forms: the shed structures show a long-
wave oscillation along the z direction reminiscent of 3D A-modes,37 which appear when Von
Karman streets become 3D. These are complemented by elongated streamwise vorticity filaments
woven around shed vortices, similar to B-modes.38 Further downstream, 3D instabilities eventually
disrupt the initially 2D vortex. This impedes the growth of shed vortices and limits their interaction
with the walls. Since this effect was responsible for the shedding of the first recirculation in regime
V, transition to this regime was found in none of the subsequent simulations at Re = 1500 nor
Re = 2000 (see Figs. 26 and 27(b)). Nevertheless, 3D instabilities develop more intensively as Re
increases and progressively take over the role of disrupting the train of shed vortices played by
vortex-wall interactions in regime V found in 2D simulations. When Re reaches Re = 2000 any
2D section of the 3D flow in an (x, y) plane has become very similar to its 2D counterpart, and the

TABLE II. Comparison of Cd, Cl, and St for different resolutions and domain widths at Re = 2000 for β = 1. Cd and Cl are
expressed per width of 2a. The superscript err stands for relative discrepancies to the reference case (C0).

Case Domain width along z Points along z Cd Cerr
d (%) Cl Cerr

l (%) St Serr
t (%)

C0 2a 40 3.37 × 10−2 . . . 3.915 . . . 5.05 × 10−2 . . .
TC1 2a 80 3.325 × 10−2 1.33 3.895 0.05 5.13 × 10−2 1.58
TC2 4a 80 3.405 × 10−2 1.03 3.92 0.13 4.97 × 10−2 1.56
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TABLE III. Comparison of L1, L2, Cd, Cl, and discrepancy between 2D and 3D simulations. Quantities from 3D simulations are expressed per unit length.

L2D
1 L3D

1 Lerr
1 (%) L2D

2 L3D
2 Lerr

2 (%) C2D
d C3D

d Cerr
d (%) C2D

l C3D
l Cerr

l (%)

β = 0.2
Re = 65 2.1 2.05 2.4 1.1 1.06 3.6 1.85 × 10−2 1.94 × 10−2 4.6 2.75 2.65 3.6
Re = 520 1.12 1.09 2.6 . . . . . . . . . 8.4 × 10−3 8.1 × 10−3 3.5 1.83 1.76 3.8

β = 1
Re = 400 4.4 4.3 2.3 4.31 4.2 2.5 0.31 × 10−2 0.3 × 10−2 3.2 2.3 × 10−1 2.3 × 10−1 0.4
Re = 2000 . . . . . . . . . . . . . . . . . . 1.76 × 10−3 1.69 × 10−3 3.9 1.88 × 10−1 1.96 × 10−1 4.5

β = 5
Re = 500 4.4 4.28 2.7 4.71 4.61 2.1 3.02 × 10−3 2.93 × 10−3 2.7 2.5 × 10−1 2.4 × 10−1 2.7
Re = 2000 . . . . . . . . . . . . . . . . . . 1.72 × 10−3 1.68 × 10−3 2.3 1.85 × 10−1 1.9 × 10−1 2.7
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R2 R1 RU
1
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1

Shedding

FIG. 26. Velocity streamlines (a) for Re = 400 and iso-surfaces of z-vorticity [ωz = 0.025ωzmax] and (b) for Re = 2000 at
β = 1.

values of Cd, Cl, and L1 from 2D and 3D simulations have become very close again. The Strouhal
number found in 3D simulations, however, is lower than in the 2D ones: this is due to 3D instabilities
impeding the shedding mechanism (in the same way as wall interaction did in Sec. IV C 2). This
effect is the main consequence of the three-dimensionality, which can therefore be detected through
its signature on St and its variations. These two-dimensional shedding structures are obtained in

(a)

(b)

R2 R1

RM
1 RM

2

Shedding

FIG. 27. Velocity streamlines (a) for Re = 500 and iso-surfaces of z-vorticity [ωz = 0.027ωzmax] and (b) for Re = 2000 at
β = 5.
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(a) (b)

Shedding

FIG. 28. Iso-surfaces of z-vorticity for Re = 2000 at β = 1: (a) TC1 [ωz = 0.025ωzmax] and (b) TC2 [ωz = 0.023ωzmax].

simulation C0 and also in TC2, where the spanwise length is 4a (see Fig. 28), which is an evidence
of the robustness of this phenomenon.

Simulations of unsteady flows at β = 0.2 and β = 5 (see Figs. 29(b) and 27(b)) return a
picture that is consistent with this scenario. At β = 0.2, however, regimes IV and V were practically
indistinguishable in 2D simulations. 2D sections of 3D simulations accordingly coincide with 2D
simulations even for mildly supercritical unsteady flows, and so do Cd, Cl, L1, and St. In particular, the
“wheel” structure of recirculation R1 is present in both cases and identical in shape and dynamics in
2D and 3D simulations, despite the presence of smaller 3D structures (see Fig. 30). From a practical
point of view, this implies that even when the flow is strongly 3D, 2D simulations are sufficient to
recover global quantities and capture the overall dynamics of the flow, with the exception of the
early stages of regime V, at moderate to high values of β. Finally, it should be noted that the flow
in the turning part remained steady and identical to the flow found in the 2D simulation in all 3D
simulations, whether the flow was steady or not in the outlet part.

5

6

(a)

(b)

R2

R1

Shedding

FIG. 29. Velocity streamlines (a) for Re = 65 and iso-surfaces of z-vorticity [ωz = 0.027ωzmax] and (b) for Re = 520 at
β = 0.2.
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0 0.013ωzmax

FIG. 30. Snapshot of vorticity contours taken from the 2D simulation (a) and 3D simulation (b) for Re = 520 at β = 0.2.
Even though the flow is strongly 3D, the general structure of the flow is very similar in both simulations, with in particular,
a large 2D recirculation R1, acting as “wheel,” which conveys smaller structures generated by the instability of the jet that
wraps around it. Values of Cd, Cl, L1, and St found in the 2D and 3D simulations are accordingly very close to each other.

VII. CONCLUSION

We have conducted a systematic numerical study of the influence of the geometry on the flow
in a sharp 180◦ bend. Parametrizing the geometry with the sole opening ratio β made it possible
to conduct a detailed parametric analysis of the 2D flow features, complemented by targeted 3D
simulations. This combined approach unveiled a wealth of complex steady and unsteady 2D regimes
with vastly different features, which we found to be either fully or at least partially relevant to 3D
geometries. These can be broadly summarised as follows.

The flow results from the combined dynamics of two distinct regions of the bend: the outlet
part on the one hand, and the turning part on the other hand. When increasing the opening ratio,
and thereby the size of the turning part, the 2D flow evolves from a jet regime where the whole
stream passes within a thin layer injected in the outlet, to a more classical turning channel flow.
If the passage is opened wider than the inlet/outlet channel width, then as the Reynolds number is
increased, the flow in the turning part is reorganized in a main stream with an effective opening ratio
β∗ that tends toward β∗ � 0.7, while the rest of the turning part is filled with alternately rotating
cells. Only at low Reynolds numbers is it possible to take advantage of a turning part with β > 1
to spread the flow over a wider section. In this regard, the relation between β∗ and Re, provides a
guideline to optimise the design of systems involving 180◦ bends for a particular application.

The greatest complexity was found in the dynamics of the outlet branch. The succession of
regimes encountered when increasing Re is reminiscent of that found in the wake of 2D cylinder in
many respects. Nevertheless, the strong confinement imposed by the channel walls and the absence
of symmetry with respect to the channel centreline incurred a number of highly specific features.
First, the two steady recirculations, that appear along either walls of the outlet, do so successively, in
the sense of increasing Reynolds numbers. Second, they destabilise in radically different ways in jet-
like flows (β ≤ 0.2) than they do in channel-like flows (β ≥ 0.3). In both cases, unsteadiness appears
when the shear layer that carries the main stream between the two recirculations undergoes a Kelvin
Helmholtz instability, that leads the flow into a chaotic state. The channel-type flow then enters a
regime of vortex shedding where the upstream-most recirculation is turned into a vortex formation
akin to that found behind 2D obstacles. The shed vortices released downstream are of comparable
size to the width of the channel, and incur strong vortex separation at both walls of the channel
with transverse plumes extending across it. Such a regime can be expected to favour highly effective
heat transfer between these walls, and is therefore relevant to the design of heat exchangers. In the
jet regimes, by contrast, transition to turbulence occurs through the Kelvin-Helmholtz instabilities
affecting both recirculations. These lead to intense small scale turbulence, even at moderately high
Reynolds numbers (of the order of 103). Such regimes are of more interest in mixing applications
than in heat transfer.
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Selected 3D simulations in a wide bend suggest that steady regimes are identical in 2D and
3D but that three-dimensionality appeared at the onset unsteadiness. The main difference, for
β = 1, was that 3D instabilities prevent the interactions between large vortices and the walls that
lead to the brutal transition to regime V in 2D. Nevertheless, outside of the early stages of this regime,
2D simulations reproduce the overall dynamics of the flow correctly and recover global parameters
(drag, lift, recirculation length) to a good precision. The main effect of three-dimensionality is to
impede vortex shedding, which translates into a lower value of the Strouhal number in 3D than
in 2D. In the turning part of the bend, the flow remained steady and 2D in all investigated cases.
Therefore, on the top of their relevance to flows with a purely 2D dynamics such as MHD flows or
thin bends, 2D simulations are therefore able to capture the main features of 3D flows too.
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