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Abstract:  

A recent biological study showed that the extremely good efficiency of fruit flies in 

finding food, despite their small brain, emerges by two distinct stimuli, smell and 

visual contrast. “Contrast based Fruit Fly Optimisation”, presented in this paper, is for 

the first time mimicking this fruit fly behaviour and further developed to address  

more efficiently multi-parameter optimisation problems. To assess its performance a 

study was carried out on ten mathematical and three truss optimisation problems. The 

results are compared to those obtained using twelve state-of-the-art optimisation 

algorithms and confirm its good and robust performance. A sensitivity analysis and an 

evaluation of its performance under parallel processing were conducted. The proposed 

algorithm has only a few tuning parameters, is intuitive, and multi-faceted allowing 

application to complex n-dimensional design optimisation problems. 
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1. Introduction  
 

Design optimisation is a powerful tool widely utilised by engineers to produce better 

performing, more reliable and cost-effective products. It originated from the aircraft 

industry and rapidly expanded in multiple domains like structural and mechatronics 

engineering [1, 2, 3]. Its success is mainly due to its inherent merit, delivered in 

combination with a significant increase in computational power and accessibility to 

practitioners through commercial engineering software [4]. The mathematical 

formulation of an optimisation problem can be expressed as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐱), x=[x1, x2, …, xm]T 

 
(1) 
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subject to: 𝑥𝑖𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥, i=1,2,…,m 

 

where f(x) is the objective function that expresses the performance of a system, x is a 

vector comprised out of design variables xi, m is the total number of design variables, 

and 𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥 are the lower and upper bound of design variable 𝑥𝑖 respectively. 

 

Initially, optimisation technology was based on mathematical formulations involving 

the calculation of derivatives [5]. For example, in the gradient descent method, one 

starts from an initial point x0 where the function value f(x0) is calculated and then 

takes a step in a downward direction, where the function value will be lower. To make 

such a step, one utilizes local information ∇𝑓𝑇(𝐱𝟎) and explores the immediate 

vicinity of the current point. The search for the optimum design vector 𝒙∗ is expressed 

by the following iterative formula: 

 

𝐱𝐤+𝟏 = 𝐱𝐤 − 𝑎𝑘 ∙ ∇𝑓𝑇(𝐱𝐤) 
 

(2) 

 

where 𝑎𝑘 is a scaling parameter, k is the iteration number, 𝐱𝐤 is the design vector in 

kth iteration and 𝐱𝐤+𝟏 is the new design vector.  

 

Although mathematically rigorous, the gradient-based algorithms get trapped in local 

minima in case of noisy or highly nonlinear problems. Contrary, meta-heuristic 

optimisation algorithms like the Genetic Algorithm [6], Particle Swarm Optimisation 

[7] and Harmony Search [8] do not use gradient information and achieve remarkably 

better results. On the downside, the performance of non-gradient algorithms depends 

on a number of tuning parameters which are not known prior to execution. Although, 

in some cases, empirical rules exist they are not always adequate. There is a need for 

intuitive meta-heuristic algorithms with a minimum number of tuning parameters. 

 

2. Brief literature review on truss optimisation 
 

Trusses are fundamental in structural engineering and applications can be found from 

nano to macro levels [9, 10]. Truss optimisation problems are usually multi-parameter 

optimisation problems due to the large number of members comprising the truss. 

They are also highly nonlinear because of the multiple constraints considered, 

including displacement, stress and frequency, and the complex interaction between 

the structural members. In the general case, the truss optimisation problem is 

formulated as a mathematical optimisation problem: 

 

find x=[x1, x2, …, xm]  

 

that minimises 𝑅(𝐱) = ∑ 𝜌𝑖 ∙ 𝐴𝑖 ∙ 𝐿𝑖

𝑛

𝑖=1

 

 

subject to: 𝛿𝑖𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑖𝑚𝑎𝑥, i = 1,2,…,nn 

                 𝜎𝑖𝑚𝑖𝑛 ≤ 𝜎𝑖 ≤ 𝜎𝑖𝑚𝑎𝑥, i = 1,2,…,nn 

                 𝛢𝑖𝑚𝑖𝑛 ≤ 𝛢𝑖 ≤ 𝛢𝑖𝑚𝑎𝑥, i = 1,2,…,n 

                 𝜔𝑖𝑚𝑖𝑛 ≤ 𝜔𝑖 ≤ 𝜔𝑖𝑚𝑎𝑥, i = 1,2,…, nω 

     

(3) 
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where R is the mass of the truss, m is the number of design parameters, n is the 

number of truss members, nn is the number of nodes, n is the number of truss 

members and nω the number of desired natural frequencies. 𝜌𝑖, 𝐴𝑖 and 𝐿𝑖 are the 

density, cross sectional area and length of ith member respectively. 𝛿𝑖 and 𝜎𝑖 are the 

displacement and stress at the ith node. 𝜔𝑖 is the ith natural frequency. 𝛿𝑖𝑚𝑖𝑛 and 𝛿𝑖𝑚𝑎𝑥 

are the lower and upper displacement bounds for the ith node, 𝜎𝑖𝑚𝑖𝑛 and 𝜎𝑖𝑚𝑎𝑥 are the 

lower and upper normal stress bounds for the ith node, 𝛢𝑖𝑚𝑖𝑛 and 𝛢𝑖𝑚𝑎𝑥 are the lower 

and upper cross sectional area bounds for the ith structural member and 𝜔𝑖𝑚𝑖𝑛 and 

𝜔𝑖𝑚𝑎𝑥 are the lower and upper bounds for the ith natural frequency. 

 

There is an increasing interest in developing efficient algorithms for large scale truss 

optimisation. The algorithms are mainly meta-heuristic and broadly classified into 

three categories.  

 

The first category encompasses the Evolutionary Algorithms (EA). EAs use 

mechanisms inspired by biological evolution, such as reproduction, mutation, 

recombination, and selection for calculating new candidates 𝐱𝑘+1
𝑖  , i=1,…, M, where 

M is the population size. EAs usually suffer from premature convergence and weak 

exploitation capabilities. Both drawbacks are compensated by choosing bigger 

populations, however, this leads to larger computational cost. Wei et al [11] proposed, 

as a solution to this problem, the Niche Hybrid Parallel Genetic Algorithm (NHPGA). 

NHPGA aims to effectively combine the robust and global search characteristics of 

the genetic algorithm, strong exploitation ability of Nelder–Mead’s simplex method 

and computational speedup property of parallel computing. 

 

The second category includes population-based algorithms, such as Particle Swarm 

Optimisation (PSO) [12].  PSO is formulated by mathematically modelling the social 

behaviour of birds and fish colonies in finding food resources or escaping from 

predators. In the standard PSO each member of the swarm finds its way based on their 

own experience and the best particle’s position, particles do not exchange any 

information. This causes PSO to get trapped into local optimums.  In a recent 

publication by Mortazavi and Toğan [13] a new version of PSO was proposed. In this 

version, the concept of a weighted particle, created by exploiting all particles 

experiences, is introduced. This helps to avoid premature convergence. 

 

In the third category belong physical algorithms that resemble an employed physical 

process. For example, Kaveh and Bakhshpoori [14] developed an algorithm that 

mimics the evaporation of a tiny amount of water molecules on a solid surface with 

different wettability. The “Water Evaporation Optimisation Algorithm” was tested 

and analysed in comparison to other existing methods on a set of 17 benchmark 

unconstrained functions, a set of 13 classical benchmark constraint functions, and, 

three benchmark constraint engineering problems. The results obtained indicate that 

the proposed technique is highly competitive. The performance of the algorithm 

depends on a number of parameters including the assumption of a monolayer and 

droplet evaporation phase, the number of water molecules and the minimum and 

maximum values of monolayer and droplet evaporation probabilities. Another 

example is the modified Teaching–Learning-based optimization (TLBO) algorithm 

[15]. TLBO mimics the two types of pedagogy in a classroom to find the optimum 

solution: class-level learning from a teacher and individual learning between students. 
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TLBO uses a relatively simple algorithm with no intrinsic parameters controlling its 

performance. 

 

Fruit flies are very effective in finding food. They can locate a food source from 40 

km away even though their brain is very simple: it has only 100,000 neurons while 

house fly brains have 300,000 neurons and human brains have 100 billion. This 

remarkable ability makes them very interesting from a biological and optimisation 

perspective [16, 17]. The main food search mechanism is based on smell. However, a 

recent biological study shows that fruit flies are stimulated also by visual contrasts, 

irrelevant to smell. Furthermore, their motion is described by standardised distinct 

sensory-motor reflexes, independent of each other. The Contrast-based Fruit Fly 

Optimisation Algorithm, proposed in this paper, mimics these new elements of fruit 

fly behaviour. First, it is evaluated on a set of standard mathematical benchmark tests 

and then applied to structural truss design benchmark problems. It is highlighted that 

fruit fly algorithms have never been tested in structural optimisation before. The 

results show that the algorithm achieves the same or better performance than other 

optimisation algorithms.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Fruit fly swarm in search for food: Visual patterns and features stimulate 

fruit flies in their search besides smell 

 

The rest of the paper is structured as follows: in Section 3 the Contrast based Fruit 

Optimization Algorithm is presented and explained. In Section 4 the results for ten 

mathematical and three structural optimisation problems are discussed and compared 

to those known from the literature and obtained using standard optimisation tools. In 

Section 5 a sensitivity analysis is performed, including a performance evaluation 

when parallel computing is used. Finally, Section 6 gives conclusions and future work 

is proposed. 

 

3.  The Contrast-Based Fruit Fly Optimisation Algorithm  
 

3.1 Contrast based Fruit Fly Optimization Algorithm for multi-parameter problems (c-

mFOA) 

Odour plume   

Swarm’s average location  
propagation  -- 
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Fruit flies have a keen sense of smell and use their antennae to detect odours. A fly 

can detect a source of food and where its fellows gather and fly to that direction. This 

behaviour was modelled in the first fruit fly optimisation algorithm proposed by Pan 

[18]. Its simplicity and efficiency made it popular and different versions were 

proposed to improve its performance [19-22]. According to a recent biological study, 

fruit flies exhibit also an additional food search mechanism [23, 24]. In case they 

can’t find food using only osphresis, they start to explore objects with visual contrast. 

They land and if there is not something to eat, they continue to forage. As an example, 

a glass of wine would be a contrasting shape that would merit their attention. 

Furthermore, it was found that fruit flies surge when the scent is strong and cast when 

it becomes weaker. Last but not least, fruit flies present also a response delay. It is 

believed that fruit flies developed these features to compensate for the chaotic 

movement of odours, particularly outdoors in the wind. For the first time, in this 

paper, the particular fruit fly behaviour is idealised, modelled and further developed to 

address multi-parameter optimisation problems. 

 

The basic steps of c-mFOA are summarised by the pseudo code shown in Figure 2. 

A flowchart is provided in Figure 3.  

 Multi- parameter Contrast Based Fruit Optimisation Algorithm 

begin 

Objective function f(x), x=[x1, x2, …, xm]  

Generate initial population of fruit flies xi, i=1,2,…, N in the vicinity of x0 

Smell concentration 𝑆𝑚𝑖 at xi determined by  𝑆𝑚𝑖 = 𝑓(𝐱i) 
Rank the fruit flies and find the current best min(𝑆𝑚𝑖) = 𝑆𝑚𝑖

∗  for 𝐱𝑖
∗ 

If 𝑆𝑚𝑖
∗ < 𝑆𝑚0 then x0= 𝐱𝑖

∗ 
 while (t < MaxGeneration) 

Reposition the fruit flies xki, k=1,2, …, K and i=1,2,…, N in the vicinity 

of current xk0 

 Smell concentration 𝑆𝑚𝑘𝑖 at xki determined by  𝑆𝑚𝑘𝑖 = 𝑓(𝐱ki) 
Rank the fruit flies and find the current best 𝑆𝑚𝑘𝑖

∗  for 𝐱𝑘𝑖
∗   

If 𝑆𝑚𝑘𝑖
∗ < 𝑆𝑚𝑘0 then xk0= 𝐱𝑘𝑖

∗  
if (tk>delay time) 

if (𝑆𝑚𝑘𝑖 < 𝑆𝑚(𝑘−𝜅)0) 

    reduce the area of attraction (surging phase) 

   else if (𝑆𝑚𝑘𝑖 = 𝑆𝑚(𝑘−𝜅)0) 

set the attraction point at the worst performing 

candidate, xk0= 𝐱𝑘𝑖
∴  for which max(𝑆𝑚𝑘𝑖) = 𝑆𝑚𝑘𝑖

∴  

   else if (𝑆𝑚𝑘𝑖 > 𝑆𝑚(𝑘−𝜅)0) 

return to the previous the current best, xk0= 𝐱(𝑘−𝜅)0 

(casting phase) 

   end if 

  end if 

  Initialise response time tk =0 

 end while 

Post process results and visualisation 

 end 
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Figure 2. Pseudo-code of the proposed Fruit Fly Optimisation Algorithm 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Flowchart of proposed c-mFOA algorithm 

Parameter selection  
phase 

Swarm  
Generation 

 

Fruit Fly  
localisation 

Smell concentration 
calculation   

Best member 
identification   

Current average 
location selection   

Terminate  
 

Decision delay phase   

Casting phase 
 

Surging phase Contrast phase 

Condition 2 

Condition 1 

Step I 

Step II 

Step III 

Step IV 

Step V 

Step VI 

Step VII 

Step 
VIIIa 

Step 
VIIIb 

Step 
VIIIc 
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3.2 Swarm localisation and termination 

 

A coordinate system is defined and the position of a fruit fly with coordinates (X0,Y0) 

is defined, see Figure 4. The other N-1 fruit flies are located, randomly, in the vicinity 

of (X0,Y0) according to Equation 4. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Fruit fly position (Xi, Yi) is described in a coordinate system  

 

𝑋𝑘𝑖 = 𝑋𝑘0(1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
− 1), i=1,…,N  

(4) 

𝑌𝑘𝑖 = 𝑌𝑘0(1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
− 1), i=1,…,N  

 

where k=1,2,…,K is the iteration number, N is the size of the swarm and 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
 is a 

random number from a uniform discrete distribution defined in the interval [1, Nres] . 

The use of a discrete distribution is not observed in nature, but is a feature we 

introduced to improve the algorithm’s performance in multi parameter problems. M is 

a scaling parameter that defines how coarse or fine the search strategy is.  

 

Each fruit fly is assigned a value 𝐷𝐼𝑖 based on how close the fruit fly (𝑋𝑘𝑖, 𝑌𝑘𝑖) is to 

the origin of a fixed coordinate system: 

 

𝐷𝑘𝑖 = √𝑋𝑘𝑖
2 + 𝑌𝑘𝑖

2  (5) 

 

𝐷𝐼𝑘𝑖 =
1

𝐷𝑘𝑖
 

(6) 

 

DIki is sensitive for fruit flies located in the vicinity of the origin, contrary to those 

that are positioned far away.  This implies that a good search strategy should start 

close to the origin.  

 

(0, 0) 

(𝑋0, 𝑌0) 

(𝑋1, 𝑌1) 

(𝑋𝑛, 𝑌𝑛) 

𝐷1 

𝐷𝑛 

X 

𝐷2 

(𝑋2, 𝑌2) 

X 
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Each fruit fly is assigned a “smell concentration” 𝑆𝑚𝑘𝑖 at xki determined by the 

objective function value 𝑆𝑚𝑘𝑖 = 𝑓(𝐱ki). A small objective function value corresponds 

to a position with high smell concentration.  
 
The fruit flies are ranked, on the basis of their smell concentration, and the fruit fly 

𝒙𝑘𝑖
∗  that achieves the highest smell concentration 𝑆𝑚𝑘𝑖

∗  at position (𝑋𝑘𝑖
∗ , 𝑌𝑘𝑖

∗ ) is 

identified. In case the smell concentration 𝑆𝑚𝑘𝑖
∗  is better than that of the current point 

of attraction 𝑆𝑘0: 

 

𝑖𝑓 𝑆𝑚𝑘𝑖
∗ < 𝑆𝑚𝑘0 

𝑡ℎ𝑒𝑛 𝑋𝑘0 = 𝑋𝑘𝑖
∗  𝑎𝑛𝑑 𝑌𝑘0 = 𝑌𝑘𝑖

∗    

(7) 

 

 

then it substitutes it and becomes the new point of attraction.  

 

The algorithm terminates when the maximum number K iterations is reached. 

 

3.3 Delay, casting, surging and visual contrast phases 

 

When the stimulus changes fruit flies don’t respond immediately; a delay is taking 

place before changing the food search strategy. As presented in [24], the delay is 

constant and independent of other parameters. This behaviour is idealised and 

modelled in c-mFOA algorithm. 

 

In case the objective function improves over the last κ iterations, the swarm enters the 

“surging” phase, during which the flies move towards the attraction point 𝐱𝑘0 at a 

greater speed: 

 

if (𝑆𝑚𝑘𝑖 < 𝑆𝑚(𝑘−𝜅)0) 

𝑀𝑘+1 = 𝑐 ∙ 𝑀𝑘  
(8) 

 

In case the objective function doesn’t change over the last κ iterations, κ represents 

the response delay, the swarm enters the “visual contrast” attraction phase, in which 

flies are attracted by the point 𝐱𝑘𝑖
∴  that achieves the lowest smell concentration 

max(𝑆𝑚𝑘𝑖) = 𝑆𝑚𝑘𝑖
∴  : 

 

if (𝑆𝑚𝑘𝑖 = 𝑆𝑚(𝑘−𝜅)0) 

𝑋𝑘0 = 𝑋𝑘𝑖
∴  𝑎𝑛𝑑 𝑌𝑘0 = 𝑌𝑘𝑖

∴   
(9) 

where k is the current iteration.  

In case the objective function worsens over the last κ iterations, the swarm enters the 

“casting” phase, in which flies return to the previous current best 𝐱(𝑘−𝜅)0 and continue 

the search at a constant speed: 

 

if (𝑆𝑚𝑘𝑖 > 𝑆𝑚(𝑘−𝜅)0) 

𝑋𝑘0 = 𝑋(𝑘−𝜅)0 𝑎𝑛𝑑 𝛶𝑘0 = 𝛶(𝑘−𝜅)0   
(10) 
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It is known from [25] that fruit flies do have memory and they can make a choice 

based on how good or bad a memory was. 

 

3.4 Constraint handling 

 
In c-mFOA the constraints are dealt using the penalty function. The constrained optimisation 
problem is formulated as an unconstrained one by augmenting the response function R(x) as 
shown in Equation (11): 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐱) = 𝑅(𝐱) + ∑ 𝜅𝑖 ∙ 𝜑𝑖
2(𝐱) +

𝑛𝑛

𝑖=1

∑ 𝜆𝑖 ∙ 𝜓𝑖
2(𝐱)

𝑛𝑛

𝑖=1

 

                                            + ∑ 𝜇𝑖 ∙ 𝜒𝑖
2(𝐱) + ∑ 𝜈𝑖 ∙ 𝜋𝑖

2(𝐱)

𝑛𝑛

𝑖=1

𝑛

𝑖=1

 

 

𝜅𝑖 > 0, 𝜆𝑖 > 0, 𝜇𝑖 > 0 and 𝜈𝑖 > 0 

  

(11) 

 
where  𝜅𝑖, 𝜆𝑖, 𝜇𝑖, and 𝜈𝑖 are user defined constants and  

 

𝜑𝑖(𝐱) = {

(𝛿𝑖 − 𝛿𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝛿𝑖 > 𝛿𝑖𝑚𝑎𝑥

(𝛿𝑖 − 𝛿𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝛿𝑖 < 𝛿𝑖𝑚𝑖𝑛

0,  𝑖𝑓 𝛿𝑖𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑖𝑚𝑎𝑥 

 

     

(12) 

 

𝜓𝑖(𝐱) = {

(𝜎𝑖 − 𝜎𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝜎𝑖 > 𝜎𝑖𝑚𝑎𝑥

(𝜎𝑖 − 𝜎𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝜎𝑖 < 𝜎𝑖𝑚𝑖𝑛

0,  𝑖𝑓 𝜎𝑖𝑚𝑖𝑛 ≤ 𝜎𝑖 ≤ 𝜎𝑖𝑚𝑎𝑥 

 

     

(13) 

 

𝜒𝑖(𝐱) = {

(𝐴𝑖 − 𝐴𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝐴𝑖 > 𝐴𝑖𝑚𝑎𝑥

(𝐴𝑖 − 𝐴𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝐴𝑖 < 𝐴𝑖𝑚𝑖𝑛

0,  𝑖𝑓 𝐴𝑖𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖𝑚𝑎𝑥  

 

     

(14) 

 

𝜋𝑖(𝐱) = {

(𝜔𝑖 − 𝜔𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝜔𝑖 > 𝜔𝑖𝑚𝑎𝑥

(𝜔𝑖 − 𝜔𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝜔𝑖 < 𝜔𝑖𝑚𝑖𝑛

0,  𝑖𝑓 𝜔𝑖𝑚𝑖𝑛 ≤ 𝜔𝑖 ≤ 𝜔𝑖𝑚𝑎𝑥 

 

     

(15) 

 
 

4. Benchmark testing  
 

4.1 Results on multi-parameter mathematical benchmark problems  
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A set of multi-parameter mathematical functions, commonly used in the literature, is 

employed to benchmark c-mFOA. In Table 1 the mathematical description, the 

number of variables used, the design space, the optimal position and function value 

for each function are provided. The functions are characterized by multiple local 

minima, singular values, and hyper planes ranging from flat to very steep. Solving the 

benchmark functions is a strong indicator of the robustness and effectiveness of the 

developed c-mFOA. The benchmark is conducted for m=30 variables. 

 

Table 1. Mathematical benchmark functions 

 

No Description m [𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥] x* f(x*) 

F1 
𝑓(𝑥) = ∑ 𝑖 ∙ 𝑥𝑖

2

𝑚

𝑖=2

 
30 [−5.12, 5.12] 0 0 

F2 
𝑓(𝑥) = ∑ 𝑖 ∙ (2 ∙ 𝑥𝑖

2 −

𝑚

𝑖=2

𝑥𝑖−1
2 )2 + (𝑥1 − 1)2 

30 [−10, 10] 0 0 

F3 
𝑓(𝑥) = −exp (−0.5 ∙ ∑ 𝑥𝑖

2

𝑚

𝑖=1

) 
30 [−1, 1] 0 -1 

F4 
𝑓(𝑥) = ∑(106)

𝑖−1
𝑛−1 ∙ 𝑥𝑖

2

𝑚

𝑖=2

 
30 [−100, 100] 0 0 

F5 𝑓(𝑥) = max (|𝑥𝑖|) 30 [−100, 100] 0 0 

F6 
𝑓(𝑥) = ∑ 𝑓𝑙𝑜𝑜𝑟(𝑥𝑖 + 0.5)2

𝑚

𝑖=2

 

 

30 [−100, 100] 0 0 

F7 
𝑓(𝑥) = ∑ 𝑥𝑖

2

𝑚

𝑖=2

 
30 [−100, 100] 0 0 

F8 
𝑓(𝑥) = ∑|𝑥𝑖 ∙ 𝑠𝑖𝑛(𝑥𝑖) + 0.1 ∙ 𝑥𝑖|

𝑚

𝑖=1

 
30 [−10, 10] 0 0 

F9 
𝑓(𝑥) = ∑(𝑥𝑖

2 − 10 ∙ 𝑐𝑜𝑠(2 ∙ 𝜋 ∙ 𝑥𝑖) + 10)

𝑚

𝑖=1

 
30 [−5.12, 5.12] 0 0 

F1

0 𝑓(𝑥) = 1 − 𝑐𝑜𝑠 (2 ∙ 𝜋 ∑ 𝑥𝑖
2

𝑚

𝑖=1

) + 0.1 ∙ ∑ 𝑥𝑖
2

𝑚

𝑖=1

 
30 [−100, 100] 0 0 

 

c-mFOA is benchmarked against the Genetic (GA), Particle Swarm Optimisation 

(PSO) and Simulated Annealing (SA) algorithms, commonly used in engineering 

practice. It is highlighted that many variants of the aforementioned algorithms exist 

and it is by no means attempted to compare c-mFOA to all variants. The purpose of 
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this exercise is to show the differences between well-known and widely employed 

algorithms (one evolutionary, one population-based and one physics-based), when 

implemented with their default parameter settings.  The variants of GA, PSO and SA 

used in this study are the ones found in Matlab’s Optimisation Toolbox. 

 

In the GA a population comprised of 200 members is utilised. The members are 

selected randomly from a uniform distribution restricted in the design space (DS), see 

Table 1. For each member the fitness value is calculated. The GA members are then 

sorted according to their rank. 80% of the new generation is created by crossover and 

5% progresses from the old generation. A stochastic uniform algorithm is used for the 

parent selection. The rest of the members are created by mutation. The genetic 

algorithm terminated when the maximum number of function evaluations generations 

is reached, unless it stalled. This was set to happen if for over 200 generations the 

objective function did not change significantly.  

 

The inspiration for the PSO algorithm is based on flocks of birds swarming. The first 

step involves the generation of a population of particles with assigned initial 

velocities. The particles are uniform randomly created within bounds shown in Table 

1. A fitness value is calculated for each particle and then the location that achieves the 

best value is determined. The algorithm chooses new velocities, based on the current 

velocity, the particles' individual best locations, and the best locations of their 

neighbours. It then iteratively updates the particle locations based on their old location 

and velocity and, its' neighbours. The inertia range parameter of the algorithm was set 

within its standard bound [0.1 1.1]. The self-adjustment and social adjustment weights 

were set to their standard value 1.49. The swarm size was set to 100. Iterations 

proceeded until the algorithm reached the maximum number of function evaluations.  

 
The simulated annealing (SA) algorithm starts from a random starting vector 

belonging to DS (Table 1). Two parameters; the temperature and re-annealing 

determine its behaviour. The first one controls the extent of search. In this study the 

default initial temperature of 100 was used. The second one emulates the annealing 

process. After a certain number of new points are accepted, the temperature is raised 

to a higher value to restart the search and move out of local minima. If re-annealing is 

performed too fast this may not help the solver identify a minimum. Here, the default 

interval of 50 was chosen. The procedure terminates when the total number of 

function evaluations reaches the maximum value. 

 

In c-mFOA the starting vector is a random vector bounded by DS (Table 1). The other 

parameters are selected as K=320, N=50, κ=15, M=0.95 and c=0.92. 

 

The benchmark is accomplished on the basis of a maximum number of function 

evaluations maxfun=16000. The parameters used for the evaluation are the mean 

value of optimised values found (Mean) and their standard deviation (Std), following 

30 independent optimisation runs. The results are summarised in Table 2. In the last 

column the optimal value for each function is provided.  

 

Table 2. Optimisation benchmark results: Mean best value (Mean) and standard 

deviation (Std) obtained using  the Genetic Algorithm (GA), Particle Swarm 

Optimisation (PSO), Simulated Annealing (SA) and contrast based multi-parameter  
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Fruit Fly Optimisation (c-mFOA). Maximum number of function evaluations 

maxfun=16000  

 

Fun

ctio

n 

GA  PSO  SA  c-mFOA 

Mean Std Mean Std Mean Std Mean Std 

F1 
7.35 2.67 

2.10∙ 

10–3 

3.00∙ 

10–3 
2.31 0.91 0 0 

F2 

 
1.82 1.32 

5.62∙ 

10–4 

7.45∙ 

10–4 
0.49 0.16 

2.55∙ 

10–4 

2.76∙ 

10–4 

F3 
–0.95 0.01 –1 

1.55∙ 

10–6 
–0.31 0.07 –1 0 

F4 2.43∙ 

104 

2.23∙ 

104 

2.73∙ 

105 

1.30∙ 

106 

6.00∙1

06 

1.38∙

106 

2.55∙ 

10–14 

1.16∙ 

10–15 

F5 
1.90 0.67 14.05 4.21 68.35 4.67 

5.63∙ 

10–5 

6.47∙ 

10–5 

F6 

 
12.03 8.38 0.10 0.30 2.86 1.61 0 0 

F7 

 
0.72 0.38 0.040 0.034 6.22 1.51 

4.32∙ 

10–19 

8.08∙ 

10–20 

F8 

 
0.67 0.41 0.03 0.06 25.42 1.32 

2.83∙ 

10–10 

1.18∙ 

10–11 

F9 
26.74 

10.6

7 
60.23 21.91 154.68 

31.1

1 
14.31 3.38 

F10 2.00∙ 

10–14 

3.80∙ 

10–14 

7.26∙ 

10–7 

1.51∙ 

10–6 

1.57∙ 

10–9 

2.95∙

10–9 

2.95∙ 

10–8 

5.25∙ 

10–8 

 

 

 

Figure 5. F9 case study: Convergence rate examples for c-mFOA  
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A sensitivity analysis, for function F9 𝑓(𝑥) = ∑ (𝑥𝑖
2 − 10 ∙ 𝑐𝑜𝑠(2 ∙ 𝜋 ∙ 𝑥𝑖) + 10)𝑚

𝑖=1 ,  

was conducted by varying the tuning parameter M in c-MFOA. The results obtained 

are listed in Table 3. For M>5 we achieve the same results as with M=5 (true 

optimum). 

 

Table 3. c-mFOA sensitivity analysis for different M parameter values in solving F9 

 

Fun-

ction 

c-mFOA 

M=2 M=3 M=4 M=5 

Mean Std Mean Std Mean Std Mean Std 

F9 16.20 6.28 0.56 0.78 0.53 0.50 0 0 

 

 

4.2 Results on structural optimisation benchmark problems  

 

In this section, c-mFOA is compared to state-of-the-art optimisation algorithms in 

solving truss optimisation problems. Each problem is solved repetitively and 

independently for thirty times.  

 

4.2.1 Case 1- Twenty-five bar space truss  

 

In Figure 6 the 25-bar transmission bar used for benchmarking is illustrated. It is one 

of the most common benchmarks for truss optimisation algorithms. The coordinates 

of the nodes of the 25-bar truss are listed in Table, while Table 5 shows the element 

connectivity and Table 6 the load case considered. The material considered has a 

density of ρ=2768 kg/m3 (0.1 lb/in.3) and a modulus of elasticity of Ε=0.73∙106 Pa 

(107 psi).  

 

 

Figure 6. Cases 1 & 2: 25 bar truss  
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Table 4. Coordinates of the points defining the 25-bar truss 

 

Node x [m] y [m] z [m] 

1 −0.95 0.00 5.08 

2 0.95 0.00 5.08 

3 -0.95 0.95 2.54 

4 0.95 0.95 2.54 

5 0.95 −0.95 2.54 

6 −0.95 −0.95 2.54 

7 −2.54 2.54 0.00 

8 2.54 2.54 0.00 

9 2.54 −2.54 0.00 

10 −2.54 −2.54 0.00 

 

Table 5. Element (El.) connectivity for the 25-bar truss 

 

El. Node 1 Node 2 El. Node 1 Node 2 El. Node 1 Node 2 

1 1 2 10 6 3 19 3 8 

2 1 4 11 5 4 20 5 10 

3 2 3 12 3 4 21 6 9 

4 1 5 13 6 5 22 6 10 

5 2 6 14 3 10 23 3 7 

6 2 4 15 6 7 24 4 8 

7 2 5 16 4 9 25 5 9 

8 1 3 17 5 8    

9 1 6 18 4 7    

 

 

Table 6. Case1 - Single load case for the 25-bar truss  

 

Node Px [N] Py [N] Pz [N] 

1 4448.22 –44482.22 –44482.22 

2 0.00 –44482.22 –44482.22 

3 2224.11 0.00 0.00 

6 2668.93 0.00 0.00 

 

The allowable stresses for each member are: 

 

    |𝜎𝑖𝑚𝑖𝑛| = 𝜎𝑖𝑚𝑎𝑥 =275.79∙106 Pa= 40 ksi, i=1,…,10 (16) 

 

 and the maximum displacements for each node in x, y and z directions are: 

 

    |𝛿𝑖𝑚𝑖𝑛| = 𝛿𝑖𝑚𝑎𝑥 =8.89∙10–3 m = 0.35 in, i=1,…,10 (17) 

 

The minimum and maximum cross sectional areas are: 

 

    |𝐴𝑖𝑚𝑖𝑛| =6.45∙10–5 m2= 0.1 in2, i=1,…,25 (18) 

 

and  
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    |𝐴𝑖𝑚𝑎𝑥| =219.35∙10–5 m2= 3.4 in2, i=1,…,25 (19) 

 

Three optimisation algorithms are utilised to compare c-mFOA. A brief description of 

each algorithm follows. 

- The first algorithm is Differential Evolution (DE) [26].  

- The second one is a new version of DE called adaptive elitist DE algorithm 

(aeDE) [26]. There are three main differences with respect to the original one. In 

the mutation phase, an adaptive technique based on the deviation of objective 

function between the best individual and the whole population in the previous 

generation is proposed to select a suitable mutation operator. An elitist selection 

technique is utilized to increase the convergence rate in the selection phase. 

Finally, a rounding technique is integrated for problems with discrete design 

variables.  

- The third algorithm is the so called Mine Blast Algorithm (MBA) [27]. The 

fundamental concepts and ideas of MBA are derived from the explosion of mine 

bombs in real world scenarios. 

The comparison results are summarised in Table 7. 

 

Table 7. Case1- Optimisation results for the 25-bar truss  

 

Variables  Cross sectional area [10–5 m2] 

 Members Ho-Huu 

DE 

Ho-Huu 

aeDE 

Sadollah 

MBA 

c-MFOA 

 1 6.45 6.45 6.45 6.45 

 2,3,4,5 19.35 19.35 19.35 19.35 

 6,7,8,9 219.35 219.35 219.35 219.35 

 10,11 6.45 6.45 6.45 6.45 

 12,13 135.48 135.48 135.48 135.48 

 14,15,16,17 64.52 64.52 64.52 64.52 

 18,19,20,21 32.26 32.26 32.26 32.26 

 22,23,24,25 219.35 219.35 219.35 219.35 

Weightmin 

(kg) 

 

219.93 219.93 219.92 219.93 

Weightavg 

(kg) 

 

219.95 220.00  219.97 

Weightstd 

(kg) 

 

0.06 0.12  0.07 

Nanalyses  3500 1440 500 800 

 

 

4.2.2 Case 2- Twenty-five bar space truss  

 

In the second case the same truss as in case 1, described in 4.2.1, is utilised but now a 

multiple loading condition and different allowable stresses/displacements are 

considered. Tables 8 and 9 are listing the loading conditions and 

stresses/displacements allowable respectively. The minimum and maximum cross 

sectional areas are:  
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    |𝐴𝑖𝑚𝑖𝑛| =0.65∙10–5 m2= 0.01 in2, i=1,…,25 (20) 

 

and  

 

    |𝐴𝑖𝑚𝑎𝑥| =219.35∙10–5 m2= 3.4 in2, i=1,…,25 (21) 

 

Table 8. Case 2- Multiple load case for the 25-bar truss 

 

 Node Px (N) Py (N) Pz (N) 

Case 1 1 4448.22 44482.22 –22241.11 

 2 0.00 44482.22 –22241.11 

 3 2224.11 0.00 0.00 

 6 2224.11 0.00 0.00 

Case 2 1 0.00 88964.43 –22241.11 

 2 0.00 –88964.43 –22241.11 

 

Table 9. Stresses allowable tensile (T) and compressive (C) for each element (EL) 

 

El. T  

[MPa] 

C  

[MPa] 

El. T 

[MPa] 

C 

[MPa] 

El. T  

[MPa] 

C 

[MPa] 

1 275.79 –241.95 10 275.79 –241.95 19 275.79 –47.98 

2 275.79 –79.91 11 275.79 –241.95 20 275.79 –47.98 

3 275.79 –79.91 12 275.79 –241.95 21 275.79 –47.98 

4 275.79 –79.91 13 275.79 –241.95 22 275.79 –76.41 

5 275.79 –79.91 14 275.79 –46.60 23 275.79 –76.41 

6 275.79 –119.31 15 275.79 –46.60 24 275.79 –76.41 

7 275.79 –119.31 16 275.79 –46.60 25 275.79 –76.41 

8 275.79 –119.31 17 275.79 –46.60    

9 275.79 –119.31 18 275.79 –47.98    

 

Here, c-mFOA is compared to the: 

- Flower Pollination Algorithm (FPA) [28]. FPA can efficiently combine local and 

global searches, is inspired by cross-pollination and self-pollination of flowering 

plants, to perform local and global searches respectively. In addition an iterative 

constraint handling strategy where trial designs are accepted or rejected based on 

the allowed amount of constraint violation is utilised. 

- Teaching-Learning-based Optimization (TLBO) algorithm [29]. The method 

makes use of the analogy between the learning process of learners and searching 

for designs to optimization problems. Learning can be accomplished either from 

the teacher or by the interaction between learners.  

- Colliding Bodies Optimization (CBO) algorithm [30]. The algorithm is based on 

the physics describing collisions between bodies. Here each agent represents a 

body. After a collision between two moving bodies takes place, these are 

separated and moved to new positions with new velocities. This process is 

repeated until a termination criterion is satisfied. 

The results are summarised in Table 10. 

 

Table 10. Case2 - Optimisation results for the 25-bar truss  
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Variables  Cross sectional area [10–5 m2] 

 Members Bekdas 

FPA 

Degertekin 

TLBObest 

Kaveh 

CBO 

c-MFOA 

 1 0.65 0.65 0.65 1.98 

 2,3,4,5 118.09 133.59 137.37 127.56 

 6,7,8,9 205.33 190.73 186.18 195.51 

 10,11 0.65 0.65 0.65 0.65 

 12,13 0.65 0.65 0.65 0.66 

 14,15,16,17 45.26 44.45 43.81 41.33 

 18,19,20,21 111.37 104.55 103.70 108.10 

 22,23,24,25 165.85 172.65 173.68 174.83 

Weightmin (kg)  246.73 246.70 246.35 247.04 

Weightavg (kg)  246.99 - 246.78 247.19 

Weightstd (kg)  0.27 - 0.13 0.15 

Nanalyses  8149 15318 9090 800 

 

 

4.2.3 Case 3- Thirty-seven bar planar truss with frequency constraints 

 

This is considered as a constrained truss optimization problem on size and shape. 

Figure 7 shows a sketch of the 37-bar truss. All nodes of the upper chord are allowed 

to vary in the y-axis - symmetry about Y-axis has to be maintained - and all the 

diagonal and upper chord bars are allowed to vary its cross-sectional areas. No upper 

bound exists for the cross sectional area but the minimum is:  

 

    |𝐴𝑖𝑚𝑖𝑛| =1∙10–4 m2, i=1,…,37 (22) 

 

The bottom bar elements have fixed cross sectional areas of Af=4∙ 10–3 m2. Masses of 

madd = 10 kg are attached to each of the bottom nodes. The remaining bars are 

modelled as elements with initial sectional areas of: 

 

    |𝐴𝑘𝑖| =1∙10–4 m2, k=0 (23) 

 

The material properties for the bar elements are E = 2.1∙1011 N/m2 and ρ = 7800 

kg/m3. The first three natural frequencies are constrained, see Equation (24): 

 

    ω1≥20 Hz 

    ω2≥40 Hz 

    ω3≥60 Hz. 

(24) 

 

The optimisation problem involves three frequency constraints and nineteen design 

variables (five shape variables + 14 sizing variables).  

 

 X 

Y 
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Figure 7. Case 3: 37 bar truss size and shape optimisation problem 

In the last case study c-mFOA is compared to the:  

- Ray Optimisation (RO) method [31].  In RO, each agent is modelled as a ray 

of light that moves in the search space in order to find the global or sub-global 

optimum solution. 

- Multi-class teaching-learning-based optimization (MC-TLBO) [32]. MC-

TLBO employs a two-step procedure. In the first step, parallel classes explore 

the search space; while in the second step, the best solutions of the parallel 

classes form a super class to be the initial population for a TLBO. 

- Particle Swarm Optimisation [33]. 

 

The results are summarised in Table 11, while the shape of the optimised structure is 

shown in Figure 8. 

 

Table 11. Case 3 - Optimisation results for the 37-bar truss  

 

Variables   Cross sectional area (10-4 m2) 

 Position 

[m]  

Members 

 

Kaveh 

RA 

Farshchin 

MC-TLBO 

Gomes 

PSO 

c-MFOA 

 Y3, Y19   1.0010 0.98300 0.9637 1.0108 

 Y5, Y17  1.3909 1.38030 1.3978 1.3860 

 Y7, Y15  1.5893 1.56450 1.5929 1.5608 

 Y9, Y13  1.7507 1.68710 1.8812 1.6802 

 Y11  1.8336 1.75900 2.0856 1.7580 

  A1, A27 3.0124 2.99127 2.6797 3.1997 

  A2, A26 1.0623 1.00054 1.1568 1.0025 

  A3, A24 1.0005 1.00415 2.3476 1.0000 

  A4, A25 2.2647 2.59576 1.7182 2.5875 

  A5, A23 1.6339 1.21394 1.2751 1.0895 

  A6, A21 1.6717 1.14226 1.4819 1.1261 

  A7, A22 2.0591 2.31699 4.6850 2.5624 

  A8, A20 1.6607 1.50998 1.1246 1.4121 

  A9, A18 1.4941 1.51723 2.1214 1.5758 

  A10, A19 2.4737 2.27223 3.8600 2.2461 

  A11, A17 1.5260 1.21117 2.9817 1.0694 

  A12, A15 1.4823 1.27385 1.2021 1.3193 

  A13, A16 2.4148 2.49338 1.2563 2.3846 

  A14 1.0034 1.00000 3.3276 1.0001 

Weightmin 

(kg) 

  
364.04 359.966 377.20 360.07 
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Figure 8. Optimised truss shape in case 3 

 

5. Discussion  
 

5.1 Analysis of results 

 

From the mathematical benchmark study it is concluded that c-mFOA perfoms 

significantly better than GA, PSO and SA. The calculated mean of best values and 

standard deviation are lower, an indication that c-mFOA presents a better and more 

robust.  In all cases – except function 9 – the proposed algorithm achieves finding the 

optimum within 16000 iterations. A sensitivity analysis, in which only parameter M 

was varied, has shown that it is possible to calculate the optimum value within 16000 

iterations. M is a parameter with which we can enlarge or decrease the search space. 

 

Two structural optimisation problems where only stress and displacement constraints 

are active were studied. In the first case c-mFOA performs as well as most of the other 

state-of-the-art optimisation algorithms. The same optimum is found for 

approximately the same number of function evaluations. In the second and most 

complex case c-mFOA performs better than the rest except for the TLBO algorithm, 

which achieves a slightly better result.  In greater detail, the best value calculated is 

0.28% worse than TLBO and the average of best values is worse only by only 0.13%.  

 

In the third case study, which is also the most challenging, c-mFOA performs 

significantly better than the rest algorithms except for MC-TLBO, which achieves the 

same result.    

 

In conclusion, the proposed algorithm has been compared to twelve state-of-the-art 

and three standard optimisation algorithms (e.g. those found in Matlab Optimisation 

Toolbox) for a range of benchmark problems. The benchmarks concern noisy 

functions with multiple minima, varying gradients and multiple constraints.  c-mFOA 

achieves better results than all other algorithms except for TLBO, where it achieves 

the same performance. It is highlighted that the results obtained using c-mFOAa are 

for the same parameter setting. A random starting condition was used to initialise the 

population; thus the performance achieved is independent from the starting solution. 
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As shown, only one parameter M is required to change the algorithm’s convergence 

rate.    

 

5.2 Parallel processing performance 

 

 

 

 

6. Conclusions 
Optimisation algorithms are employed routinely in engineering to improve designs, 

reduce cost, improve efficiency, reduce weight etc. However, the standard 

optimisation tools used by practising engineers today are not adequate in solving 

complex, multi-parameter problems.  

 

Fruit flies are extremely efficient in finding food, although their brain is rather 

simplistic. From an optimisation point of view this is extremely interesting as it means 

that this is achieved by simple means. In this study, a new fruit fly optimisation 

algorithm is presented based on the findings of recent fruit fly behaviour study. The 

proposed version modifies the initial algorithm by introducing the concepts of visual 

stimulation and reflex delay. Additionally, the population is generated by a uniform 

discrete distribution; a property that has increased significantly the efficiency of the 

algorithm to treat multi-parameter and complex problems.  

 

1. The proposed algorithm has been compared to three standard and twelve-state-of-

the art optimisation algorithms. The benchmark tests employed are ten noisy and 

unconstrained mathematical functions, two structural optimisation problems with 

stress and displacement constraints, and one structural optimisation problem with 

frequency constraints.  c-mFOA achieves better results for less or the same number of 

analyses compared with other algorithms; except for the Teaching Learning Based 

Optimisation algorithm, where it achieves exactly the same performance.  

 

2. It is highlighted that the results obtained using c-mFOAa are for the same 

parameter setting and thus no tuning was required. The performance achieved is 

independent from the initial condition as this was randomly selected. As shown, only 

one parameter M is required to change the algorithm’s convergence rate and this can 

be intuitively chosen. All these features make the proposed algorithm attractive for 

implementation in standard engineering tools.  

 

In the future it is foreseen to enlarge the range of applications for the fruit fly 

algorithm as well as to conduct a more detailed comparison to the Teaching Learning 

Based Optimisation. In addition, there are plans to further evaluate and improve the 

algorithm to work with highly n-dimensional search and more complex domain 

spaces. 
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