

Efficient truss optimization using the
contrast-based fruit fly optimization
algorithm

Kanarachos, S., Griffin, J., and Fitzpatrick, M. E.

Author accepted manuscript deposited in Coventry University’s Repository

Original citation:
Kanarachos, S., Griffin, J., and Fitzpatrick, M. E. (2017) Efficient truss optimization
using the contrast-based fruit fly optimization algorithm. Computers and Structures,
Vol. 182, April 2017, pp. 137-148

https://doi.org/10.1016/j.compstruc.2016.11.005

DOI 10.1016/j.compstruc.2016.11.005
ISSN 0045-7949

Publisher: Elsevier

This article is distributed under the terms of the Creative Commons BY-NC-ND 4.0
International License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
allows other to copy, distribute, display and perform only original copies of the
work, provided you give appropriate credit to the original author(s) and the
source.

Copyright © and Moral Rights are retained by the author(s) and/ or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This item cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder(s). The content must not be changed in any way
or sold commercially in any format or medium without the formal permission of
the copyright holders.

http://pureportal.coventry.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228141698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.compstruc.2016.11.005
https://doi.org/10.1016/j.compstruc.2016.11.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://pureportal.coventry.ac.uk/

1

Title:

Efficient multi-parameter optimisation using Contrast based Fruit Fly

Optimisation

Abstract:

A recent biological study showed that the extremely good efficiency of fruit flies in

finding food, despite their small brain, emerges by two distinct stimuli, smell and

visual contrast. “Contrast based Fruit Fly Optimisation”, presented in this paper, is for

the first time mimicking this fruit fly behaviour and further developed to address

more efficiently multi-parameter optimisation problems. To assess its performance a

study was carried out on ten mathematical and three truss optimisation problems. The

results are compared to those obtained using twelve state-of-the-art optimisation

algorithms and confirm its good and robust performance. A sensitivity analysis and an

evaluation of its performance under parallel processing were conducted. The proposed

algorithm has only a few tuning parameters, is intuitive, and multi-faceted allowing

application to complex n-dimensional design optimisation problems.

Authors:

Stratis Kanarachosa, James Griffina,and Michael E. Fitzpatricka

a stratis.kanarachos@coventry.ac.uk, ac0393@coventry.ac.uk, ab6856@coventry.ac.uk, Faculty of

Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1

5FB, United Kingdom

Corresponding author: Stratis Kanarachos, stratis.kanarachos@coventry.ac.uk Tel:
+44(0)2477657720, Engineering & Computing Building - EC 4-07, Faculty of Engineering,
Environment and Computing, Coventry University, 3, Gulson Road, Coventry, CV1 2JH

Keywords:

Fruit fly optimisation; multi-parameter; truss optimisation

1. Introduction

Design optimisation is a powerful tool widely utilised by engineers to produce better

performing, more reliable and cost-effective products. It originated from the aircraft

industry and rapidly expanded in multiple domains like structural and mechatronics

engineering [1, 2, 3]. Its success is mainly due to its inherent merit, delivered in

combination with a significant increase in computational power and accessibility to

practitioners through commercial engineering software [4]. The mathematical

formulation of an optimisation problem can be expressed as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐱), x=[x1, x2, …, xm]T

(1)

mailto:stratis.kanarachos@coventry.ac.uk
mailto:ac0393@coventry.ac.uk
mailto:ab6856@coventry.ac.uk
mailto:stratis.kanarachos@coventry.ac.uk

2

subject to: 𝑥𝑖𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥, i=1,2,…,m

where f(x) is the objective function that expresses the performance of a system, x is a

vector comprised out of design variables xi, m is the total number of design variables,

and 𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥 are the lower and upper bound of design variable 𝑥𝑖 respectively.

Initially, optimisation technology was based on mathematical formulations involving

the calculation of derivatives [5]. For example, in the gradient descent method, one

starts from an initial point x0 where the function value f(x0) is calculated and then

takes a step in a downward direction, where the function value will be lower. To make

such a step, one utilizes local information ∇𝑓𝑇(𝐱𝟎) and explores the immediate

vicinity of the current point. The search for the optimum design vector 𝒙∗ is expressed

by the following iterative formula:

𝐱𝐤+𝟏 = 𝐱𝐤 − 𝑎𝑘 ∙ ∇𝑓𝑇(𝐱𝐤)

(2)

where 𝑎𝑘 is a scaling parameter, k is the iteration number, 𝐱𝐤 is the design vector in

kth iteration and 𝐱𝐤+𝟏 is the new design vector.

Although mathematically rigorous, the gradient-based algorithms get trapped in local

minima in case of noisy or highly nonlinear problems. Contrary, meta-heuristic

optimisation algorithms like the Genetic Algorithm [6], Particle Swarm Optimisation

[7] and Harmony Search [8] do not use gradient information and achieve remarkably

better results. On the downside, the performance of non-gradient algorithms depends

on a number of tuning parameters which are not known prior to execution. Although,

in some cases, empirical rules exist they are not always adequate. There is a need for

intuitive meta-heuristic algorithms with a minimum number of tuning parameters.

2. Brief literature review on truss optimisation

Trusses are fundamental in structural engineering and applications can be found from

nano to macro levels [9, 10]. Truss optimisation problems are usually multi-parameter

optimisation problems due to the large number of members comprising the truss.

They are also highly nonlinear because of the multiple constraints considered,

including displacement, stress and frequency, and the complex interaction between

the structural members. In the general case, the truss optimisation problem is

formulated as a mathematical optimisation problem:

find x=[x1, x2, …, xm]

that minimises 𝑅(𝐱) = ∑ 𝜌𝑖 ∙ 𝐴𝑖 ∙ 𝐿𝑖

𝑛

𝑖=1

subject to: 𝛿𝑖𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑖𝑚𝑎𝑥, i = 1,2,…,nn

 𝜎𝑖𝑚𝑖𝑛 ≤ 𝜎𝑖 ≤ 𝜎𝑖𝑚𝑎𝑥, i = 1,2,…,nn

 𝛢𝑖𝑚𝑖𝑛 ≤ 𝛢𝑖 ≤ 𝛢𝑖𝑚𝑎𝑥, i = 1,2,…,n

 𝜔𝑖𝑚𝑖𝑛 ≤ 𝜔𝑖 ≤ 𝜔𝑖𝑚𝑎𝑥, i = 1,2,…, nω

(3)

3

where R is the mass of the truss, m is the number of design parameters, n is the

number of truss members, nn is the number of nodes, n is the number of truss

members and nω the number of desired natural frequencies. 𝜌𝑖, 𝐴𝑖 and 𝐿𝑖 are the

density, cross sectional area and length of ith member respectively. 𝛿𝑖 and 𝜎𝑖 are the

displacement and stress at the ith node. 𝜔𝑖 is the ith natural frequency. 𝛿𝑖𝑚𝑖𝑛 and 𝛿𝑖𝑚𝑎𝑥

are the lower and upper displacement bounds for the ith node, 𝜎𝑖𝑚𝑖𝑛 and 𝜎𝑖𝑚𝑎𝑥 are the

lower and upper normal stress bounds for the ith node, 𝛢𝑖𝑚𝑖𝑛 and 𝛢𝑖𝑚𝑎𝑥 are the lower

and upper cross sectional area bounds for the ith structural member and 𝜔𝑖𝑚𝑖𝑛 and

𝜔𝑖𝑚𝑎𝑥 are the lower and upper bounds for the ith natural frequency.

There is an increasing interest in developing efficient algorithms for large scale truss

optimisation. The algorithms are mainly meta-heuristic and broadly classified into

three categories.

The first category encompasses the Evolutionary Algorithms (EA). EAs use

mechanisms inspired by biological evolution, such as reproduction, mutation,

recombination, and selection for calculating new candidates 𝐱𝑘+1
𝑖 , i=1,…, M, where

M is the population size. EAs usually suffer from premature convergence and weak

exploitation capabilities. Both drawbacks are compensated by choosing bigger

populations, however, this leads to larger computational cost. Wei et al [11] proposed,

as a solution to this problem, the Niche Hybrid Parallel Genetic Algorithm (NHPGA).

NHPGA aims to effectively combine the robust and global search characteristics of

the genetic algorithm, strong exploitation ability of Nelder–Mead’s simplex method

and computational speedup property of parallel computing.

The second category includes population-based algorithms, such as Particle Swarm

Optimisation (PSO) [12]. PSO is formulated by mathematically modelling the social

behaviour of birds and fish colonies in finding food resources or escaping from

predators. In the standard PSO each member of the swarm finds its way based on their

own experience and the best particle’s position, particles do not exchange any

information. This causes PSO to get trapped into local optimums. In a recent

publication by Mortazavi and Toğan [13] a new version of PSO was proposed. In this

version, the concept of a weighted particle, created by exploiting all particles

experiences, is introduced. This helps to avoid premature convergence.

In the third category belong physical algorithms that resemble an employed physical

process. For example, Kaveh and Bakhshpoori [14] developed an algorithm that

mimics the evaporation of a tiny amount of water molecules on a solid surface with

different wettability. The “Water Evaporation Optimisation Algorithm” was tested

and analysed in comparison to other existing methods on a set of 17 benchmark

unconstrained functions, a set of 13 classical benchmark constraint functions, and,

three benchmark constraint engineering problems. The results obtained indicate that

the proposed technique is highly competitive. The performance of the algorithm

depends on a number of parameters including the assumption of a monolayer and

droplet evaporation phase, the number of water molecules and the minimum and

maximum values of monolayer and droplet evaporation probabilities. Another

example is the modified Teaching–Learning-based optimization (TLBO) algorithm

[15]. TLBO mimics the two types of pedagogy in a classroom to find the optimum

solution: class-level learning from a teacher and individual learning between students.

4

TLBO uses a relatively simple algorithm with no intrinsic parameters controlling its

performance.

Fruit flies are very effective in finding food. They can locate a food source from 40

km away even though their brain is very simple: it has only 100,000 neurons while

house fly brains have 300,000 neurons and human brains have 100 billion. This

remarkable ability makes them very interesting from a biological and optimisation

perspective [16, 17]. The main food search mechanism is based on smell. However, a

recent biological study shows that fruit flies are stimulated also by visual contrasts,

irrelevant to smell. Furthermore, their motion is described by standardised distinct

sensory-motor reflexes, independent of each other. The Contrast-based Fruit Fly

Optimisation Algorithm, proposed in this paper, mimics these new elements of fruit

fly behaviour. First, it is evaluated on a set of standard mathematical benchmark tests

and then applied to structural truss design benchmark problems. It is highlighted that

fruit fly algorithms have never been tested in structural optimisation before. The

results show that the algorithm achieves the same or better performance than other

optimisation algorithms.

Figure 1. Fruit fly swarm in search for food: Visual patterns and features stimulate

fruit flies in their search besides smell

The rest of the paper is structured as follows: in Section 3 the Contrast based Fruit

Optimization Algorithm is presented and explained. In Section 4 the results for ten

mathematical and three structural optimisation problems are discussed and compared

to those known from the literature and obtained using standard optimisation tools. In

Section 5 a sensitivity analysis is performed, including a performance evaluation

when parallel computing is used. Finally, Section 6 gives conclusions and future work

is proposed.

3. The Contrast-Based Fruit Fly Optimisation Algorithm

3.1 Contrast based Fruit Fly Optimization Algorithm for multi-parameter problems (c-

mFOA)

Odour plume

Swarm’s average location
propagation --

5

Fruit flies have a keen sense of smell and use their antennae to detect odours. A fly

can detect a source of food and where its fellows gather and fly to that direction. This

behaviour was modelled in the first fruit fly optimisation algorithm proposed by Pan

[18]. Its simplicity and efficiency made it popular and different versions were

proposed to improve its performance [19-22]. According to a recent biological study,

fruit flies exhibit also an additional food search mechanism [23, 24]. In case they

can’t find food using only osphresis, they start to explore objects with visual contrast.

They land and if there is not something to eat, they continue to forage. As an example,

a glass of wine would be a contrasting shape that would merit their attention.

Furthermore, it was found that fruit flies surge when the scent is strong and cast when

it becomes weaker. Last but not least, fruit flies present also a response delay. It is

believed that fruit flies developed these features to compensate for the chaotic

movement of odours, particularly outdoors in the wind. For the first time, in this

paper, the particular fruit fly behaviour is idealised, modelled and further developed to

address multi-parameter optimisation problems.

The basic steps of c-mFOA are summarised by the pseudo code shown in Figure 2.

A flowchart is provided in Figure 3.

 Multi- parameter Contrast Based Fruit Optimisation Algorithm

begin

Objective function f(x), x=[x1, x2, …, xm]

Generate initial population of fruit flies xi, i=1,2,…, N in the vicinity of x0

Smell concentration 𝑆𝑚𝑖 at xi determined by 𝑆𝑚𝑖 = 𝑓(𝐱i)
Rank the fruit flies and find the current best min(𝑆𝑚𝑖) = 𝑆𝑚𝑖

∗ for 𝐱𝑖
∗

If 𝑆𝑚𝑖
∗ < 𝑆𝑚0 then x0= 𝐱𝑖

∗
 while (t < MaxGeneration)

Reposition the fruit flies xki, k=1,2, …, K and i=1,2,…, N in the vicinity

of current xk0

 Smell concentration 𝑆𝑚𝑘𝑖 at xki determined by 𝑆𝑚𝑘𝑖 = 𝑓(𝐱ki)
Rank the fruit flies and find the current best 𝑆𝑚𝑘𝑖

∗ for 𝐱𝑘𝑖
∗

If 𝑆𝑚𝑘𝑖
∗ < 𝑆𝑚𝑘0 then xk0= 𝐱𝑘𝑖

∗
if (tk>delay time)

if (𝑆𝑚𝑘𝑖 < 𝑆𝑚(𝑘−𝜅)0)

 reduce the area of attraction (surging phase)

 else if (𝑆𝑚𝑘𝑖 = 𝑆𝑚(𝑘−𝜅)0)

set the attraction point at the worst performing

candidate, xk0= 𝐱𝑘𝑖
∴ for which max(𝑆𝑚𝑘𝑖) = 𝑆𝑚𝑘𝑖

∴

 else if (𝑆𝑚𝑘𝑖 > 𝑆𝑚(𝑘−𝜅)0)

return to the previous the current best, xk0= 𝐱(𝑘−𝜅)0

(casting phase)

 end if

 end if

 Initialise response time tk =0

 end while

Post process results and visualisation

 end

6

Figure 2. Pseudo-code of the proposed Fruit Fly Optimisation Algorithm

Figure 3. Flowchart of proposed c-mFOA algorithm

Parameter selection
phase

Swarm
Generation

Fruit Fly
localisation

Smell concentration
calculation

Best member
identification

Current average
location selection

Terminate

Decision delay phase

Casting phase

Surging phase Contrast phase

Condition 2

Condition 1

Step I

Step II

Step III

Step IV

Step V

Step VI

Step VII

Step
VIIIa

Step
VIIIb

Step
VIIIc

7

3.2 Swarm localisation and termination

A coordinate system is defined and the position of a fruit fly with coordinates (X0,Y0)

is defined, see Figure 4. The other N-1 fruit flies are located, randomly, in the vicinity

of (X0,Y0) according to Equation 4.

Figure 4. Fruit fly position (Xi, Yi) is described in a coordinate system

𝑋𝑘𝑖 = 𝑋𝑘0(1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
− 1), i=1,…,N

(4)

𝑌𝑘𝑖 = 𝑌𝑘0(1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
− 1), i=1,…,N

where k=1,2,…,K is the iteration number, N is the size of the swarm and 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
 is a

random number from a uniform discrete distribution defined in the interval [1, Nres] .

The use of a discrete distribution is not observed in nature, but is a feature we

introduced to improve the algorithm’s performance in multi parameter problems. M is

a scaling parameter that defines how coarse or fine the search strategy is.

Each fruit fly is assigned a value 𝐷𝐼𝑖 based on how close the fruit fly (𝑋𝑘𝑖, 𝑌𝑘𝑖) is to

the origin of a fixed coordinate system:

𝐷𝑘𝑖 = √𝑋𝑘𝑖
2 + 𝑌𝑘𝑖

2 (5)

𝐷𝐼𝑘𝑖 =
1

𝐷𝑘𝑖

(6)

DIki is sensitive for fruit flies located in the vicinity of the origin, contrary to those

that are positioned far away. This implies that a good search strategy should start

close to the origin.

(0, 0)

(𝑋0, 𝑌0)

(𝑋1, 𝑌1)

(𝑋𝑛, 𝑌𝑛)

𝐷1

𝐷𝑛

X

𝐷2

(𝑋2, 𝑌2)

X

8

Each fruit fly is assigned a “smell concentration” 𝑆𝑚𝑘𝑖 at xki determined by the

objective function value 𝑆𝑚𝑘𝑖 = 𝑓(𝐱ki). A small objective function value corresponds

to a position with high smell concentration.

The fruit flies are ranked, on the basis of their smell concentration, and the fruit fly

𝒙𝑘𝑖
∗ that achieves the highest smell concentration 𝑆𝑚𝑘𝑖

∗ at position (𝑋𝑘𝑖
∗ , 𝑌𝑘𝑖

∗) is

identified. In case the smell concentration 𝑆𝑚𝑘𝑖
∗ is better than that of the current point

of attraction 𝑆𝑘0:

𝑖𝑓 𝑆𝑚𝑘𝑖
∗ < 𝑆𝑚𝑘0

𝑡ℎ𝑒𝑛 𝑋𝑘0 = 𝑋𝑘𝑖
∗ 𝑎𝑛𝑑 𝑌𝑘0 = 𝑌𝑘𝑖

∗

(7)

then it substitutes it and becomes the new point of attraction.

The algorithm terminates when the maximum number K iterations is reached.

3.3 Delay, casting, surging and visual contrast phases

When the stimulus changes fruit flies don’t respond immediately; a delay is taking

place before changing the food search strategy. As presented in [24], the delay is

constant and independent of other parameters. This behaviour is idealised and

modelled in c-mFOA algorithm.

In case the objective function improves over the last κ iterations, the swarm enters the

“surging” phase, during which the flies move towards the attraction point 𝐱𝑘0 at a

greater speed:

if (𝑆𝑚𝑘𝑖 < 𝑆𝑚(𝑘−𝜅)0)

𝑀𝑘+1 = 𝑐 ∙ 𝑀𝑘
(8)

In case the objective function doesn’t change over the last κ iterations, κ represents

the response delay, the swarm enters the “visual contrast” attraction phase, in which

flies are attracted by the point 𝐱𝑘𝑖
∴ that achieves the lowest smell concentration

max(𝑆𝑚𝑘𝑖) = 𝑆𝑚𝑘𝑖
∴ :

if (𝑆𝑚𝑘𝑖 = 𝑆𝑚(𝑘−𝜅)0)

𝑋𝑘0 = 𝑋𝑘𝑖
∴ 𝑎𝑛𝑑 𝑌𝑘0 = 𝑌𝑘𝑖

∴
(9)

where k is the current iteration.

In case the objective function worsens over the last κ iterations, the swarm enters the

“casting” phase, in which flies return to the previous current best 𝐱(𝑘−𝜅)0 and continue

the search at a constant speed:

if (𝑆𝑚𝑘𝑖 > 𝑆𝑚(𝑘−𝜅)0)

𝑋𝑘0 = 𝑋(𝑘−𝜅)0 𝑎𝑛𝑑 𝛶𝑘0 = 𝛶(𝑘−𝜅)0
(10)

9

It is known from [25] that fruit flies do have memory and they can make a choice

based on how good or bad a memory was.

3.4 Constraint handling

In c-mFOA the constraints are dealt using the penalty function. The constrained optimisation
problem is formulated as an unconstrained one by augmenting the response function R(x) as
shown in Equation (11):

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐱) = 𝑅(𝐱) + ∑ 𝜅𝑖 ∙ 𝜑𝑖
2(𝐱) +

𝑛𝑛

𝑖=1

∑ 𝜆𝑖 ∙ 𝜓𝑖
2(𝐱)

𝑛𝑛

𝑖=1

 + ∑ 𝜇𝑖 ∙ 𝜒𝑖
2(𝐱) + ∑ 𝜈𝑖 ∙ 𝜋𝑖

2(𝐱)

𝑛𝑛

𝑖=1

𝑛

𝑖=1

𝜅𝑖 > 0, 𝜆𝑖 > 0, 𝜇𝑖 > 0 and 𝜈𝑖 > 0

(11)

where 𝜅𝑖, 𝜆𝑖, 𝜇𝑖, and 𝜈𝑖 are user defined constants and

𝜑𝑖(𝐱) = {

(𝛿𝑖 − 𝛿𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝛿𝑖 > 𝛿𝑖𝑚𝑎𝑥

(𝛿𝑖 − 𝛿𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝛿𝑖 < 𝛿𝑖𝑚𝑖𝑛

0, 𝑖𝑓 𝛿𝑖𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑖𝑚𝑎𝑥

(12)

𝜓𝑖(𝐱) = {

(𝜎𝑖 − 𝜎𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝜎𝑖 > 𝜎𝑖𝑚𝑎𝑥

(𝜎𝑖 − 𝜎𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝜎𝑖 < 𝜎𝑖𝑚𝑖𝑛

0, 𝑖𝑓 𝜎𝑖𝑚𝑖𝑛 ≤ 𝜎𝑖 ≤ 𝜎𝑖𝑚𝑎𝑥

(13)

𝜒𝑖(𝐱) = {

(𝐴𝑖 − 𝐴𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝐴𝑖 > 𝐴𝑖𝑚𝑎𝑥

(𝐴𝑖 − 𝐴𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝐴𝑖 < 𝐴𝑖𝑚𝑖𝑛

0, 𝑖𝑓 𝐴𝑖𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖𝑚𝑎𝑥

(14)

𝜋𝑖(𝐱) = {

(𝜔𝑖 − 𝜔𝑖𝑚𝑎𝑥)2, 𝑖𝑓 𝜔𝑖 > 𝜔𝑖𝑚𝑎𝑥

(𝜔𝑖 − 𝜔𝑖𝑚𝑖𝑛)2, 𝑖𝑓 𝜔𝑖 < 𝜔𝑖𝑚𝑖𝑛

0, 𝑖𝑓 𝜔𝑖𝑚𝑖𝑛 ≤ 𝜔𝑖 ≤ 𝜔𝑖𝑚𝑎𝑥

(15)

4. Benchmark testing

4.1 Results on multi-parameter mathematical benchmark problems

10

A set of multi-parameter mathematical functions, commonly used in the literature, is

employed to benchmark c-mFOA. In Table 1 the mathematical description, the

number of variables used, the design space, the optimal position and function value

for each function are provided. The functions are characterized by multiple local

minima, singular values, and hyper planes ranging from flat to very steep. Solving the

benchmark functions is a strong indicator of the robustness and effectiveness of the

developed c-mFOA. The benchmark is conducted for m=30 variables.

Table 1. Mathematical benchmark functions

No Description m [𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥] x* f(x*)

F1
𝑓(𝑥) = ∑ 𝑖 ∙ 𝑥𝑖

2

𝑚

𝑖=2

30 [−5.12, 5.12] 0 0

F2
𝑓(𝑥) = ∑ 𝑖 ∙ (2 ∙ 𝑥𝑖

2 −

𝑚

𝑖=2

𝑥𝑖−1
2)2 + (𝑥1 − 1)2

30 [−10, 10] 0 0

F3
𝑓(𝑥) = −exp (−0.5 ∙ ∑ 𝑥𝑖

2

𝑚

𝑖=1

)
30 [−1, 1] 0 -1

F4
𝑓(𝑥) = ∑(106)

𝑖−1
𝑛−1 ∙ 𝑥𝑖

2

𝑚

𝑖=2

30 [−100, 100] 0 0

F5 𝑓(𝑥) = max (|𝑥𝑖|) 30 [−100, 100] 0 0

F6
𝑓(𝑥) = ∑ 𝑓𝑙𝑜𝑜𝑟(𝑥𝑖 + 0.5)2

𝑚

𝑖=2

30 [−100, 100] 0 0

F7
𝑓(𝑥) = ∑ 𝑥𝑖

2

𝑚

𝑖=2

30 [−100, 100] 0 0

F8
𝑓(𝑥) = ∑|𝑥𝑖 ∙ 𝑠𝑖𝑛(𝑥𝑖) + 0.1 ∙ 𝑥𝑖|

𝑚

𝑖=1

30 [−10, 10] 0 0

F9
𝑓(𝑥) = ∑(𝑥𝑖

2 − 10 ∙ 𝑐𝑜𝑠(2 ∙ 𝜋 ∙ 𝑥𝑖) + 10)

𝑚

𝑖=1

30 [−5.12, 5.12] 0 0

F1

0 𝑓(𝑥) = 1 − 𝑐𝑜𝑠 (2 ∙ 𝜋 ∑ 𝑥𝑖
2

𝑚

𝑖=1

) + 0.1 ∙ ∑ 𝑥𝑖
2

𝑚

𝑖=1

30 [−100, 100] 0 0

c-mFOA is benchmarked against the Genetic (GA), Particle Swarm Optimisation

(PSO) and Simulated Annealing (SA) algorithms, commonly used in engineering

practice. It is highlighted that many variants of the aforementioned algorithms exist

and it is by no means attempted to compare c-mFOA to all variants. The purpose of

11

this exercise is to show the differences between well-known and widely employed

algorithms (one evolutionary, one population-based and one physics-based), when

implemented with their default parameter settings. The variants of GA, PSO and SA

used in this study are the ones found in Matlab’s Optimisation Toolbox.

In the GA a population comprised of 200 members is utilised. The members are

selected randomly from a uniform distribution restricted in the design space (DS), see

Table 1. For each member the fitness value is calculated. The GA members are then

sorted according to their rank. 80% of the new generation is created by crossover and

5% progresses from the old generation. A stochastic uniform algorithm is used for the

parent selection. The rest of the members are created by mutation. The genetic

algorithm terminated when the maximum number of function evaluations generations

is reached, unless it stalled. This was set to happen if for over 200 generations the

objective function did not change significantly.

The inspiration for the PSO algorithm is based on flocks of birds swarming. The first

step involves the generation of a population of particles with assigned initial

velocities. The particles are uniform randomly created within bounds shown in Table

1. A fitness value is calculated for each particle and then the location that achieves the

best value is determined. The algorithm chooses new velocities, based on the current

velocity, the particles' individual best locations, and the best locations of their

neighbours. It then iteratively updates the particle locations based on their old location

and velocity and, its' neighbours. The inertia range parameter of the algorithm was set

within its standard bound [0.1 1.1]. The self-adjustment and social adjustment weights

were set to their standard value 1.49. The swarm size was set to 100. Iterations

proceeded until the algorithm reached the maximum number of function evaluations.

The simulated annealing (SA) algorithm starts from a random starting vector

belonging to DS (Table 1). Two parameters; the temperature and re-annealing

determine its behaviour. The first one controls the extent of search. In this study the

default initial temperature of 100 was used. The second one emulates the annealing

process. After a certain number of new points are accepted, the temperature is raised

to a higher value to restart the search and move out of local minima. If re-annealing is

performed too fast this may not help the solver identify a minimum. Here, the default

interval of 50 was chosen. The procedure terminates when the total number of

function evaluations reaches the maximum value.

In c-mFOA the starting vector is a random vector bounded by DS (Table 1). The other

parameters are selected as K=320, N=50, κ=15, M=0.95 and c=0.92.

The benchmark is accomplished on the basis of a maximum number of function

evaluations maxfun=16000. The parameters used for the evaluation are the mean

value of optimised values found (Mean) and their standard deviation (Std), following

30 independent optimisation runs. The results are summarised in Table 2. In the last

column the optimal value for each function is provided.

Table 2. Optimisation benchmark results: Mean best value (Mean) and standard

deviation (Std) obtained using the Genetic Algorithm (GA), Particle Swarm

Optimisation (PSO), Simulated Annealing (SA) and contrast based multi-parameter

12

Fruit Fly Optimisation (c-mFOA). Maximum number of function evaluations

maxfun=16000

Fun

ctio

n

GA PSO SA c-mFOA

Mean Std Mean Std Mean Std Mean Std

F1
7.35 2.67

2.10∙

10–3

3.00∙

10–3
2.31 0.91 0 0

F2

1.82 1.32

5.62∙

10–4

7.45∙

10–4
0.49 0.16

2.55∙

10–4

2.76∙

10–4

F3
–0.95 0.01 –1

1.55∙

10–6
–0.31 0.07 –1 0

F4 2.43∙

104

2.23∙

104

2.73∙

105

1.30∙

106

6.00∙1

06

1.38∙

106

2.55∙

10–14

1.16∙

10–15

F5
1.90 0.67 14.05 4.21 68.35 4.67

5.63∙

10–5

6.47∙

10–5

F6

12.03 8.38 0.10 0.30 2.86 1.61 0 0

F7

0.72 0.38 0.040 0.034 6.22 1.51

4.32∙

10–19

8.08∙

10–20

F8

0.67 0.41 0.03 0.06 25.42 1.32

2.83∙

10–10

1.18∙

10–11

F9
26.74

10.6

7
60.23 21.91 154.68

31.1

1
14.31 3.38

F10 2.00∙

10–14

3.80∙

10–14

7.26∙

10–7

1.51∙

10–6

1.57∙

10–9

2.95∙

10–9

2.95∙

10–8

5.25∙

10–8

Figure 5. F9 case study: Convergence rate examples for c-mFOA

13

A sensitivity analysis, for function F9 𝑓(𝑥) = ∑ (𝑥𝑖
2 − 10 ∙ 𝑐𝑜𝑠(2 ∙ 𝜋 ∙ 𝑥𝑖) + 10)𝑚

𝑖=1 ,

was conducted by varying the tuning parameter M in c-MFOA. The results obtained

are listed in Table 3. For M>5 we achieve the same results as with M=5 (true

optimum).

Table 3. c-mFOA sensitivity analysis for different M parameter values in solving F9

Fun-

ction

c-mFOA

M=2 M=3 M=4 M=5

Mean Std Mean Std Mean Std Mean Std

F9 16.20 6.28 0.56 0.78 0.53 0.50 0 0

4.2 Results on structural optimisation benchmark problems

In this section, c-mFOA is compared to state-of-the-art optimisation algorithms in

solving truss optimisation problems. Each problem is solved repetitively and

independently for thirty times.

4.2.1 Case 1- Twenty-five bar space truss

In Figure 6 the 25-bar transmission bar used for benchmarking is illustrated. It is one

of the most common benchmarks for truss optimisation algorithms. The coordinates

of the nodes of the 25-bar truss are listed in Table, while Table 5 shows the element

connectivity and Table 6 the load case considered. The material considered has a

density of ρ=2768 kg/m3 (0.1 lb/in.3) and a modulus of elasticity of Ε=0.73∙106 Pa

(107 psi).

Figure 6. Cases 1 & 2: 25 bar truss

14

Table 4. Coordinates of the points defining the 25-bar truss

Node x [m] y [m] z [m]

1 −0.95 0.00 5.08

2 0.95 0.00 5.08

3 -0.95 0.95 2.54

4 0.95 0.95 2.54

5 0.95 −0.95 2.54

6 −0.95 −0.95 2.54

7 −2.54 2.54 0.00

8 2.54 2.54 0.00

9 2.54 −2.54 0.00

10 −2.54 −2.54 0.00

Table 5. Element (El.) connectivity for the 25-bar truss

El. Node 1 Node 2 El. Node 1 Node 2 El. Node 1 Node 2

1 1 2 10 6 3 19 3 8

2 1 4 11 5 4 20 5 10

3 2 3 12 3 4 21 6 9

4 1 5 13 6 5 22 6 10

5 2 6 14 3 10 23 3 7

6 2 4 15 6 7 24 4 8

7 2 5 16 4 9 25 5 9

8 1 3 17 5 8

9 1 6 18 4 7

Table 6. Case1 - Single load case for the 25-bar truss

Node Px [N] Py [N] Pz [N]

1 4448.22 –44482.22 –44482.22

2 0.00 –44482.22 –44482.22

3 2224.11 0.00 0.00

6 2668.93 0.00 0.00

The allowable stresses for each member are:

 |𝜎𝑖𝑚𝑖𝑛| = 𝜎𝑖𝑚𝑎𝑥 =275.79∙106 Pa= 40 ksi, i=1,…,10 (16)

 and the maximum displacements for each node in x, y and z directions are:

 |𝛿𝑖𝑚𝑖𝑛| = 𝛿𝑖𝑚𝑎𝑥 =8.89∙10–3 m = 0.35 in, i=1,…,10 (17)

The minimum and maximum cross sectional areas are:

 |𝐴𝑖𝑚𝑖𝑛| =6.45∙10–5 m2= 0.1 in2, i=1,…,25 (18)

and

15

 |𝐴𝑖𝑚𝑎𝑥| =219.35∙10–5 m2= 3.4 in2, i=1,…,25 (19)

Three optimisation algorithms are utilised to compare c-mFOA. A brief description of

each algorithm follows.

- The first algorithm is Differential Evolution (DE) [26].

- The second one is a new version of DE called adaptive elitist DE algorithm

(aeDE) [26]. There are three main differences with respect to the original one. In

the mutation phase, an adaptive technique based on the deviation of objective

function between the best individual and the whole population in the previous

generation is proposed to select a suitable mutation operator. An elitist selection

technique is utilized to increase the convergence rate in the selection phase.

Finally, a rounding technique is integrated for problems with discrete design

variables.

- The third algorithm is the so called Mine Blast Algorithm (MBA) [27]. The

fundamental concepts and ideas of MBA are derived from the explosion of mine

bombs in real world scenarios.

The comparison results are summarised in Table 7.

Table 7. Case1- Optimisation results for the 25-bar truss

Variables Cross sectional area [10–5 m2]

 Members Ho-Huu

DE

Ho-Huu

aeDE

Sadollah

MBA

c-MFOA

 1 6.45 6.45 6.45 6.45

 2,3,4,5 19.35 19.35 19.35 19.35

 6,7,8,9 219.35 219.35 219.35 219.35

 10,11 6.45 6.45 6.45 6.45

 12,13 135.48 135.48 135.48 135.48

 14,15,16,17 64.52 64.52 64.52 64.52

 18,19,20,21 32.26 32.26 32.26 32.26

 22,23,24,25 219.35 219.35 219.35 219.35

Weightmin

(kg)

219.93 219.93 219.92 219.93

Weightavg

(kg)

219.95 220.00 219.97

Weightstd

(kg)

0.06 0.12 0.07

Nanalyses 3500 1440 500 800

4.2.2 Case 2- Twenty-five bar space truss

In the second case the same truss as in case 1, described in 4.2.1, is utilised but now a

multiple loading condition and different allowable stresses/displacements are

considered. Tables 8 and 9 are listing the loading conditions and

stresses/displacements allowable respectively. The minimum and maximum cross

sectional areas are:

16

 |𝐴𝑖𝑚𝑖𝑛| =0.65∙10–5 m2= 0.01 in2, i=1,…,25 (20)

and

 |𝐴𝑖𝑚𝑎𝑥| =219.35∙10–5 m2= 3.4 in2, i=1,…,25 (21)

Table 8. Case 2- Multiple load case for the 25-bar truss

 Node Px (N) Py (N) Pz (N)

Case 1 1 4448.22 44482.22 –22241.11

 2 0.00 44482.22 –22241.11

 3 2224.11 0.00 0.00

 6 2224.11 0.00 0.00

Case 2 1 0.00 88964.43 –22241.11

 2 0.00 –88964.43 –22241.11

Table 9. Stresses allowable tensile (T) and compressive (C) for each element (EL)

El. T

[MPa]

C

[MPa]

El. T

[MPa]

C

[MPa]

El. T

[MPa]

C

[MPa]

1 275.79 –241.95 10 275.79 –241.95 19 275.79 –47.98

2 275.79 –79.91 11 275.79 –241.95 20 275.79 –47.98

3 275.79 –79.91 12 275.79 –241.95 21 275.79 –47.98

4 275.79 –79.91 13 275.79 –241.95 22 275.79 –76.41

5 275.79 –79.91 14 275.79 –46.60 23 275.79 –76.41

6 275.79 –119.31 15 275.79 –46.60 24 275.79 –76.41

7 275.79 –119.31 16 275.79 –46.60 25 275.79 –76.41

8 275.79 –119.31 17 275.79 –46.60

9 275.79 –119.31 18 275.79 –47.98

Here, c-mFOA is compared to the:

- Flower Pollination Algorithm (FPA) [28]. FPA can efficiently combine local and

global searches, is inspired by cross-pollination and self-pollination of flowering

plants, to perform local and global searches respectively. In addition an iterative

constraint handling strategy where trial designs are accepted or rejected based on

the allowed amount of constraint violation is utilised.

- Teaching-Learning-based Optimization (TLBO) algorithm [29]. The method

makes use of the analogy between the learning process of learners and searching

for designs to optimization problems. Learning can be accomplished either from

the teacher or by the interaction between learners.

- Colliding Bodies Optimization (CBO) algorithm [30]. The algorithm is based on

the physics describing collisions between bodies. Here each agent represents a

body. After a collision between two moving bodies takes place, these are

separated and moved to new positions with new velocities. This process is

repeated until a termination criterion is satisfied.

The results are summarised in Table 10.

Table 10. Case2 - Optimisation results for the 25-bar truss

17

Variables Cross sectional area [10–5 m2]

 Members Bekdas

FPA

Degertekin

TLBObest

Kaveh

CBO

c-MFOA

 1 0.65 0.65 0.65 1.98

 2,3,4,5 118.09 133.59 137.37 127.56

 6,7,8,9 205.33 190.73 186.18 195.51

 10,11 0.65 0.65 0.65 0.65

 12,13 0.65 0.65 0.65 0.66

 14,15,16,17 45.26 44.45 43.81 41.33

 18,19,20,21 111.37 104.55 103.70 108.10

 22,23,24,25 165.85 172.65 173.68 174.83

Weightmin (kg) 246.73 246.70 246.35 247.04

Weightavg (kg) 246.99 - 246.78 247.19

Weightstd (kg) 0.27 - 0.13 0.15

Nanalyses 8149 15318 9090 800

4.2.3 Case 3- Thirty-seven bar planar truss with frequency constraints

This is considered as a constrained truss optimization problem on size and shape.

Figure 7 shows a sketch of the 37-bar truss. All nodes of the upper chord are allowed

to vary in the y-axis - symmetry about Y-axis has to be maintained - and all the

diagonal and upper chord bars are allowed to vary its cross-sectional areas. No upper

bound exists for the cross sectional area but the minimum is:

 |𝐴𝑖𝑚𝑖𝑛| =1∙10–4 m2, i=1,…,37 (22)

The bottom bar elements have fixed cross sectional areas of Af=4∙ 10–3 m2. Masses of

madd = 10 kg are attached to each of the bottom nodes. The remaining bars are

modelled as elements with initial sectional areas of:

 |𝐴𝑘𝑖| =1∙10–4 m2, k=0 (23)

The material properties for the bar elements are E = 2.1∙1011 N/m2 and ρ = 7800

kg/m3. The first three natural frequencies are constrained, see Equation (24):

 ω1≥20 Hz

 ω2≥40 Hz

 ω3≥60 Hz.

(24)

The optimisation problem involves three frequency constraints and nineteen design

variables (five shape variables + 14 sizing variables).

 X

Y

18

Figure 7. Case 3: 37 bar truss size and shape optimisation problem

In the last case study c-mFOA is compared to the:

- Ray Optimisation (RO) method [31]. In RO, each agent is modelled as a ray

of light that moves in the search space in order to find the global or sub-global

optimum solution.

- Multi-class teaching-learning-based optimization (MC-TLBO) [32]. MC-

TLBO employs a two-step procedure. In the first step, parallel classes explore

the search space; while in the second step, the best solutions of the parallel

classes form a super class to be the initial population for a TLBO.

- Particle Swarm Optimisation [33].

The results are summarised in Table 11, while the shape of the optimised structure is

shown in Figure 8.

Table 11. Case 3 - Optimisation results for the 37-bar truss

Variables Cross sectional area (10-4 m2)

 Position

[m]

Members

Kaveh

RA

Farshchin

MC-TLBO

Gomes

PSO

c-MFOA

 Y3, Y19 1.0010 0.98300 0.9637 1.0108

 Y5, Y17 1.3909 1.38030 1.3978 1.3860

 Y7, Y15 1.5893 1.56450 1.5929 1.5608

 Y9, Y13 1.7507 1.68710 1.8812 1.6802

 Y11 1.8336 1.75900 2.0856 1.7580

 A1, A27 3.0124 2.99127 2.6797 3.1997

 A2, A26 1.0623 1.00054 1.1568 1.0025

 A3, A24 1.0005 1.00415 2.3476 1.0000

 A4, A25 2.2647 2.59576 1.7182 2.5875

 A5, A23 1.6339 1.21394 1.2751 1.0895

 A6, A21 1.6717 1.14226 1.4819 1.1261

 A7, A22 2.0591 2.31699 4.6850 2.5624

 A8, A20 1.6607 1.50998 1.1246 1.4121

 A9, A18 1.4941 1.51723 2.1214 1.5758

 A10, A19 2.4737 2.27223 3.8600 2.2461

 A11, A17 1.5260 1.21117 2.9817 1.0694

 A12, A15 1.4823 1.27385 1.2021 1.3193

 A13, A16 2.4148 2.49338 1.2563 2.3846

 A14 1.0034 1.00000 3.3276 1.0001

Weightmin

(kg)

364.04 359.966 377.20 360.07

19

Figure 8. Optimised truss shape in case 3

5. Discussion

5.1 Analysis of results

From the mathematical benchmark study it is concluded that c-mFOA perfoms

significantly better than GA, PSO and SA. The calculated mean of best values and

standard deviation are lower, an indication that c-mFOA presents a better and more

robust. In all cases – except function 9 – the proposed algorithm achieves finding the

optimum within 16000 iterations. A sensitivity analysis, in which only parameter M

was varied, has shown that it is possible to calculate the optimum value within 16000

iterations. M is a parameter with which we can enlarge or decrease the search space.

Two structural optimisation problems where only stress and displacement constraints

are active were studied. In the first case c-mFOA performs as well as most of the other

state-of-the-art optimisation algorithms. The same optimum is found for

approximately the same number of function evaluations. In the second and most

complex case c-mFOA performs better than the rest except for the TLBO algorithm,

which achieves a slightly better result. In greater detail, the best value calculated is

0.28% worse than TLBO and the average of best values is worse only by only 0.13%.

In the third case study, which is also the most challenging, c-mFOA performs

significantly better than the rest algorithms except for MC-TLBO, which achieves the

same result.

In conclusion, the proposed algorithm has been compared to twelve state-of-the-art

and three standard optimisation algorithms (e.g. those found in Matlab Optimisation

Toolbox) for a range of benchmark problems. The benchmarks concern noisy

functions with multiple minima, varying gradients and multiple constraints. c-mFOA

achieves better results than all other algorithms except for TLBO, where it achieves

the same performance. It is highlighted that the results obtained using c-mFOAa are

for the same parameter setting. A random starting condition was used to initialise the

population; thus the performance achieved is independent from the starting solution.

20

As shown, only one parameter M is required to change the algorithm’s convergence

rate.

5.2 Parallel processing performance

6. Conclusions
Optimisation algorithms are employed routinely in engineering to improve designs,

reduce cost, improve efficiency, reduce weight etc. However, the standard

optimisation tools used by practising engineers today are not adequate in solving

complex, multi-parameter problems.

Fruit flies are extremely efficient in finding food, although their brain is rather

simplistic. From an optimisation point of view this is extremely interesting as it means

that this is achieved by simple means. In this study, a new fruit fly optimisation

algorithm is presented based on the findings of recent fruit fly behaviour study. The

proposed version modifies the initial algorithm by introducing the concepts of visual

stimulation and reflex delay. Additionally, the population is generated by a uniform

discrete distribution; a property that has increased significantly the efficiency of the

algorithm to treat multi-parameter and complex problems.

1. The proposed algorithm has been compared to three standard and twelve-state-of-

the art optimisation algorithms. The benchmark tests employed are ten noisy and

unconstrained mathematical functions, two structural optimisation problems with

stress and displacement constraints, and one structural optimisation problem with

frequency constraints. c-mFOA achieves better results for less or the same number of

analyses compared with other algorithms; except for the Teaching Learning Based

Optimisation algorithm, where it achieves exactly the same performance.

2. It is highlighted that the results obtained using c-mFOAa are for the same

parameter setting and thus no tuning was required. The performance achieved is

independent from the initial condition as this was randomly selected. As shown, only

one parameter M is required to change the algorithm’s convergence rate and this can

be intuitively chosen. All these features make the proposed algorithm attractive for

implementation in standard engineering tools.

In the future it is foreseen to enlarge the range of applications for the fruit fly

algorithm as well as to conduct a more detailed comparison to the Teaching Learning

Based Optimisation. In addition, there are plans to further evaluate and improve the

algorithm to work with highly n-dimensional search and more complex domain

spaces.

Acknowledgments

MEF is grateful for funding from the Lloyd’s Register Foundation, a charitable

foundation helping to protect life and property by supporting engineering-related

education, public engagement and the application of research.

21

References

1. Liu, D., Lohse-Busch, H., Toropov, V., Hühne, C., Armani, U. Detailed

design of a lattice composite fuselage structure by a mixed optimization

method (2015) Engineering Optimization, pp. 1-14

2. Kanarachos, S., Kanarachos, A. Intelligent road adaptive suspension system

design using an experts' based hybrid genetic algorithm (2015) Expert

Systems with Applications, 42 (21), pp. 8232-8242

3. Alirezaei, M., Kanarachos, S., Scheepers, B., Maurice, J.P. Experimental

evaluation of optimal Vehicle Dynamic Control based on the State Dependent

Riccati Equation technique (2013) Proceedings of the American Control

Conference, art. no. 6579871, pp. 408-412.

4. https://en.wikipedia.org/wiki/List_of_optimization_software, accessed on

21/03/2016

5. Principles of Optimal Design 2ed: Modeling and Computation Paperback – 21

Aug 2008 by Panos Y. Papalambros, Cambridge University Press; 2 edition

(21 Aug. 2008) ISBN-13: 978-0521627276

6. Wong, K.-C. Evolutionary multimodal optimization: A short survey (2015)

Advances in Evolutionary Algorithms Research, pp. 1-15

7. Engelbrecht, A.P. Particle swarm optimization with crossover: a review and

empirical analysis (2016) Artificial Intelligence Review, 45 (2), pp. 131-165.

8. Saka, M.P., Hasançebi, O., Geem, Z.W. Metaheuristics in structural

optimization and discussions on harmony search algorithm (2016) Swarm and

Evolutionary Computation, . Article in Press.

9. Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., Kraft, O. High-strength

cellular ceramic composites with 3D microarchitecture (2014) Proceedings of

the National Academy of Sciences of the United States of America, 111 (7),

pp. 2453-2458

10. Zhang, Y., Hou, Y., Liu, S. A new method of discrete optimization for cross-

section selection of truss structures (2014) Engineering Optimization, 46 (8),

pp. 1052-1073.

11. Wei, L., Tang, T., Xie, X., Shen, W. Truss optimization on shape and sizing

with frequency constraints based on parallel genetic algorithm (2011)

Structural and Multidisciplinary Optimization, 43 (5), pp. 665-682.

12. Gomes, H.M. Truss optimization with dynamic constraints using a particle

swarm algorithm (2011) Expert Systems with Applications, 38 (1), pp. 957-

968.

13. Ali Mortazavi,Vedat Toğan, Simultaneous size, shape, and topology

optimization of truss structures using integrated particle swarm optimizer

(2016), Structural and Multidisciplinary Optimization, pp. 1-22, accessed on

line: http://link.springer.com/article/10.1007/s00158-016-1449-7

14. Kaveh, A., Bakhshpoori, T. Water Evaporation Optimization: A novel

physically inspired optimization algorithm (2016) Computers and Structures,

167, pp. 69-85.

15. Camp, C.V., Farshchin, M. Design of space trusses using modified teaching-

learning based optimization (2014) Engineering Structures, 62-63, pp. 87-97.

16. Qisong, Q., Gening, X., Xiaoning, F., Jun, W. A new type bionic global

optimization: Construction and application of modified fruit fly optimization

algorithm (2015) Proceedings of the Institution of Mechanical Engineers, Part

B: Journal of Engineering Manufacture, 229 (9), pp. 1614-1621.

https://en.wikipedia.org/wiki/List_of_optimization_software
http://link.springer.com/article/10.1007/s00158-016-1449-7

22

17. Lin, W.-Y. A novel 3D fruit fly optimization algorithm and its applications in

economics (2015) Neural Computing and Applications, 23 p. Article in Press.

18. Pan, W.-T. A new Fruit Fly Optimization Algorithm: Taking the financial

distress model as an example (2012) Knowledge-Based Systems, 26, pp. 69-

74.

19. Jun-qing Li, Quan-ke Pan, Kun Mao, P.N. Suganthan, Solving the steelmaking

casting problem using an effective fruit fly optimisation algorithm,

Knowledge-Based Systems, Volume 72, December 2014, Pages 28-36

20. Lianghong Wu, Cili Zuo, Hongqiang Zhang, A cloud model based fruit fly

optimization algorithm, Knowledge-Based Systems, Volume 89, November

2015, Pages 603-617

21. Marko Mitić, Najdan Vuković, Milica Petrović, Zoran Miljković, Chaotic fruit

fly optimization algorithm, Knowledge-Based Systems, Volume 89,

November 2015, Pages 446-458

22. Liming Shen, Huiling Chen, Zhe Yu, Wenchang Kang, Bingyu Zhang,

Huaizhong Li, Bo Yang, Dayou Liu, Evolving support vector machines using

fruit fly optimization for medical data classification, Knowledge-Based

Systems, Volume 96, 15 March 2016, Pages 61-75

23. Van Breugel, F., Dickinson, M.H. Plume-tracking behavior of flying

drosophila emerges from a set of distinct sensory-motor reflexes (2014)

Current Biology, 24 (3), pp. 274-286

24. http://www.futurity.org/fruit-flys-tiny-brain-finds-food-well/, accessed on

21/03/2016

25. http://www.nncn.de/en/news/Forschungsergebnisse-en/memories-of-fruit-fly-

larvae-are-more-complex-than-thought, accessed on 21/03/2016

26. V. Ho-Huu, T. Nguyen-Thoi, T. Vo-Duy, T. Nguyen-Trang, An adaptive

elitist differential evolution for optimization of truss structures with discrete

design variables, Computers & Structures, Volume 165, March 2016, Pages

59-75

27. Ali Sadollah, Ardeshir Bahreininejad, Hadi Eskandar, Mohd Hamdi, Mine

blast algorithm for optimization of truss structures with discrete variables,

Computers & Structures, Volumes 102–103, July 2012, Pages 49-63

28. Gebrail Bekdaş, Sinan Melih Nigdeli, Xin-She Yang, Sizing optimization of

truss structures using flower pollination algorithm, Applied Soft Computing,

Volume 37, December 2015, Pages 322-331

29. S.O. Degertekin, M.S. Hayalioglu, Sizing truss structures using teaching-

learning-based optimization, Computers & Structures, Volume 119, 1 April

2013, Pages 177-188

30. A. Kaveh, V.R. Mahdavi, Colliding Bodies Optimization method for optimum

design of truss structures with continuous variables, Advances in Engineering

Software, Volume 70, April 2014, Pages 1-12

31. A. Kaveh, M. Khayatazad, Ray optimization for size and shape optimization

of truss structures, Computers & Structures, Volume 117, February 2013,

Pages 82-94

32. M. Farshchin, C.V. Camp, M. Maniat, Multi-class teaching–learning-based

optimization for truss design with frequency constraints, Engineering

Structures, Volume 106, 1 January 2016, Pages 355-369

33. Gomes, H.M. Truss optimization with dynamic constraints using a particle

swarm algorithm (2011) Expert Systems with Applications, 38 (1), pp. 957-

968.

http://www.futurity.org/fruit-flys-tiny-brain-finds-food-well/
http://www.nncn.de/en/news/Forschungsergebnisse-en/memories-of-fruit-fly-larvae-are-more-complex-than-thought
http://www.nncn.de/en/news/Forschungsergebnisse-en/memories-of-fruit-fly-larvae-are-more-complex-than-thought

23

	Kanarachos2017CCBYNCND
	Kanarachoslast_copy_19_04_2016 _verh

