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Predicting the flow field inside a close coupled catalyst-the effect of entrance losses. 

 

S. F. Benjamin, H. Zhao, A. Arias-Garcia 

School of Engineering, Coventry University, Coventry, UK 

 

Abstract: A methodology is described for improving the prediction of the flow 

distribution in automotive close-coupled catalysts using computational fluid dynamics 

(CFD). Steady and pulsating flow simulations have been performed and compared with 

measurements obtained on an isothermal flow rig. By incorporating an extra pressure loss 

due to oblique entry at the monolith improved flow predictions are obtained. This work 

extends the methodology which has previously been developed for axi-symmetric 

systems. 
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NOTATION 

 

k turbulent kinetic energy 

n iteration number 

∆Pe  entrance total pressure loss 

Re  Reynolds number (inlet pipe) 

W Inlet velocity 

vr, vc, vz radial, circumferential and axial velocity components 



ε dissipation rate of turbulent kinetic energy 

ρ air density 

 

1 INTRODUCTION 

 

Maldistributed flow in automotive exhaust catalysts can adversely affect  system pressure 

loss and exhaust emissions. It can also lead to premature catalyst deactivation. Hence a 

simulation technique which can predict flow distribution is highly desirable. 

Computational fluid dynamics (CFD) is now widely used in the automotive industry 

when designing autocatalyst systems. However demonstration of accurate flow prediction 

is clearly necessary if confidence in the technique is to be established. In previous studies 

[1,2] it was shown that CFD generally underpredicted the flow maldistribution in both 

axi-symmetric and fully three-dimensional catalyst systems.  The cause of such 

underprediction was identified as an inadequate description of the pressure loss 

experienced at the front face of the catalyst due to the obliqueness of the entry flow. 

Benjamin et al [3] derived an expression for accounting for these losses in axi-symmetric 

converters based on the work of Küchemann and Weber [4] who were addressing the 

similar problem of oblique entry to flat plate heat exchangers. Axi-symmetric systems are 

fairly representative of underbody designs which normally comprise a single upstream 

exhaust pipe expanding via a diffuser into the catalyst monolith. With the move to tighter 

emission legislation the trend is now to position automotive catalysts close to the engine. 

These close-coupled catalysts (CCC) achieve rapid warm up and reduced light off times, 

thus lowering emissions considerably. Because of their positioning they are quite 



different geometrically from typical underbody designs. CCCs usually feature individual 

exhaust pipes from each cylinder discharging into different locations in the diffuser. The 

geometry is thus quite complex, the flow highly three dimensional and strongly pulsating 

[2]. The objectives of this study are to extend the entrance methodology developed in [3] 

to CCCs and to compare predictions with experimental data obtained from a flow rig for 

both steady and pulsating isothermal flow conditions. 

 

2  EXPERIMENTAL SETUP 

 

The isothermal flow rig and measuring system have been previously described in [2]. 

Figure 1 shows a schematic of the flow rig and the configuration of the pulse generator. 

A constant mass flow rate was provided from a compressed air system with flow rate 

monitored by a viscous flow meter. The working section comprised of an inlet duct, CCC 

manifold, monolith and outlet sleeve. A contraction nozzle provided a 1D uniform 

velocity profile under steady flow conditions. Immediately downstream of the nozzle is 

the pulse generator comprising a rotating plate with holes encased in a housing. The plate 

interrupts the flow four times per revolution. Under pulsating conditions flow 

straighteners are required downstream of the generator in a supply pipe to provide a 

uniform velocity profile [2]. For a particular experiment individual ports of the CCC 

manifold were coupled to the end of the supply pipe, the other three being blanked off. 

The supply pipe diameter, on which all Reynolds numbers were based, was 48 mm. On 

the test substrate an outlet sleeve of length 32.5 mm was used to avoid entrainment of 

surrounding air.  



 

The CCC from a 1.4 litre engine features four exhaust ports entering a diffuser (chamber) 

upstream of the monolith (see figure 2). The length and diameter of the cylindrical 

ceramic monolith are both 120mm. The monolith is comprised of about 7000 straight 

parallel channels with a nominal cell density of 62 cells/cm2 (400cpsi). The hydraulic 

diameter of the channels is approximately 1mm and the monolith porosity 75%. The 

outlet nozzle from the production catalyst was replaced with a sleeve to facilitate velocity 

measurements at the rear of the monolith. 

 

A TSI IFA 300 Constant Temperature Hot Wire Anemometry (HWA) system was used 

to measure the flow velocity at the rear of the monolith. The system comprises a main 

unit with the HWA bridges, a 2D traverse and the ThermalPro software to control, 

acquire and analyse the data. The probes were 5 µm Tungsten/Platinum wires, calibrated 

using a TSI 1129 fully automatic calibration rig. The velocity profiles were measured in 

the outlet sleeve 30 mm downstream of the monolith. 

 

3 NUMERICAL SIMULATION 

 

3.1 Model description 

The CFD code STAR-CD was used [5]. The basic computational mesh is shown in figure 

2. There are about 300,000 cells in the basic model. The mesh is composed of four parts, 

the manifold, the diffuser, the monolith and the exit volume. The monolith is modelled as 

a porous medium with a prescribed permeability and resistance. The exit sleeve is 



represented as the last five layers of cells. All the velocity contour plots in this paper 

represent the position about 30mm downstream of the monolith exit. At the inlet port the 

flow was assumed uniform, only ports 1 and 2 were examined. An example of measured 

and approximated pulses for 25 Hz and Re ~70000 is shown in figure 3. These refer to a 

position in the supply pipe downstream of the flow straighteners. The inlet velocity is 

adequately approximated as sinusoidal pulsations. For the pulsating case described later 

port 1 was open and pulse frequency was 25Hz. Five cycles were simulated using 400 

time steps (iterations) per cycle, each time step being 0.0001s. Inlet velocity was:  
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where n is the iteration number. The mass flow rate was 0.044kg/s and the amplitude of 

the sinusoidal pulse 80% of the average, equaling 35.81 m/s. This velocity is higher than 

in figure 3 as a contraction was required between the circular inlet pipe and the oval 

shaped port of area 819 mm2. 

 

The standard k-ε model was used to solve for turbulence energy k and dissipation rate ε, 

and the algebraic law-of-the-wall was used to represent the boundary layer. The 

governing equations were discretised by either a first order up–wind (UD) or second 

order (MARS) scheme [5]. In the case of steady state flow, the finite-volume equations 

resulting from the discretisations were solved by the implicit SIMPLE algorithm [5]. In 

the case of pulsating flow, the PISO algorithm [5] was employed, and the case started 

from a converged steady state solution. 



 

3.2 Monolith resistance 

To resolve the flow details within each channel of the catalyst would require 

prohibitively large computing resources. A commonly used approach in CFD is to treat 

the monolith as a porous medium. Assuming the flow inside the channel is fully 

developed and laminar, the flow resistance in the monolith can be represented by 

choosing appropriate permeability coefficients in STAR-CD. Applying large transverse 

resistances in the monolith makes the flow uni-directional. The pressure drop along the 

monolith is normally described by the Hagen-Poiseuille equation as the channel Re is 

generally less than 1500. In reality, just upstream of the monolith the flow is far from 

unidirectional. In the case of close coupled catalysts, both swirl and radial velocity 

components will be found. Oblique entry at the channel inlet causes flow separation in 

the front part of the channel resulting in an extra pressure loss, termed the entrance effect. 

In [3] this was defined as 

 

2/2
re vP ρ=∆  

where rv  is the radial flow component just upstream of the monolith. For the general 

case of non axi-symmetric flow the equivalent pressure loss expression becomes 

 

( ) 2/22
cre vvP +=∆ ρ  

where, rv and cv  are the two non axial flow components just upstream of the monolith. 

For positive vz this extra pressure loss was added to the monolith resistance within 

STAR-CD in a similar fashion to that as described in [3]. 



 

The basic model was run steady state for Re~60000 using the MARS scheme and then 

subsequently locally refined to reduce residual errors. Increasing cell numbers by 35% 

and subsequently 140% showed only small changes to the velocity distribution within the 

monolith and so a 35% refinement was considered adequate. 

 

3.3 Test cases 

 

Table 1 provides a summary of the test cases. Also shown are the maximum velocities in 

the monolith. For the steady flow cases Re~60000. When the entrance effect is included, 

a better match between prediction and experiment is achieved irrespective of the 

discretisation scheme. The higher order MARS scheme is also shown to be superior in 

terms of predicting maximum velocities. 

 

3.3.1 Port 2, steady flow 

Figure 4 shows the simulations for cases 1 and 2 compared with HWA measurements. 

Figure (4a) shows a crescent-shaped high velocity area encircling the centre of the 

monolith with a secondary band of high velocity at the periphery. On entry to the diffuser 

the flow separates and the emerging swirling jet impinges over a small section of the 

monolith. The locally high resistance results in a lateral pressure gradient forcing the jet 

to spread radially across the front face of the monolith. As this radial flow approaches the 

diffuser wall the pressure increases locally forcing more flow through the periphery. This 

is the origin of the secondary band of high velocity near the wall. The simulations 



revealed a clockwise circulation which spreads these higher velocity regions in the swirl 

direction. In figure 4(b), the highest predicted velocity is 8.0 m/s about half of the 

measured velocity of 15.3 m/s. Including the entrance effect (figure 4(c) improves the 

prediction of maximum velocity to 10.6 m/s and also shows a clear distinction between 

the two high velocity regions. 

 

The reason for the simulation improvement with the entrance effect is due to the 

redistribution of resistance across the monolith. Figure 4(d) shows contours of ( )22
cr vv +  

(∝ eP∆ ) at the front face of the monolith. The areas of increased resistance close to the 

central region are mainly associated with strong radial flow whilst that towards the 

periphery to swirl. These higher resistances serve to restrict entry into the monolith and 

redistribute the flow as shown in figure 4c. Redistributing the flow also increases the 

pressure drop across the monolith. Generally, for the steady flow cases the pressure drop 

is ~35 to 42% larger after introducing the entrance effect. In the pulsating case, the 

increase is about 46%.  

 

3.3.2 Port 1, steady flow 

Figure 4(e-g) show the  results for cases 5 and 6. The outboard port provides more swirl. 

It seems that CFD has overestimated the swirl component which results in the clockwise 

shift of the intense flow area along the swirl direction. This is most likely due to 

inadequate prediction around the compound bend on the outboard port due to the 

inadequacies of the standard k-ε turbulence model. Incorporating the entrance effect 



improves predictions of the maximum velocity which is now 10.8 m/s compared to a 

measured value of 11.1 m/s. 

 

3.3.3 Port 1, Pulsating flow 

Figure 5 shows that the pattern of flow under pulsating conditions is quite similar to that 

for steady flow. Again the simulation over-estimates the swirl. However, the prediction 

of the flow maldistribution has been improved after taking the entrance effect into 

account. The highest velocity increases from 9.7m/s to 11.1m/s, much closer to the 

measured value, 11.8 m/s. This is encouraging and suggests that the methodology may be 

applied to a full transient analysis of the system, a subject of ongoing research. 

 

4  CONCLUSIONS 

 

CFD simulations of the flow field inside a close coupled catalytic converter were 

conducted under steady and pulsating flow conditions and compared to experimental data 

obtained on an isothermal test rig. By incorporating entrance effects predictions of the 

maximum velocity within the monolith were substantially improved. This is important, as 

catalyst deactivation is believed to be closely associated with areas of high mass flow 

rate. 
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Table 1. Test cases. 

 
Case Flow  Port 

No. 
Discretisation 
scheme 

Entrance  
effect 
 

Max Velocity 
m/s 

1 Steady 2 MARS No 8.0 
2 Steady 2 MARS Yes 10.6 
3 Steady 1 UD  No  7.5 
4 Steady 1 UD Yes 8.9 
5 Steady 1 MARS No 8.4 
6 Steady 1 MARS Yes 10.8 
7 Pulsating  1 MARS No 9.7* 
8 Pulsating 1 MARS Yes 11.1*  
Expt. Steady 2   15.3 

Steady 1   11.1 
Pulsating 1   11.8* 

 
                 *Cycle averaged. 
 

 

 

 

 

 

 

 

 

 



 

 

 

List of Captions 

 

Figure 1  (a) isothermal flow rig and (b) pulse generator. 

 

Figure 2 Close coupled catalyst with basic computational mesh 

 

Figure 3  Measured and sinusoidal flow pulsations, 25 Hz, Re~70000. 

 

Figure 4.  Velocity contours for steady flow, Re~60,000. (a) Port 2 HWA 

measurements, vz, (b) Port 2 CFD case 1 without entrance effects, vz, (c) 

Port 2 CFD case 2, with entrance effects, vz,  (d) Port 2 CFD case 1, 

without entrance effects, ( )22
cr vv +  (e) Port 1 measurements, vz, (f) Port 1 

CFD case 5, no entrance effects, vz  (g) Port 1 CFD, case 6 with entrance 

effects, vz, (h) View angle. 

 

Figure 5 . Velocity contours with pulsating flow, 25Hz. (a) Port 1 HWA 

measurements, vz, Re 72000 (b) Port 1 CFD case 7, without entrance 

effect, vz,,  Re 69800 (c) Port 1 CFD case 8, with entrance effects, vz, Re 

69800 (d) View angle 
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