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Abstract 10 

Exhaust Gas Fuel Reforming has the potential to improve the thermal efficiency of internal combustion 11 

engines, as well as simultaneously reduce gaseous nd particulate emissions. This thermochemical 12 

energy recovery technique aims to reclaim exhaust energy from the high temperature engine exhaust 13 

stream to drive catalytic endothermic fuel reforming reactions; these convert hydrocarbon fuel to 14 

hydrogen-rich reformate.  The reformate is recycled back to the engine as Reformed Exhaust Gas 15 

Recirculation (REGR), which provides a source of hydrogen to enhance the engine combustion process 16 

and enable high levels of charge dilution;  this process is especially promising for modern gasoline direct 17 

injection (GDI) engines. 18 

This paper presents a full-scale prototype gasoline reformer integrated with a multi-cylinder GDI 19 

engine. Performance is assessed in terms of the reformate composition, the temperature distribution 20 

across the catalyst, the reforming process (fuel conversion) efficiency and the amount of exhaust heat 21 

recovery achieved. 22 

Keywords 23 
Exhaust-gas fuel reforming; hydrogen; reformate; Reformed Exhaust Gas Recirculation (REGR); energy 24 
recovery 25 

Abbreviations 26 
TDC  Top Dead Centre 27 
CO  Carbon Monoxide 28 
EGR  Exhaust Gas Recirculation 29 
EGT  Exhaust Gas Temperature 30 
FTIR  Fourier transform infra-red detector 31 
GC-FID  Gas chromatograph with flame ionisation detector 32 
GC-TCD  Gas chromatograph with thermal conductivity detector 33 
GDI  Gasoline Direct Injection 34 
GHSV  Gas hourly space velocity 35 
HC  Hydrocarbon 36 
IMEP  Indicated Mean Effective Pressure 37 
LHV  Lower heating value 38 
NOx  Oxides of Nitrogen 39 
PM  Particulate Matter 40 
REGR  Reformed Exhaust Gas Recirculation  41 
TWC  Three Way Catalyst 42 
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WGS  Water-gas shift reaction 43 

1. Introduction 44 

Exhaust gas fuel reforming is a technique with potential to achieve energy recovery from the exhaust 45 

stream of internal combustion engines in order to raise the engine thermal efficiency and reduce fuel 46 

consumption, as well as reduce exhaust emissions 1-3. The feasibility of this thermochemical energy 47 

recovery process relies on ensuring that the overall process is endothermic and energy is captured from 48 

the exhaust stream. The major reforming reactions are listed in Table 1. The two primary chemical 49 

reactions, steam reforming (1) and dry reforming (2) are endothermic and reform hydrocarbon (HC) 50 

fuel into hydrogen and carbon monoxide with a net gain in fuel enthalpy. Carbon dioxide and steam are 51 

supplied as reactants by the engine exhaust gas, and the hydrogen-rich product gases are re-circulated 52 

to the intake system for in-cylinder combustion, completing the reformed exhaust gas recirculation 53 

(REGR) system. 54 

If oxygen is present in the exhaust gas then some fuel will be consumed by highly exothermic oxidation 55 

reactions. Previous exhaust gas fuel reforming studies 4 have revealed that the combustion reaction (3) 56 

prevails but some partial oxidation (4) is also possible. In some applications the oxidation reactions are 57 

used to increase the catalyst temperature in order to improve the hydrogen yield, for instance by 58 

Partial Oxidation reformers and Autothermal reformers. The less exothermic water-gas shift (WGS) 59 

reaction (5) also increases the hydrogen concentration by reacting CO, which has already been 60 

produced by the other reforming reactions, with steam. The process efficiency is reduced to some 61 

degree by these exothermic reactions.  62 

Table 1 – General formulae for the key reforming reactions in hydrocarbon fuel reforming 63 

Reaction General chemical formula * Enthalpy of reaction, MJ/kmol  

Steam reforming: 𝐶𝑥𝐻𝑦 + 𝑥𝐻2𝑂 
 

→ 𝑥𝐶𝑂 + (𝑥 +
𝑦

2
)𝐻2  ΔhR = (+ 1259) (1) 

Dry reforming: 𝐶𝑥𝐻𝑦 + 𝑥𝐶𝑂2  
 

→ 2𝑥𝐶𝑂 +
𝑦

2
𝐻2  ΔhR = (+ 1588) (2) 

Combustion: 𝐶𝑥𝐻𝑦 + (𝑥 +
𝑦

4
)𝑂2  

 
→ 𝑥𝐶𝑂2 +

𝑦

2
𝐻2𝑂  ΔhR = (− 5116) (3) 

Partial oxidation: 𝐶𝑥𝐻𝑦 +
𝑥

2
𝑂2  

 
→ 𝑥𝐶𝑂 +

𝑦

2
𝐻2  ΔhR = (− 676)  (4) 

Water-gas shift: 𝐶𝑂 + 𝐻2𝑂 ⇌ 𝐶𝑂2 + 𝐻2  ΔhR = (− 283) (5) 

* when calculating enthalpy of reaction it was assumed that: HC fuel is n-octane; reactions go to completion; 64 
products and reactants are at 25°C and 1 atm; and water is in the gaseous state. Thermodynamic data from 5 65 
 66 
Other classifications of reformer have been researched for on-board hydrogen generation in the past. 67 

Partial oxidation reformers 5-7 react air and HC fuel to produce reformate, which, when coupled with a 68 

gasoline engine, can extend the (air or EGR) dilution limit and improve engine efficiency and emissions. 69 

These systems can be useful for cold engine starts operating partially or solely on reformate in order to 70 
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reduce emissions during warm-up 6, 7. However, the engine-reformer system efficiency ultimately 71 

suffers due to energy lost in the exothermic partial oxidation reforming process. A plasma reformer 8, 9 72 

instead uses electrical power to convert HC fuels to reformate. Again, the overall engine-reformer 73 

system efficiency is reduced due to the electrical power required for the reforming process. None of 74 

these systems aim to achieve exhaust heat recovery. 75 

Ethanol reformers designed to achieve heat recovery from ethanol-fuelled 10 and gasoline-fuelled 11 SI 76 

engines have been developed more recently. Ethanol can be reformed more easily than the longer 77 

chain and more complex (e.g. aromatic) HC components of gasoline and so it is possible at lower 78 

temperature, typically between 300-350 °C 10. This makes ethanol reforming feasible over most of the 79 

operating range of a SI engine.  80 

The gasoline reformer has potential for more widespread use than ethanol and E85 but greater 81 

technical barriers to overcome, most notably with respect to achieving effective performance at 82 

sufficiently low temperature to be feasible with the gasoline engine exhaust stream. Because reformer 83 

performance is heavily dependent upon catalyst temperature, reformer design should be focussed to 84 

ensure efficient heat transfer from the exhaust stream and minimise heat loses 4, 12.  85 

Exhaust gas fuel reforming has great potential for improving engine efficiency and reducing exhaust 86 

emissions. A review article by Golunski 13 discussed the application of exhaust gas fuel reforming for 87 

improving the thermal efficiency of IC engines through enhanced combustion and novel after-88 

treatment solutions. Thermodynamic and experimental studies of the REGR reactions have shown that 89 

precious metal catalysts, e.g. Rhodium on Zirconia 14, 15, exhibit high activity with yields close to 90 

equilibrium at temperatures typical of the gasoline engine exhaust. A recent experimental study 1 using 91 

hydrogen and CO addition to conventional EGR highlights the potential benefits that REGR can offer to 92 

the GDI engine, with simultaneous reductions in NOx, PM and CO, only slightly increased HCs, and 93 

increased engine and total system thermal efficiency.  94 

This paper furthers the research in the field of exhaust gas fuel reforming as, for the first time, a full-95 

scale gasoline reformer integrated with a modern production multi-cylinder GDI engine was studied. 96 

The results discussed in this paper are focussed on the prototype reformer performance; this includes 97 

examination of the reformer temperature profiles, analysis of the reformate composition including HC 98 

speciation, and calculation of the reformer fuel conversion efficiency. Devices designed to achieve 99 

exhaust heat recovery may be subjected to exergy analysis, and this has been applied here to establish 100 

the influence of exhaust gas fuel reforming on the exergy, or ‘available energy’, of the exhaust stream. 101 

The efficiency and emissions performance of the GDI engine utilising exhaust gas fuel reforming will be 102 

presented in a follow-up paper. 103 
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2. Experimental setup and test conditions 104 

The reformer was designed by Johnson Matthey and it consists of a stack of five metallic catalyst plates 105 

coated with 3.6g/in3 of ceramic support (Ceria-Zirconia-Alumina) loaded with 3.3% Platinum - 1.7% 106 

Rhodium. Each catalyst is mounted between two finned stainless steel plates used to seal it from the 107 

exhaust stream. The reformer plate assembly was designed to ensure high heat transfer from the hot 108 

exhaust gas to the catalyst, using fins on the stainless steel surround for increased surface area and a 109 

narrow catalyst construction only four cells thick. The exhaust stream flows perpendicularly over the 110 

reformer plate stack, which is positioned after the TWC. The reformer feed gas is extracted from the 111 

exhaust stream before the TWC, mixed with gasoline, and routed around the outer skin of the TWC to 112 

assist with fuel vaporisation and feed gas pre-heating. The required flow rate of gasoline was injected 113 

into the reformer feed gas by varying the pulse-width of a solenoid fuel injector, typically used in port 114 

injection engines, operating at a fixed frequency of 30Hz. The injector was mounted to the reformer 115 

with a manifold cooled by engine water to protect the injector from high exhaust system temperatures. 116 

11 thermocouples were distributed over the middle reformer plate according to schematic Figure 1, 117 

with additional thermocouples in the feed gas, product gas, and exhaust stream before and after 118 

passing over the reformer assembly.  119 

 120 
Figure 1 - Reformer schematic indicating thermocouples (TC) locations on the central reformer plate 121 

and in the exhaust stream 122 

Reformer installation: The reformer was installed with a turbocharged 2L GDI engine, positioned in the 123 

exhaust stream after the TWC. The REGR system installation used a ‘high pressure’ recirculation 124 

configuration, inducting reformate directly into the intake manifold. The system consisted of an 125 
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integrated DC motor controlled EGR valve and cooler, and an additional cooler, all supplied with engine 126 

coolant to maintain acceptable gas and component temperatures.  127 

Reformate analysis: A MKS Instruments Multigas 2030 Fourier Transform Infra-Red (FTIR) spectrometer 128 

was used to analyse the reformate stream for multiple species, including CO2, CO, H2O, NH3 and a 129 

selection of hydrocarbons compounds including methane. A HP 5890 Series 2 gas chromatograph with 130 

thermal conductivity detector (GC-TCD) and HP 3395 integrator was used to measure the hydrogen 131 

concentration in the reformate stream. Argon at 40psi acted as the carrier gas to the sample fed at 132 

10psi, resulting in the hydrogen peak occurring at 2.4s retention time. The detector was calibrated with 133 

10% and 30% hydrogen in nitrogen. Another HP 5890 Series 2 gas chromatograph with flame ionisation 134 

detector (GC-FID) gave in-depth speciation of the HC components of the reformate. The GC-FID was 135 

calibrated with 15 common HCs ranging from C1 to C7 (Table 2). 136 

Table 2 – Hydrocarbon species included in GC-FID calibration 137 

HC species Formula  HC species Formula  HC species Formula 

Methane CH4  1 - butane C4H10  n-pentane C5H12 

Ethylene C2H4  1,3-Butadiene C4H6  n-hexane C6H14 

Propylene C3H6  n-butane C4H10  Benzene  C6H6 

Propane C3H8  3-Methyl-1-butene C5H8  n-heptane C7H16 

Iso-butane C4H10  Iso-pentane C5H12  Toluene C7H8 

A Horiba MEXA-7100DEGR measured the intake manifold and exhaust stream CO2 concentration in 138 

order to calculate the charge dilution rate according to equation (6). The FID component of the Horiba 139 

analyser was also useful for providing a measurement of the total HC content of the reformate, which 140 

was not possible with the FTIR analyser. 141 

Charge Dilution Rate, % =
(𝐶𝑂2)𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑

(𝐶𝑂2)𝑒𝑥ℎ𝑎𝑢𝑠𝑡
𝑥100 (6) 

Test conditions: Three engine conditions were selected in order to generate a suitable range of 142 

reformer temperature and flow conditions; these were 35Nm/3bar IMEP at 2100rpm, 50Nm/4bar IMEP 143 

at 3000rpm, and 105Nm/7.2bar IMEP at 2100rpm. The first two conditions are key steady state 144 

conditions used on the new European drive cycle for a mid-size/large family vehicle with a 2 litre 145 

engine, and the third condition is typical of a higher load transient condition. At each condition the 146 

engine was operated with the maximum achievable charge dilution rate, and also a lower dilution rate 147 

to investigate the effect of reformer mass flow rate, or gas hourly space velocity (GHSV). Gasoline was 148 

injected into the reformer feed gas such that the molar concentration was 0.5% and 1% (fuel 149 

composition assumed to be octane) to test the influence of fuel concentration on reformer 150 

performance.  151 
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The engine-out exhaust gas composition (Table 3) varied little across the range of conditions tested 152 

because the engine uses a homogeneous, stoichiometric combustion strategy. This can also be 153 

considered the reformer feed gas composition (prior to gasoline injection). The slight variations of the 154 

primary exhaust gas species at each engine condition are due to the use of different charge dilution 155 

rates which influenced the combustion. This also results in larger percentage variation of NOx and THCs 156 

due to the effects of REGR on the combustion process. The oxygen content of the exhaust stream varies 157 

only between 0.5 to 0.7%, which is of particular relevance to the reformer process efficiency as the 158 

oxygen concentration is directly proportional to the amount of fuel that is oxidised in the reformer and 159 

the resulting increase in temperature.  160 

Table 3 - Exhaust gas temperature (EGT) and composition at each engine condition 161 

Engine 
condition 

EGT, °C 
(Pre-reformer) 

CO2, % O2, % CO, % 
* H2O, 

% 
NOX, 
ppm 

THC, 
ppm 

35Nm/ 
2100rpm 

595 - 605 
14.8 - 
15.0 

0.60 - 
0.70 

0.50 - 
0.60 

14.3-
14.4 

100 - 
1200 

1900 - 
3000 

50Nm/ 
3000rpm 

655 - 680 
14.8 - 
14.9 

0.50 - 
0.65 

0.50 - 
0.55 

14.3-
14.4 

200 - 
600 

1500 - 
1900 

105Nm/ 
2100rpm 

685 - 720 
14.8 - 
15.0 

0.60 - 
0.65 

0.55 - 
0.70 

14.4-
14.5 

900 - 
2300 

1300 - 
1600 

* Calculated 

3. Results and discussion 162 

3.1. Reformate characteristics 163 

Temperature distribution: The temperature distribution across the middle reformer plate varies with 164 

engine condition, REGR flow rate, fuel concentration, and the resulting reforming activity (Figure 2). In 165 

these plots the reformer feed gas flows from top to bottom and the engine exhaust stream flows over 166 

the plate from right to left. The temperatures were generally higher along the right edge due to the 167 

exhaust stream heating. The baseline plots clearly show that the reformer plates are more effectively 168 

heated as the exhaust stream temperature increases with engine load.  169 

At the lowest temperature condition (35Nm/2100rpm) the plate temperatures drop as the REGR flow is 170 

increased up to 20% due to reforming activity. There is also a slight cooling effect just by flowing gas 171 

through the reformer (i.e. with EGR), analogous to a forced-convection cooling process. At the highest 172 

REGR flow rate there is a slight increase in reformer temperature with a more even distribution. This is 173 

the result of multiple effects associated with increasing the flow rate: more oxygen is available for fuel 174 

oxidation which increases the gas temperature in the front of the reformer; the high flow rate moves 175 

the high temperature gas along the reformer more quickly resulting in the more even distribution; and 176 

reforming activity tends to be lower as the flow rate increases. 177 
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At the two higher engine load conditions the reformer is heated to significantly higher temperature 178 

when there is no REGR flow (baseline condition). Increasing either the REGR flow or the fuel 179 

concentation lowers the reformer temperature. Both of these changes increase the availability of fuel 180 

while, importantly, at sufficiently high temperature for the endothermic reforming reactions to be 181 

feasible. Again, increasing the REGR flow rate results in a more even temperature distribution. 182 

 183 

 184 

 185 

Figure 2 – Temperature (°C) distribution across the middle reformer plate at a) 35Nm, b) 50Nm and c) 186 
105Nm engine conditions, for a range of REGR concentrations (vol.) in the intake charge with either 187 

0.5% or 1% (vol.) gasoline in the reformer feed gas    188 

 189 
Linear reformer temperature profiles: Figure 3 compares the linear reformer temperature profiles while 190 

reforming with two different mass flows, 4.5 and 14.5kg/h - this equates to 10% and 25% REGR in terms 191 

of the dilution rate at the 35Nm/2100rpm engine condition. Temperature profiles are included for 0.5% 192 
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and 1% fuel in the reformer feed gas. At low reactant mass flow rate in the reformer, there was very 193 

little heating due to exothermic reactions in the front of the catalyst. There was no indication of 194 

endothermic reforming cooling the reformer. It appears that a small amount of reforming occurred in 195 

the first 75mm of the reformer as the temperature remains approximately constant. After this the 196 

temperature increased due to heating by the main engine exhaust stream. At the higher reactant flow 197 

rate there was a greater quantity of fuel and oxygen passing through the reformer which led to a larger 198 

temperature increase at the front face. The combination of higher temperature and more fuel being 199 

available for reforming meant that there was a clear drop in temperature along the length of the 200 

reformer due to endothermic reforming reactions. 201 

 202 
Figure 3 – Linear reformer temperature profile at the low temperature (35Nm/2100rpm) condition. 203 

Increasing the fuel concentration in the feed gas (for a given reactant flow rate) results in a reasonably 204 

uniform reduction of the temperature along the reformer. The feed gas temperature ( -30mm from 205 

leading edge) was slightly lower for the higher fuel flow conditions due to greater cooling by fuel 206 

vaporisation, and the gradient of the rise in temperature between the feed gas (-30mm) and the 207 

leading edge (0mm) was similar when comparing each fuel concentration condition. The amount of 208 

oxygen available for oxidation is dependent on the reactant flow rate and determines the amount of 209 

heating at leading edge. The slight reduction of heating with increasing fuel concentration is likely due 210 

to the higher rate of endothermic reforming (decrease in the oxygen/carbon ratio) and slightly higher 211 

specific heat capacity of the feed gas. 212 

The effect of reactant mass flow rate in the reformer on the linear temperature profile is shown in 213 

Figure 4 for two engine loads with 1% feed gas fuel concentration in each case. This shows the location 214 

of endothermic reforming moving further along the reformer with increasing flow rate. The initial drop 215 

in temperature is greater for the lower flow condition at each load.  216 

When the reformer flow is low and the reformer plate temperature is relatively high at the inlet, 650°C 217 

at the 105Nm condition, most of the reforming occurs in the first section of the reformer and is 218 
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followed by re-heating. This implies that the reformer is able to process more fuel than is being 219 

supplied at the low flow condition. 220 

 221 
Figure 4 - Linear reformer plate temperature profiles for high and low REGR flows at two engine 222 

conditions (1% feed gas fuel concentration in each case) 223 

Comparing the two curves for the high temperature condition (105Nm) there is a large temperature 224 

difference in the final 100mm of the reformer. The conditions in this section can be used to give an 225 

insight into the equilibrium position of the WGS reaction. The reformer temperature is reduced for the 226 

higher REGR rate which increases the WGS reaction equilibrium constant, resulting in an equilibrium 227 

shift towards higher H2 and CO2 concentration by consuming CO and H2O. For this reason, increasing 228 

the REGR rate generally results in a greater hydrogen/CO ratio (providing conditions are reasonable for 229 

reforming) this can be seen by comparing the hydrogen and CO data in Figure 55, particularly for the 1% 230 

feed gas fuel concentration conditions. 231 

It should be emphasised that the linear profiles offer a 1-dimensional view of the reformer operating 232 

temperature. This information disregards the temperature distribution across each reformer plate and 233 

any difference between the five individual plates.  234 

Reformate speciation: Maximum hydrogen production was observed when the consumption of steam 235 

was greatest, which indicates successful promotion of the steam reforming reaction (Fig. 5). This 236 

occurred at the 50Nm/3000rpm engine condition, when there was 11% hydrogen produced and 6% un-237 

reacted steam measured in the reformate, and there was a combination of high temperature and 238 

intermediate reactant flow rate.  239 

 Some CO2 can be expected to be produced by oxidation and WGS reactions, and may be consumed by 240 

the dry reforming reaction.  The CO2 concentration in the reformate was relatively consistent at most 241 

test points but was reduced slightly for low REGR mass flow rates. It should be noted that for a given 242 

engine load, at lower REGR mass flows the reformer plate temperatures are higher. This means the 243 

reversible WGS reaction has a smaller equilibrium constant, is therefore less favourable towards the 244 

reaction products, and so less hydrogen and CO2 are produced by this reaction. 245 
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Figure 5 - Reformate species concentrations at various engine conditions (a) 35Nm, 

(b) 50Nm and (c) 105Nm  
 246 
Hydrocarbon speciation: The proportion of HCs that breakthrough the reformer increases with REGR 247 

flow rate; therefore at 17kg/h REGR (Figure 6a) there is a lower total HC (THC) concentration. The 248 

calibration gas used contains many of the major components (Table 2) of gasoline and there were no 249 

significant peaks in the chromatogram spectrum unaccounted for. 250 

Methane made up a greater proportion of the HCs in the reformate at lower REGR flow, partly because 251 

the total breakthrough HC quantity was lower, but also due to higher methane production by the 252 
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‘methanation’ reforming side reactions; these consume hydrogen in reactions with CO, CO2 or HCs to 253 

produce methane, but tend to be relatively unfavoured under REGR conditions 14. The higher 254 

concentration of H2 and CO produced by the primary reforming reactions at lower REGR flow will lead 255 

to the methanation reactions being increasingly favoured. 256 

The molar composition of the gasoline was 12.6% paraffins, 33.4% isoparaffins, 14.6% olefins, 5.1% 257 

naphthenes, 28.9% aromatics and 4.9% oxygenates. The measured aromatic fraction (benzene + 258 

toluene) was higher in each case at 37% and 51%. This supports the idea that the aromatic fraction of 259 

the gasoline is not being reformed as readily as the less complex HCs such as the paraffins, which 260 

constitute nearly half of the gasoline mixture and appear in significantly lower quantity in the 261 

reformate. There is also a smaller toluene/benzene ratio at low reactant flow which implies toluene is 262 

reformed more readily than benzene. It may be that some toluene is partially reformed to the more 263 

stable/less reactive benzene.  264 

  
Figure 6 - Proportion of HC species of the total HCs in reformate as measured by GC-FID at 265 

50Nm/3000rpm with REGR (1% fuel): 17 kg/h (a) and 24 kg/h (b) 266 

3.2 Reformer process efficiency 267 

The effectiveness of the reformer can be analysed by calculating the reformer process efficiency using 268 

Equation (7). In this equation the HCs and CO contained in the engine exhaust gas which is fed in the 269 

reformer are not included in the calculation of the reformer efficiency. However, they are supplied to 270 

the reformer as products of incomplete in-cylinder combustion, and would usually be considered 271 

wasted energy as the exhaust heat, being both uncombusted species and exhaust heat being used in 272 

the reformer. Therefore equation 7 calculates reformer process efficiency without including those 273 

species as an input energy, contributing in the increase of the reforming process efficiency (Figure 7). 274 

‘Dry’ measurements were converted to ‘wet’ molar fractions (using knowledge of the steam 275 

concentration in the feed gas/reformate) before calculating the mass flow rate of individual species. 276 
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𝑅𝑒𝑓𝑜𝑟𝑚𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝜂𝑟𝑒𝑓 =  
𝐿𝐻𝑉𝐻2. �̇�𝐻2 + 𝐿𝐻𝑉𝐶𝑂 . �̇�𝐶𝑂 + 𝐿𝐻𝑉𝐶𝐻4. �̇�𝐶𝐻4 + 𝐿𝐻𝑉𝑔 . �̇�𝐻𝐶,𝑜𝑢𝑡

𝐿𝐻𝑉𝑔 . �̇�𝑔,𝑖𝑛

 (7) 

 277 

At the two highest engine load conditions, when exhaust temperature is above 650°C, the reformer 278 

process efficiency is greater than one (Figure 7a and b). This means that the overall reforming reaction 279 

is an endothermic process leading in the increase of the total fuel enthalpy (Figure 7c and d). The 280 

reformer process efficiency is similar when comparing fuel concentration at each test point; increasing 281 

the fuel concentration to 1% improves further the fuel enthalpy. At the low temperature condition the 282 

reformer process efficiency is less than 1, meaning some energy is lost during the gasoline reforming 283 

process.  284 

 285 

  

  
Figure 7 - Reformer process efficiency (a & b) and Fuel enthalpy increase (c & d) plotted against REGR 286 

mass flow (a & c) and exhaust temperature at the reformer inlet (b & d) 287 

3.3 Exhaust energy recovery 288 

First law analysis - Exhaust stream energy: Under normal engine operating conditions, i.e. when there is 289 

no reforming, the exhaust stream temperature drops (by some amount ΔT) as it passes across the 290 

reformer due to heat loss to the atmosphere. This is perhaps an obvious statement; however it is 291 

necessary to consider this heat loss when estimating the amount of exhaust energy recovery achieved 292 

by the reformer. When operating with EGR or REGR at a given engine load and recirculation rate, the 293 

exhaust stream mass flow, composition, and temperature at the reformer inlet are very similar; 294 

therefore it may be assumed that the heat loss to atmosphere is the same under each condition. 295 
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When the reformer is switched on there will be a greater exhaust stream temperature differential 296 

(ΔTREGR) if energy is extracted by the overall endothermic reforming process. This means that the 297 

exhaust stream temperature drop due to reforming, ΔTRef can be estimated for each condition using 298 

ΔTRef = ΔTREGR - ΔTEGR. The rate of exhaust heat recovery is then approximately equal to the change in 299 

enthalpy of the exhaust gases as they drop in temperature by ΔTRef, and is calculated using equation (7). 300 

The specific heat capacity of the exhaust stream, cexh, was calculated for the mixture of nitrogen, CO2 301 

and steam (post-TWC composition) at the average of the pre- and post-reformer exhaust stream 302 

temperature. 303 

Exhaust heat recovery, �̇� = �̇� =  �̇�𝑒𝑥ℎ ⋅ 𝑐�̅�,𝑒𝑥ℎ ⋅ Δ𝑇𝑅𝑒𝑓 (kW) (7) 

The rate of exhaust stream heat recovery achieved by fuel reforming at each engine condition is plotted 304 

in Figure 8. The highest rate of heat recovery was achieved at the 105Nm engine condition when the 305 

reformer temperature was highest. This engine condition uses intermediate REGR mass flow rates and 306 

so the reformer’s ability to recover exhaust energy is not compromised by high GHSV. At the 50Nm 307 

engine condition, increasing the REGR flow to the highest rate reduces heat recovery due to the 308 

combined effects of increased GHSV and lower exhaust stream temperature (increased charge dilution 309 

causes lower combustion and exhaust temperatures). In general, increasing the reformer fuel flow 310 

increases the amount of exhaust heat recovery.  311 

 312 
Figure 8 - Rate of exhaust stream heat recovery with fuel reforming 313 

While considering the heat recovery in absolute terms is interesting, it is also important to put these 314 

values into perspective; Figure 9 presents the heat recovery as a fraction of the total fuel energy, 315 

engine effective work and pre-reformer exhaust stream energy. When working close to optimally at the 316 

50Nm and 105Nm conditions, the reformer is able to extract energy from the exhaust stream to 317 

recover around 1% of the total fuel energy supplied to the engine and reformer, which equates to 318 

between 3-4% of the effective engine work.  319 
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 320 
Figure 9 - Exhaust stream heat recovery as a fraction of total fuel energy, engine effective work and pre-321 

reformer exhaust energy 322 

Second law analysis - Exhaust stream exergy: According to the second law of thermodynamics, exergy 323 

represents the maximum amount of energy that can be extracted by bringing a system at temperature 324 

T to the ambient temperature T0. The exergy of a fluid stream can be evaluated using equation (8) 16. 325 

This considers the exergy of the enthalpy, kinetic energy and potential energy of the fluid stream. This 326 

analysis was applied to the exhaust stream, which contains multiple gas species, using equation (9) to 327 

calculate the ‘energy availability’ of the pre- and post-reformer exhaust gas, where �̇�𝑒𝑥ℎ is the molar 328 

flow of the exhaust stream (kmol/s) and ni is the molar fraction of gas species i. In this case, T0 was 329 

taken as 298K.  330 

𝜓 = (ℎ − ℎ0) − 𝑇0(𝑠 − 𝑠0) +
𝑉2

2
+ 𝑔𝑧    (8) 

𝜓𝑒𝑥ℎ = ∑ �̇�𝑒𝑥ℎ ⋅ 𝑛𝑖 ⋅ [(ℎ𝑖 − ℎ𝑖,0) − 𝑇0(𝑠𝑖 − 𝑠𝑖,0)]   (kW) (9) 

There were various assumptions made during the calculation of exhaust exergy. These included: the 331 

exhaust stream is a mixture of ideal gases; specific heat values are taken at the average process 332 

temperature, and were calculated using 3rd order polynomial relationships from 16; the TWC catalyst 333 

converts the exhaust stream to a mixture of inert gases (nitrogen, carbon dioxide and steam) with 100% 334 

efficiency and therefore the exhaust contains no species with chemical potential energy; the exergy of 335 

the kinetic and gravitational potential energy components of the exhaust stream are negligible. 336 

As the reformer is designed to recover energy from the exhaust stream, there should be a reduction in 337 

exergy, or available energy, across the reformer. A more efficient overall engine-reformer system 338 

should also result in a reduction of the exhaust stream exergy (for a given load) at the reformer inlet. 339 

This accounts for the influence of REGR on the engine and combustion efficiency, which directly 340 

influences the exhaust exergy. 341 

Figure 1Figure 10 plots the pre- and post-reformer exhaust stream exergy, as a percentage of the 342 

engine brake power, for each test condition at each engine load. These plots show the general trend for 343 

reducing exhaust stream exergy with increasing dilution rate and reformed fuel fraction. In each case 344 

the baseline condition exhaust exergy is highest; both EGR and REGR reduce the exhaust exergy. The 345 
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50Nm engine condition represents the highest ‘relative’ exergy with 60% of the brake power available 346 

for recovery; the highest absolute exergy was at the 105Nm condition. 347 

 348 

 349 

 350 
Figure 10 - Comparing pre- and post-reformer exhaust stream exergy for a variety of engine conditions 351 

(a) 35Nm, (b) 50Nm and (c) 105Nm 352 

4. Conclusions 353 

A full-scale prototype exhaust gas fuel reformer has been coupled with a multi-cylinder GDI engine, and 354 

demonstrates that gasoline reforming is feasible as a thermochemical energy recovery technique at 355 

typical GDI engine exhaust temperature.  356 
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At higher exhaust temperatures, the reformer is capable of converting gasoline to hydrogen-rich gas in 357 

an overall endothermic process while recovering some exhaust energy. Performance is borderline 358 

effective at lower exhaust temperature (for engine conditions representing low vehicle speed); this 359 

means that some reforming is possible which produces hydrogen that is beneficial to engine operation, 360 

but a small amount of fuel energy is lost in the reforming process. The technology has further heat 361 

recovery potential as there is still a significant exergy associated with the exhaust stream. Speciation of 362 

reformate produced by the reformer at a range of engine conditions indicates a large variation in 363 

reformate quality, with a strong dependence on process temperature and reactant composition.  364 

The outlook for fuel reforming may be improved should the trend for engine downsizing continue. By 365 

placing a higher demand on the engine by downsizing, there is a shift to higher engine IMEPs for a given 366 

road load and the mean exhaust temperature will be increased as a result. It can be concluded from this 367 

study is that sustained (medium) engine loads, as used for motorway/highway driving, generate 368 

conditions that favour fuel reforming; ultimately this means that exhaust energy recovery can be 369 

achieved. The bias of many drive cycles to low engine speed/load conditions, and a high proportion of 370 

warm-up time, mean that the fuel reformer is not likely show its full potential ‘on cycle’ but should 371 

offer greater benefits for higher load and sustained driving conditions. 372 
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