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Abstract— The Spanish Inquisition Protocol (SIP) re-
duces Wireless Sensor Network (WSN) energy cost by
transmitting only unexpected information and is so-named
because “nobody expects the Spanish Inquisition!” SIP
extends prior Dual Prediction Scheme (DPS) algorithms
that model phenomena at both node and sink. SIP’s key
advancement is that it transmits a state vector estimate
rather than individual readings. SIP can be tuned accord-
ing to the desired estimate accuracy, with lower desired
accuracy typically leading to fewer transmitted packets. In
simulation with real data, less than 5% of the samples
needed to be transmitted to provide the sink with an
accurate estimate of the sensor value (within 0.5 °C, in the
case of temperature). SIP also significantly outperforms
prior DPS results when using the same data sets. In
deployment on Telos motes, SIP shows similar performance
to the simulations.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are deployed to

monitor, observe, and potentially improve understanding

of environments and phenomena. Domain scientists and

industrial technicians need robust and reliable raw data to

allow them to find patterns and confirm hypotheses about

how the monitored phenomena evolves over time. When

monitoring is being used to ensure that the condition

of a system remains within certain bounds, then the

timeliness of the information is also important so that

corrective action can be taken quickly. The critical factor

in the design of WSN systems is often the energy cost of

communicating the data [1]. Although other components,

such as sensing and processing, play a part in the energy

budget, these are typically much less than the cost of

communication. For example, a comparison of power

requirements for a range of WSN motes and components

by Polastre [2] shows that, for the commonly used Telos

platform, the power required to operate the radio is

approximately ten times greater than that required to

operate the CPU. Therefore, reducing the energy cost

associated with communication will substantially reduce

the overall energy usage, lengthen the time that a system

can be left unattended (without battery changes, for

example), and thus enable many WSN applications that

would otherwise be infeasible.

Periodic sensing, the most common WSN functional

mode, tends to produce much data but little information.

This suggests that data encoding or compressing at the

source might help to reduce the energy cost of transmis-

sion. However, compression on a packet-by-packet basis

is not applicable since, by and large, packets tend to

be quite small and thus compressing individual packets

would yield only a small (if any) saving. Furthermore,

aggregation of several packets into one may help but

at the cost of reducing the timeliness of data. Again

the energy saving will be minor. Finally, reducing the

sensing frequency may stretch the energy budget at the

cost of potentially missing important phenomenological

events.

The approach described in this paper is based around

encoding the data using a simple, approximate model

of the phenomena. This model is shared by both node

(transmitter) and sink (receiver) while the parameters for

the model (or state vector) are only transmitted from

node to sink when needed. Specifically, the node assumes

that the sink can apply the model and predict the current

state. By keeping track of what the sink knows, the node

can identify when the error in the sink’s prediction will

exceed some predefined threshold ε, triggering an update

message to be sent to the sink.

The paper is organized as follows. The following

section reviews some prior approaches in this area.

Section III describes the Spanish Inquisition Protocol

(SIP) in detail. Experimental results for SIP are given

in Section IV followed by conclusions and future work

(Sections V and VI).



TABLE I

SUMMARY OF PRIOR WORK

Approach Dataset Error threshold % Data Transmitted

PMC [3] Sea Surface Temperature [4] 1% Range of Data (ε=0.06) 50 %
PMC [3] Salinity [4] 1% Range of Data (ε=0.0187) 45 %
PMC [3] Shortwave Radiation [4] 1% Range of Data (ε=13.513) 45 %
DPS [5] Intel Node 13 [6] ε=0.5 °C 10%
DKF [7] Electric Power Load [8] ε=150 MW 45%
DKF [7] Network Monitoring Dataset [9] ε=5 pkts 5%

II. RELATED WORK

Several methods have been proposed for reducing the

amount of data transmitted in a WSN at the cost of

losing some measurement accuracy. One such method is

event-based transmission where messages are transmitted

only when a predefined event is detected by a node.

This approach is well suited to applications where events

are both sparse and easily detectable (such as sniper

localization [10] and intrusion detection [11]). The diffi-

culty with event-triggered delivery is in specifying event

thresholds. Since a system’s state tends to evolve over

time (e.g., due to seasonal variations), predefined triggers

may lose relevance to real events in the underlying

phenomena, thus making the approach less useful.

Olston et al. [12] performed a study into reducing the

amount of data transmitted in stream-based monitoring

systems, examining the trade off between precision and

performance when using approximations of the original

data stream. The method that they propose is an event-

based transmission scheme that dynamically adjusts the

event trigger according to desired accuracy requirements

and changes in the measurand over time. SQL-like

queries are registered with a central stream processor

located at the sink, along with the maximum error

permissible for that query. Based on the set of registered

queries, the stream processor adjusts the allowable error

associated with each sensor, with the aim of optimis-

ing the communication for the entire network while

maintaining bounded accuracy. The node only sends an

update to the sink when the sensor value leaves the error

bounds, which are based on the allowable error and the

last transmitted value.

Lazaridis and Mehrotra [3] define Poor Man’s

Compression (PMC), which is a bounded transmission

suppression scheme and which uses a form of Run

Length Encoding (RLE) to reduce the amount of data

transmitted. PMC divides the time-series into series of

segments such that the range of values within a segment

does not exceed some threshold. Instead of transmitting

the whole segment, the count of values and midpoint

are transmitted. While this approach offers an attractive

level of compression, the reported values suffer from

quantisation, so much of the short term detail within the

data is lost. Lazaridis and Mehrotra also define a method

for reconstruction of sensor readings from the segment

summaries. This allows factors such as network and

compression latency to be addressed since the current

reading at a given time can be estimated, rather than

waiting for an update from the sensor.

Jain et al. [13], [7] introduce the Dual Kalman Filter

(DKF) approach as a general solution to reducing the

amount of data transmitted. The node uses a separate

Kalman Filter (KF) per sensor to perform prediction

of sensor readings. If the value predicted by the KF

differs from the actual sensor reading by more than the

user specified error threshold, the information required

to update the KF is transmitted to the sink. The sink

maintains a KF for each sensor and is able to use a

similar process to replicate the data predicted by the

node. This method requires detailed prior knowledge of

the system under consideration in order to estimate the

KF parameters correctly.

Santini and Römer [5] propose a transmission-based

approach that uses the Least Mean Squares Adaptive

Filter (LMS) [14] for filtering and prediction of sensor

values. As with DKF, the LMS filter is used at both node

and sink. In comparison with DKF, LMS is model-free.

Nevertheless, LMS is sensitive to the step-size parameter

µ and a poor initial choice can lead to the filter either

not converging or becoming unstable. To address this

Santini and Römer give a scheme to calculate µ during

an initialisation stage. The difficulty with this approach

is that the filter typically takes some time to converge.

Thus during the initial stages, all samples must be

transmitted. Normalised Least Mean Squares Adaptive

Filters (NLMSs) are a variant of LMS that avoid the

problem of instability depending on µ by normalising

depending on the input.

An overall summary of past results of comparable

work is given in Table I, where the error threshold is

denoted ε.



III. THE SPANISH INQUISITION PROTOCOL

The SIP uses a simple, approximate model of the

phenomena that is shared between node and sink. A

state vector forms the parameter for this model, allowing

a forward prediction of the state of the phenomena to

be made. Rather than report the last received sensor

reading, the sink predicts the state of the phenomena

based on the last received state vector. Using knowledge

of the last state vector transmitted to the sink, the node

can identify when the error in such a prediction will

exceed some threshold ε. Different applications will

have different requirements for the error threshold. For

example, household temperature monitoring might only

need ε = 0.5 °C.

The SIP approach is model agnostic. A simple model

that works well in many cases, however, is piece-wise

linear approximation of the measurand. In this case, the

state vector xt = (xt, ∆xt)
T

consists of a measurand

estimate xt and an estimate of the rate of change ∆xt.

The overall approach assumes that a guaranteed de-

livery scheme is used at lower protocol layers.

SIP does not require that clocks are synchronized

between node and sink. However, a local clock at the

node is generally required by the predictive model.

Figure 1 shows the algorithm for node and sink. The

node, which is typically a remote, battery powered mote,

begins each sensing cycle by querying its sensor. Next, a

new state estimate is obtained by combining the sensor

reading with the last state estimate xold and its associated

time told. Typically a simple filter is used to update the

state estimate. Filters will be discussed further below.

A prediction is then made of the state that would be

estimated by the sink based on the last transmitted state

xsink and the time that it corresponds to tsink. If the

difference exceeds some threshold ε, then the new state

estimate is transmitted to the sink. Note that the threshold

is, in the generic case, a vector but treated as a scalar

here as typically only one component of the state vector

needs to be tested.

When the sink receives a new state estimate x, it only

needs to store it in a database of past state vectors xsink(t)
along with its associated timestamp t. When a high-

level application queries the sink, if the current state

is being requested, then the sink needs to predict the

state estimate based on the last received vector. In the

case where the sink is queried for past readings, it must

interpolate from temporally neighbouring state estimates.

A. State Estimation and Filtering

As described previously, a basic predictive model that

can be used with SIP is piece-wise linear. This requires

an estimate of the gradient (or rate of change) as well as

an estimate of the point in time value of the measurand.

For some sensing problems it is not possible to make

even this assumption and instead one must assume that

the state is piece-wise constant in time.

To improve the estimate of the gradient, some form

of filtering is generally needed. Selection of a filter

depends partly on the model used and partly on the

requirements of the application. Basic filtering can be

performed using an Exponentially Weighted Moving

Average (EWMA) filter. This recursive filter returns

an estimate of the measurand that combines the current

reading with past readings. Apart from removing some

of the noise in the signal, the filter also smooths over

quantisation introduced by Analogue Digital Converter

(ADC). LMS or NLMS is a more sophisticated filter

that has been tried by some authors, as previously dis-

cussed. KF or Extended Kalman Filter (EKF) are more

sophisticated approaches that use linear or non-linear,

respectively, models of the state of the environment.

However, these are more computationally costly and may

be more difficult to tune without prior knowledge of the

phenomena.

IV. RESULTS

Key metrics for evaluating the performance of SIP al-

gorithm are % data transmitted and Root Mean Squared

Error (RMSE) in the reconstructed signal. In principle,

reducing the % data transmitted will produce a corre-

sponding reduction in energy use. Many authors ignore

the question of the RMSE of the reconstructed signal.

Nonetheless, RMSE is important as it is an indicator of

the quality of the reconstructed signal at the sink and

thus the lossiness of the protocol.

A summary of results for SIP is given in Table II.

The table shows results for 6 data sets, the last being

results from a deployed rather than simulated use of the

protocol. These results consistently improve over past

results shown in Table I. In particular, the performance

for Intel temperature data shows an improvement by a

factor of 10. Also, the performance for the Network

Monitoring Dataset again demonstrates improvement

over prior work. The SIP algorithm is scale invariant

and so if the scale of the range is increased along with

the error threshold, performance will be maintained. The

rate of fluctuation of the data also plays a part in the

performance of the algorithm but whether this has a

dramatic effect depends on the filter and its parameters.

As shown in Figure 2(a), the amount of data transmit-

ted decreases exponentially as the allowable error ε in-

creases. The data set used here is the HomeREACT [15]

temperature data but these results are typical. Figure 2(b)



Node:

s← query sensor()
x
′ ← estimate new state (s,xold, told)

xsink ← predict sink state (xsink, tsink)

if |x′ − xsink| > ε :
transmit (x′)
xsink ← x

′

tsink ← t

xold ← x
′

told ← t

Sink:

[On receipt of new state estimate(x)]
xsink(t)← x; tlast ← t

[Estimate value for time(t)]
if t ≥ tlast

predict from xsink(tlast)
else

interpolate from neighbouring xsink

Fig. 1. Pseudocode for node and sink for the Spanish Inquisition Protocol

TABLE II

SUMMARY OF SIP PERFORMANCE FOR VARIOUS DATA SETS

Data-set Error Threshold (ε) Filter RMSE Transmitted (%)

HomeREACT Temperature [15] 0.5 °C EWMA 0.24 °C 4.1
(sensor 1) 0.5 °C NLMS 0.75 °C 4.0

0.5 °C KF 0.25 °C 3.9

HomeREACT Humidity [15] 0.5 %RH EWMA 0.46 %RH 13.3
0.5 %RH NLMS 2.22 %RH 12.7
0.5 %RH KF 0.58 %RH 11.3

HomeREACT Light [15] 5 lux Pass through 2.2 lux 4.4
9 lux Pass through 2.5 lux 2.4
5 lux EWMA 2.7 lux 1.4
9 lux EWMA 5.8 lux 0.37

Intel (Node 13) [6] 0.5 °C EWMA 0.24 °C 1.0
0.5 °C NLMS 0.41 °C 1.1
0.5 °C KF 0.26 °C 1.4
0.05 °C EWMA 0.06 °C 5.3

Network Monitoring Dataset [9] 5 pkts EWMA 2.33 pkts 0.64

Telos Deployment 0.5 °C EWMA 0.22 °C 1.7
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Fig. 2. SIP performance on temperature sensor 1 (HomeREACT data set)



shows that there is a linear relationship between the

RMSE of the predicted data and the error threshold.

While the choice of filter has a minor effect on the

amount of data transmitted, there is a more significant

effect on the RMSE of the predicted data stream. In

particular, LMS and NLMS produce a non-zero RMSE

when the error threshold is set to zero. This is due to their

initialisation phase. In general, the RMSE is roughly

half of the error threshold for the other filters. Overall,

EWMA usually outperforms the more specialised filters,

in terms of both the amount of data transmitted and the

RMSE of the reconstructed data stream.

V. CONCLUSIONS

SIP provides a mechanism for reducing the amount

of data transmitted by a WSN using a shared model

between node and sink and by only transmitting data

from node to sink when the node identifies that the error

at the sink would exceed some threshold.

SIP was evaluated over several data sets, featuring

different sensing modalities. Evaluation also took place

on mote hardware, with comparable reductions in the

amount of data transmitted to that experienced during

simulation.

SIP has been shown to outperform similar algorithms,

allowing greater reductions in the amount of data trans-

mitted while maintaining a similar level of accuracy. In

the case of the Intel Lab data set, the amount of data

requiring transmission was 10 times less than when using

a comparable algorithm.

Filtering of the raw sensor values is used within the

state estimation process to improve the estimation of the

rate of change. While filter selection is application de-

pendent, experimentation has shown that in many cases,

a simple EWMA filter provides comparable performance

(in terms of both transmission reduction and RMSE) to

more complex filter types. As the computational cost of

the EWMA is minimal, it would be a good choice when

processing and memory overheads need to be minimised.

VI. FUTURE WORK

This paper focused on the application of SIP over

individual sensor readings. However, it is possible to

extend the algorithm to support multiple sensors (and

sensor types) per node by increasing the number of

dimensions encoded in the state-vector. A preliminary

investigation has shown encouraging results, and further

work will include a through analysis of this mode of

operation.

It may be possible improve the accuracy of interpo-

lation when reconstructing past data, by using a more

sophisticated approach than piece-wise linear approxi-

mation. Future work will investigate using a spline-based

method. As well as allowing data to be reconstructed,

SIP offers the opportunity to reduce the amount of

persistent storage required or each time series, as only

the state vector rather than each predicted value needs

to be stored.

Further investigation into how data characteristics

affect the amount of data transmitted will aim to better

understand the relationship between those characteristics

and the data reduction provided by SIP.

Finally, it is planned to investigate the effective energy

savings for SIP when deployed on mote hardware with

a variety of sensor modalities.
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