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The self- and hetero-diffusion in GaAs is investigated in terms of the cBΩ thermodynamic model, which connects point 

defect parameters with the bulk elastic and expansion properties. Point defect thermodynamic properties such as, 

activation enthalpy, activation volume, activation Gibbs free energy, activation entropy and isobaric specific heat of 

activation are calculated as a function of temperature for Ga, H and various n- and p-type dopants (Si, Be, Cr, Fe and Zn) 

diffused in GaAs. The present calculations are in good agreement with the reported experimental results. The pressure 

dependence of Ga self-diffusion is also investigated and the diffusivities and activation volumes are predicted at different 

temperatures from ambient pressure up to 10 GPa, above which GaAs is transformed into the orthorhombic structure. The 

activation volumes of dopants are also estimated at high temperature (1124 K), as a function of pressure. 

 

1. Introduction 

The drive to replace silicon (Si) with alternative materials such 

as III-V semiconductors is mainly due to their advantageous 

material properties that can include high electron mobility and 

lattice matching with ternary (and/or quaternary) III-V 

compounds.1-5 III-V materials such as GaAs are technologically 

important for nanoelectronic devices, for lasers and radiation 

detectors and for high efficiency solar cells.3,6 The scientific 

interest for GaAs is still undiminished, both from a practical 

and from a theoretical point of view.7,8 

For the efficient miniaturization and optimization of 

electronic devices, it is necessary to understand defect 

processes formed during the growth processes.9 Previous 

studies provided fundamental insights into the diffusion and 

other defect processes of III-V semiconductors.10-25 Gallium 

diffusion dominates self-diffusion in GaAs.16 The diffusion of 

various n- and p-type dopants in GaAs has been extensively 

investigated in the past.13-25 Silicon is a commonly used n-type 

dopant,6 that although is amphoteric (it can occupy both the 

Ga and As sites) in As-rich grown GaAs Si is an n-type dopant 

occupying the Ga site. Regarding acceptor doping, Beryllium 

and Zinc are significant p-type dopants in GaAs with high 

diffusion coefficients.26 

Associating the defect Gibbs free energy gi (i = defect 

formation f, self-diffusion activation act, or migration m) with 

bulk properties in solids is an issue that has been considered 

for more than six decades.27-30  In the cBΩ model formulated 

by Varotsos et al. it was established that gi is proportional to 

the isothermal bulk modulus B and the mean volume per atom 

Ω.31,32  The efficacy of the cBΩ model has been demonstrated 

in numerous and diverse systems including defect processes in 

Si, Ge, ZnO, olivine, diamond, PbF2, UO2, LiH, and AgI.33-42 

In the present study we investigate the temperature and 

pressure dependence of self- and hetero-diffusion in GaAs in 

the frame of the cBΩ model. Based on elastic and expansion 

properties of GaAs, thermodynamic calculations of point 

defect parameters are carried out for the first time in a III-IV 

semiconducting system at high pressures, giving further 

insights to the diffusion mechanisms of various n- and p-type 

dopants. The structure of the present work is organized as 

follows. In section 2.1, we present briefly the cBΩ 

thermodynamic model providing all the necessary formulas for 

the estimation of the point defect thermodynamic properties 

as a function of temperature and/or pressure. In section 2.2 

the necessary calculations for the determination of the bulk 

modulus and the mean atomic volume of GaAs are given and 

can be employed for any kind of dopant (n- or p-type). 

Subsequently, the application of the model to different 

dopants is presented and our predictions are discussed in 

comparison with the reported experimental results. 

2. Methodology 

2.1 Point defect parameters in terms of the cBΩ model 

The self- or hetero-diffusion process of a single diffusion 

mechanism can be described by an Arrhenius equation of the 

diffusion coefficients D, according to the following relation 

 

𝑫 = 𝒇𝒈𝒂𝟎
𝟐𝝂𝒆−𝒈𝒂𝒄𝒕 𝒌𝑩𝑻⁄      (𝟏) 

where f is the correlation factor depending on the diffusion 

mechanism and the structure, g is a geometry factor, ao is the 

lattice constant, ν is the attempt frequency and kB is 

Boltzmann’s constant. 

In the frame of the cBΩ thermodynamic model,31,32 the 

defect Gibbs free energy of activation gact which is the sum of 

the formation (gf) and migration (gm) energy, is related to the 

bulk properties of the solid via 

 

𝑔𝑎𝑐𝑡 = 𝑐𝑎𝑐𝑡𝐵Ω     (2) 
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where B is the isothermal bulk modulus, Ω is the mean volume 

per atom and cact is a dimensionless factor that is considered 

to be independent of temperature and pressure under certain 

experimental conditions. 

Based on Eq. (2), the thermodynamic properties of the 

point defects i.e., activation volume 𝜐𝑎𝑐𝑡, activation entropy 

𝑠𝑎𝑐𝑡  and activation enthalpy ℎ𝑎𝑐𝑡of diffusion are expressed 

exclusively by the elastic and expansion properties of the bulk, 

at any temperature (or pressure), through the following 

relations 

 

𝜐𝑎𝑐𝑡 = − (
𝜕𝑔𝑎𝑐𝑡

𝜕𝑃
)

𝑇

= 𝑐𝑎𝑐𝑡𝛺 {
𝜕𝐵

𝜕𝑃
]

𝑇
− 1}     (3) 

𝑠𝑎𝑐𝑡 = − (
𝜕𝑔𝑎𝑐𝑡

𝜕𝑇
)

𝑃

= −𝑐𝑎𝑐𝑡𝛺 {
𝜕𝐵

𝜕𝛵
]

𝑃
+ 𝛽𝐵}     (4) 

ℎ𝑎𝑐𝑡 = 𝑔𝑎𝑐𝑡 + 𝑇𝑠𝑎𝑐𝑡 = 𝑐𝑎𝑐𝑡𝛺 {𝐵 − 𝑇𝛽𝐵 − 𝑇
𝜕𝐵

𝜕𝛵
]

𝑃
}     (5) 

where 𝛽 is the coefficient of volume thermal expansion which 

is temperature and pressure dependent. In addition, the 

isobaric specific heat of activation 𝑐𝑃
𝑎𝑐𝑡  can be also derived 

from Eq. (5), according to 

 

𝑐𝑃
𝑎𝑐𝑡 = − (

𝜕ℎ𝑎𝑐𝑡

𝜕𝑇
)

𝑃

= 

= −𝑐𝑎𝑐𝑡𝛺𝛵 {𝛽2𝛣 + 2𝛽
𝜕𝛣

𝜕𝛵
]

𝑃
+ 𝐵

𝜕𝛽

𝜕𝛵
]

𝑃
+

𝜕2𝛣

𝜕𝛵2]
𝑃

}     (6) 

In order to estimate the aforementioned point defect 

parameters using the cBΩ model (Eqs. (2)-(6)), the constant 

𝑐𝑎𝑐𝑡  should be determined. The latter may be derived from Eq. 

(2) where at T=0K the activation Gibbs energy becomes equal 

to the activation enthalpy and thus, 𝑐𝑎𝑐𝑡 = ℎ𝑜
𝑎𝑐𝑡/𝐵𝑜𝛺𝜊 . 

Although the activation enthalpy at zero temperature may be 

calculated from first principles, the parameter 𝑐𝑎𝑐𝑡  may also 

be determined from the available experimental diffusion 

data.32 When only a single diffusion measurement D1 at a 

given temperature T1 (or pressure) is available, the parameter 

𝑐𝑎𝑐𝑡  can be calculated from Eq. (1), if the pre-exponential 

factor 𝑓𝑔𝑎0𝜈 is roughly known or can be calculated.  Then, the 

diffusivity D can be calculated at any temperature (or 

pressure), provided that the elastic and expansion data are 

known for this temperature (or pressure). Alternatively, in the 

case where diffusion coefficients are experimentally known 

over a broad temperature (or pressure) range,40,41 the mean 

value of cact may be derived by substituting Eq. (3) in Eq. (1) 

and taking the natural logarithm of both sides 

 

𝑙𝑛𝐷 = 𝑙𝑛(𝑓𝑔a0
2𝜈) − 𝑐𝑎𝑐𝑡

𝐵𝛺

𝑘𝐵𝑇
    (7) 

According to Eq. (7), a linear dependence of lnD versus the 

quantity BΩ/kBT indicates the validity of the cBΩ model 

regarding a single diffusion mechanism, while cact arises 

directly from the slope of the line. 

The previous considerations for the determination of the 

parameter cact are subjected to the experimental uncertainties 

of the diffusion experimental data which in many cases might 

be considerable. However, by dividing Eq. (4) with Eq. (5) it 

arises that the ratio 𝑠𝑎𝑐𝑡/ℎ𝑎𝑐𝑡  depends only on the bulk 

properties of the crystal, according to the following relation42 

 

𝑠𝑎𝑐𝑡

ℎ𝑎𝑐𝑡
= −

𝜕𝐵
𝜕𝛵

]
𝑃

+ 𝛽𝐵

𝐵 − 𝑇𝛽𝐵 − 𝑇
𝜕𝐵
𝜕𝛵

]
𝑃

     (8) 

The quantities ℎ𝑎𝑐𝑡  and 𝑠𝑎𝑐𝑡  can be usually determined 

experimentally from the slope and the intercept (i.e. the pre-

exponential factor) of the corresponding Arrhenius plot of 

diffusion coefficients (see Eq. 1) and thus Eq. (8) may also 

serve to validate the cBΩ model.42 

The aforementioned procedure may be used to calculate the 

temperature and/or pressure dependence of the thermodynamic 

properties of point defects, provided that the corresponding 

quantities (𝛽, B, Ω) are known as a function of temperature 

and/or pressure. The pressure dependence of the diffusion 

coefficients may give us information about the diffusion 

mechanism in the host material, through the estimation of the 

activation volume. Indeed, if we differentiate Eq. (1) with respect 

to pressure, the following expression is derived for the activation 

volume32 

 

𝜐𝑎𝑐𝑡(𝑃, 𝑇) = −𝑘𝐵𝑇 (
𝜕𝑙𝑛𝐷

𝜕𝑃
)

𝑇
+ 𝑘𝐵𝑇 (

𝜕𝑙𝑛 (𝑓𝑔a0
2𝜈)

𝜕𝑃
)

𝑇

     (9) 

In Eq. (9), the derivative of the second term in the right is equal 

to 𝜅(𝛾 − 2/3) where γ is the Grüneisen constant. Recalling that 

the compressibility of the activation volume is defined as 𝜅𝑎𝑐𝑡 =

(−1/𝜐𝑎𝑐𝑡)(𝜕𝜐𝑎𝑐𝑡/𝜕𝑃)𝑇, the activation volume which is 

temperature and pressure dependent, is then expressed as 

 

𝜐𝑎𝑐𝑡(𝑃, 𝑇) = 𝜐𝑎𝑐𝑡(0, 𝑇)𝑒𝑥𝑝 (− ∫ 𝜅𝑎𝑐𝑡𝑑𝑃

𝑃

0

)     (10) 

If we assume to a first approximation that 𝜅𝑎𝑐𝑡  is independent 

of pressure and that 𝜅𝛾 ≈ 𝜅𝜊𝛾𝜊 (the zero subscript refers to 

P=0), we may express the exponential of Eq. (10) in a series 

expansion of pressure, and by subsequent substitution in Eq. 

(9), we finally get 

 



𝑙𝑛𝐷(𝑃, 𝑇) = 𝑙𝑛𝐷(0, 𝑇) − {
𝜐𝑎𝑐𝑡(0,𝑇)

𝑘𝐵𝑇
− 𝜅𝜊 (𝛾𝜊 −

2

3
)} 𝑃 + 

+ {
𝜅𝑎𝑐𝑡𝜐𝑎𝑐𝑡(0, 𝑇)

2𝑘𝐵𝑇
} 𝑃2 − {

(𝜅𝑎𝑐𝑡)2𝜐𝑎𝑐𝑡(0, 𝑇)

6𝑘𝐵𝑇
} 𝑃3     (11) 

Equation (11) describes the pressure dependence of the 

diffusion coefficients at a certain temperature, considering 

that the parameters 𝜅𝑜 , 𝛾𝜊, 𝜅𝑎𝑐𝑡  and 𝜐𝑎𝑐𝑡(0, 𝑇) are known at 

this temperature. 

 

2.2 Determination of the bulk properties 

Experimental data of the bulk modulus B and the mean 

atomic volume Ω are not always available as a function of 

temperature (and/or pressure), especially at high 

temperatures where the diffusion experiments are usually 

carried out. An extrapolation of the available data at high 

temperatures (or pressures) by assuming linear relations of B 

and Ω are not always sufficient, and may lead to 

misinterpretation or incorrect validation of the model. 

In the case of GaAs, the temperature dependence of the 

mean atomic volume at ambient pressure (𝛺(𝑃 = 0, 𝑇) =

𝛺𝑜(𝛵)) may be calculated from the following relation  

 

𝛺𝑜(𝛵) = 𝛺𝑜(𝛵𝑅)𝑒𝑥𝑝 ( ∫ 𝛽(𝛵)𝑑𝑇

𝑇

𝑇𝑅

)    (12) 

where ΤR refers to room temperature,  𝛺𝑜(𝛵𝑅) =

22.59x10−29 m3 is the mean volume per atom at ambient 

pressure43 and 𝛽 is the coefficient of volume thermal 

expansion. According to reported experimental results44 of the 

linear thermal expansion coefficient 𝑎𝑙  (see Fig. 1(a)), a linear 

relation holds for temperatures T>Tθ (Tθ = 360 K, is the Debye 

temperature of GaAs), with intercept a𝑜 = 5.67x10−6 𝐶𝑜 −1 

and slope, a1 = 0.0015x10−6 𝐶𝑜 −2. For the isotropic GaAs, 

𝛽 = 3𝛼𝑙, and thus Eq. (12) leads to the following result 

 

𝛺𝜊(𝛵) = 𝛺𝜊(𝛵𝜊)𝑒𝑥𝑝 {3a𝑜(𝑇 − 𝑇𝑜) +
3

2
a1(𝑇2 − 𝑇𝑜

2)}     (13) 

The calculated temperature dependence of the mean atomic 

volume, according to Eq. (13), is depicted in Fig. 1(b). Although a 

linear relation of  𝛺𝜊(𝛵) is usually used in GaAs,44 a small 

deviation from linearity is observed, especially at the 

temperature range of the reported diffusion data in GaAs  

(T > 500 K). 

The Rose-Vinet universal equation of state (EoS)45 is used to 

derive the temperature dependences of the bulk modulus B(T) 

and its pressure derivative (𝜕𝐵/𝜕𝑃)𝑇, according to the following 

expressions: 

 
𝐵(𝑇, 𝑋) = 

=
𝐵𝑜(𝑇𝑟)

𝑋2
{2 + [𝜂𝜊(𝛵𝑟) − 1]𝛸 − 𝜂𝜊(𝛵𝑟)𝛸2}𝑒[𝜂𝜊(𝑇𝑟)(1−𝑋)]      (14) 

and 

 

[
𝜕𝛣

𝜕𝑃
] (𝑇, 𝑋) =

=
4 + [3𝜂𝜊(𝛵𝑟) − 1]𝑋 + 𝜂𝜊(𝛵𝑟)[𝜂𝜊(𝛵𝑟) − 1]𝑋2 − 𝜂𝜊

2(𝛵𝑟)𝑋3

3{2 + [𝜂𝜊(𝛵𝑟) − 1)𝑋 − 𝜂𝜊(𝛵𝑟)𝑋2}
     (15) 

where Bo refers to zero (ambient) pressure, Tr is a reference 

temperature and the parameters X, ηο(Τ) are defined as 

follows 

 

𝑋 = [
𝛺𝑜(𝑇)

𝛺𝜊(𝑇𝑟)
]

1/3

     (16) 

 and 

𝜂𝜊(𝛵) =
3

2
[[

𝜕𝛣

𝜕𝑃
]

𝑃=0

(𝑇) − 1]     (17) 

In the case of GaAs, the bulk modulus Bo and its pressure 

derivative at room temperature are 𝐵𝑜(300𝐾) = (75.0 ±

0.5)𝐺𝑃𝑎 and (𝜕𝐵 𝜕𝑃⁄ )𝑃=0(300𝐾) =  4.5 ± 0.5, respectively.44 

The temperature dependence of the calculated B(T) is shown 

in Fig. 1(c). The above EoS should give more accurate results 

but it is not deviate considerably from the simplified linear 

approach of bulk modulus that is usually considered in the 

case of the GaAs semiconductor,44 as it is seen in Fig. 1(c). 

 

Fig. 1 (a) Experimental data of the linear thermal expansion coefficient (TEC) of 

GaAs and the linear fitting at T>350K. (b) The calculated mean atomic volume in 

the temperature range 350K – 1500K, according to the linear fitting of the TEC. (c) 

The calculated temperature dependence of the isothermal bulk modulus, 

according to the Rose-Vinet EoS. Linear approaches of Ω(Τ) and B(T) are also 

included for comparison. 

 



3. Results and discussion 

In the following, we investigate the self-diffusion of Ga and the 

diffusion of H, n-type (Si) and p-type (Be, Fe, Cr, Zn) dopants in 

GaAs, in the frame of the cBΩ thermodynamic model. The 

reported experimental diffusion coefficients of the 

aforementioned elements in GaAs as a function of the quantity 

ΒΩ/kBT are shown in Fig. 2.13,16,20-22,24,25 The linear correlations 

between lnD and ΒΩ/kBT (correlation factors, R>0.99) suggest 

the validity of the cBΩ model and thus enable the estimation 

of the parameter cact in each case, according to Eq. (7). The 

calculated values of cact for each element are listed in Table 1. 
The various point defect parameters (activation volume, 

activation entropy, activation enthalpy, activation Gibbs free 
energy and activation isobaric specific heat) were calculated 
for all the aforementioned diffusants, according to Eq. (2) – (6) 
and the results are shown in Fig. 3, as a function of 
temperature. The ranges of these values along with their 
calculated uncertainties are summarized in Table 1. The 
corresponding reported experimental values of activation 
enthalpy, ℎ𝑒𝑥𝑝

𝑎𝑐𝑡  and activation entropy, 𝑠𝑒𝑥𝑝
𝑎𝑐𝑡  are also included in 

Table 1 for comparison. The values of the experimental 
activation entropy were indirectly extracted from the 
experimentally determined pre-exponential factor Do (except 
for the reported value of Ga), through the relation 

 

𝑠𝑒𝑥𝑝
𝑎𝑐𝑡 = 𝑘𝐵𝑙𝑛 (

𝐷𝑜

𝑔𝑓𝛼2𝜈
)     (18) 

where in the case of GaAs we have used the reported values: 

𝑔 = 1, 𝑓 = 1/2, 𝛼 = 5.653 Å and 𝜈 = 7.17x1012 Hz.16,22,43 
 As it is depicted in Fig. 3, the estimated values of 
activation Gibbs free energy slightly decrease with temperature 
while the corresponding term 𝑇𝑠𝑎𝑐𝑡  increases, resulting to 
constant values of activation enthalpy (ℎ𝑎𝑐𝑡 = 𝑔𝑎𝑐𝑡 + 𝑇𝑠𝑎𝑐𝑡). 
These values of activation enthalpy, calculated in the frame of 
the cBΩ model, are in very good agreement with the reported 
experimental activation energies, if the uncertainties are taking 
into consideration (see Table 1).13,16,20-22,24,25 Our estimations of 
activation entropy deviate considerably from the corresponding 
reported values of most elements, except for the case of H, 
where accurate results are obtained. Notably, as indicated in 

Table 1, the reported values of activation entropy that were 

derived indirectly from Eq. (18), are either large (Fe, Cr) or have 
negative signs (Si, Be). However, the negative values of entropy 
suggest a process of concentration due to the action of additional 
forces opposing to diffusion process while, the large values (> 10 
kB) are not compatible with reported moderate values of 
activation enthalpies.22 At this point, we have to note that the 
values of activation entropy are subjected to large uncertainties 
due to the experimental errors of the determination of activation 
enthalpy in diffusion measurements. Furthermore, this 
discrepancy is also due to the approach of the attempt frequency 
with the Debye frequency as well as the approximated values of 
the parameters f and g that were used in Eq. (18). Alternatively, 
we propose that reliable values of activation entropy may be 
derived according to Eq. (8), where the reported experimental 
values of activation enthalpy ℎ𝑒𝑥𝑝

𝑎𝑐𝑡  should be used. In this case, 

the 2nd term of Eq. (8) which depends only in the bulk properties 
of GaAs, increases smoothly from 5.79 to 7.15x10-5 K-1 in the 
temperature range 350 K – 1500 K. 

 Finally, our calculated activation volumes range from 

0.26 Ωο in the case of the smallest diffusant atom (hydrogen) to 

1.45 Ωο for Ga self-diffusion, but practically all values are not 

affected by temperature, over the entire temperature range of 

the reported diffusion experiments. 

 

 

Fig. 2 Experimental diffusion coefficients of self- and dopant-diffusion in GaAs as a 

function of the quantity BΩ/kBT. The linear fittings correspond to the 

implementation of the cBΩ model, according to Eq. (7). 

 

 

 

Fig. 3 Calculated point defect thermodynamic parameters of self- and dopant 

diffusion in GaAs as a function of temperature, according to the cBΩ model (Eqs. 

(2)-6). (a) Activation volume, 𝜐𝑎𝑐𝑡  (b) activation entropy, 𝑠𝑎𝑐𝑡 (c) activation 

specific heat, 𝑐𝑃
𝑎𝑐𝑡 (d) activation enthalpy, ℎ𝑎𝑐𝑡 (e) the term 𝑇𝑠𝑎𝑐𝑡, ( ℎ𝑎𝑐𝑡 =

𝑔𝑎𝑐𝑡 + 𝑇𝑠𝑎𝑐𝑡) and (e) the activation Gibbs free energy, 𝑔𝑎𝑐𝑡 . 

 

 



 To the best of our knowledge, self- or hetero-diffusion 

measurements in GaAs under pressure are not available in the 

literature. The pressure dependence of the diffusion coefficients 

for Ga self-diffusion was estimated according to Eq. (11), for 

pressures up to 10 GPa above which GaAs transforms from the 

zinc blende to the orthorhombic structure.8,46 The values of the 

self-diffusion coefficients D(0,T) at zero pressure that were used 

in Eq. (11), correspond to the reported experimental values of 

Fig. (3).16 Based on Eq. (3), the compressibility of the activation 

volume may be deduced from the following relation 

 

𝜅𝑎𝑐𝑡 = 𝜅𝑜 −
(𝜕2𝛣/𝜕𝑃2)𝑇

(𝜕𝛣/𝜕𝑃)𝑇 − 1
     (19) 

where 𝜅𝑜 = 1/𝐵𝑜 is the bulk modulus at zero pressure which is 

temperature dependent (see Fig. 1c). Considering that 

−𝐵(𝜕2𝛣/𝜕𝑃2)𝑇 ≈ (𝜕𝛣/𝜕𝑃)𝑇,47 the activation compressibility 

is finally simplified to 

 

𝜅𝑎𝑐𝑡 ≈ 𝜅𝑜 (1 +
(𝜕𝛣/𝜕𝑃)𝑇

(𝜕𝛣/𝜕𝑃)𝑇 − 1
)     (20) 

We have to note that, in the quasi-harmonic approximation, 

the quantity (𝜕𝛣/𝜕𝑃)𝑇 has a constant value and does not 

depend on pressure or temperature, while it varies only 

slightly upon compression in a real (anharmonic) solid.32 Thus, 

our previous assumption for pressure independent activation 

compressibility is a reasonable approximation in order to 

derive the analytical expression (see Eq. 11) for the calculation 

of diffusion coefficients as a function of pressure. The 

Grüneisen constant which is also temperature dependent, was 

estimated using the Dugdale-MacDonald equation,48 𝛾 =

[(𝜕𝛣 𝜕𝑃⁄ )𝑇 − 1]/2, which yields values from 1.80 to 1.84 in 

the temperature range (1068 K – 1503 K) of the reported Ga 

self-diffusion coefficients. 

By substituting all the above parameters in Eq. (11), the 

pressure dependence of Ga self-diffusion coefficients in GaAs 

at different temperatures was estimated and the results are 

depicted in Fig. 4a. Our estimations of activation volume (see 

Eq. 10) for Ga self-diffusion as a function of pressure are also 

shown in Fig. 4b. Our calculations are restricted to 1248 K, in 

order to avoid the change of GaAs to its liquid phase, in the 

high range of pressures.46 We observe that, in all cases, the 

influence of pressure on the activation volume 𝜐𝑎𝑐𝑡  is more 

pronounced than that of temperature, and all the values 

converge to around 1.0 Ωο at high pressures. The pressure 

dependence of activation volumes of n- and p-type dopants 

 

  

Fig. 4 Pressure dependence of Ga self-diffusion coefficients in GaAs, according to 

the cBΩ model in the temperature range, 1068K – 1248K. The corresponding 

variation of activation volumes is shown in (b). The pressure range is limited to 10 

GPa, above which GaAs is transformed into the orthorhombic structure. 

Table 1.  Calculated values with their uncertainties of the parameter cact, activation enthalpy (ℎ𝑐𝑎𝑙𝑐
𝑎𝑐𝑡 ), activation entropy (𝑠𝑐𝑎𝑙𝑐

𝑎𝑐𝑡 ), activation Gibbs free energy (gact), activation 

volume (υact) and activation isobaric specific heat 𝑐𝑝
𝑎𝑐𝑡, according to the cBΩ model for Ga self-diffusion and various dopants diffused in GaAs. The corresponding 

experimental values of activation enthalpy and activation entropy are also given for comparison. The experimental values of activation entropy (if not reported) were 

derived from the experimentally determined pre-exponential factor through 𝐷𝑜 = 𝑓𝑔𝑎2𝜈𝜊𝑒𝑥𝑝(𝑠/𝑘𝐵). 

Element 

[Ref.] 

Temperature 

(K) 
ℎ𝑒𝑥𝑝

𝑎𝑐𝑡  (eV) 
𝑠𝑒𝑥𝑝

𝑎𝑐𝑡    

(kB units) cact ℎ𝑐𝑎𝑙𝑐
𝑎𝑐𝑡  (eV) 

𝑠𝑐𝑎𝑙𝑐
𝑎𝑐𝑡   

(kB units) gact (eV) υact (x10-29 m3)  𝑐𝑝
𝑎𝑐𝑡 (eV/K) 

Ga16 1068 – 1503 4.24  0.06  6.7 – 8.0 0.384  0.010 
(4.16 – 4.19)  

 0.17 

(3.21 – 3.47) 

 0.14 

(3.86 – 3.74) 

 0.15 

(3.18 – 3.28)  

 0.13 

(5.48 – 7.44)  

 0.26 

H25 528 – 753  0.83 0.56 0.022  0.002 0.77  0.08 
(0.50 – 0.53) 

 0.05 

(0.74 – 0.75) 

 0.07 
0.58  0.06 

(0.53 – 0.74)  

 0.06 

Si13 863 – 1268  2.45 -3.4  0.210  0.009 
(2.27 – 2.28)  

 0.25 

(1.69 – 1.82) 

 0.19 

(2.08 – 2.14) 

 0.23 

(1.72 – 1.76)  

 0.19 

(2.46 – 3.50)  

 0.27 

Be20 873 – 1278  1.95 -6.4 0.181  0.012 
(1.96 – 1.97)  

 0.23 

(1.46 – 1.57) 

 0.18 

(1.79 – 1.85) 

 0.22 

(1.48 – 1.52)  

 0.18 

(2.14 – 3.04)  

 0.31 

Fe24 978 – 1178  2.7 11.4 0.238  0.021 
(2.57 – 2.58)  

 0.26 

(1.96 – 2.03) 

 0.20 

(2.37 – 2.41) 

 0.24 

(1.96 – 1.99)  

 0.20 

(3.13 – 3.71)  

 0.34 

Cr21 1063 – 1263 3.2  0.4 17.1 0.284  0.018 
(3.08 – 3.09)  

 0.22 

(2.40 – 2.49) 

 0.17 

(2.80 – 2.85) 

 0.20 

(2.36 – 2.39)  

 0.17 

(4.24 – 4.92)  

 0.32 

Zn22 948 - 1123 3.21 3.97 0.306  0.026 
(3.31 – 3.33)  

 0.30  

(2.57 – 2.68) 

 0.24 

(3.07 – 3.11) 

 0.28  

(2.51 – 2.54)  

 0.23 

(3.91 – 4.57)  

 0.29 

 

 



(Si, Be, Fe, Cr and Zn) diffused in GaAs at constant temperature 

(T=1124 K) is shown in Fig. 5. 

Generally, the value and the sign of activation volume can 

provide information about the kind of the diffusion mechanism 

i.e., vacancies (V) or self-interstitials (I), through the relation 

𝜐𝑉,𝐼
𝑎𝑐𝑡 = ±𝛺𝜊 + 𝜐𝑉,𝐼

𝑟 + 𝜐𝑉,𝐼
𝑚 . The positive sign of the mean atomic 

volume 𝛺𝑜 refers to vacancy and the minus to self-interstitial 

formation, while 𝜐𝑉,𝐼
𝑟  denotes the relaxation volume around a 

newly-created point defect (V or I) and 𝜐𝑉,𝐼
𝑚  is the 

corresponding migration volume. In the case of dopants 

diffused in interstitial sites, the activation volume equals to the 

migration volume of the interstitial diffusant, since no defect 

formation is required.49 In a first approach, the positive 

estimated value of activation volume in Ga self-diffusion could 

be an evidence for vacancy-mediated diffusion with an 

outward (positive) or inward (negative) relaxation around the 

vacancies. Since the relaxation and the migration volumes are 

usually assumed to be smaller than 𝛺𝜊 in magnitude, the sign 

of 𝛺𝜊 actually determines the dominant diffusion 

mechanism.50 Thus, in the case of Ga self-diffusion, an outward 

strong relaxation and/or a positive migration volume could 

result to an activation volume greater than 𝛺𝜊 and comparable 

with our estimation (≈ 1.4 𝛺𝜊). This value is consistent with 

vacancy self-diffusion by second-nearest-neighbor hopping, 

proposed by Wager22 who performed atomistic 

thermodynamic calculations in order to study the energetics of 

Ga self-diffusion in GaAs. 
 In order to correlate the size of each diffusant atom 
to the corresponding activation volume and possible diffusion 
mechanisms, we have plotted in Fig. 6 the activation volume 
(at zero pressure) as a function of the atomic volume of the 
diffused elements using their covalent radii. Typically, the 
activation volume increases with the increase of the atomic 
volume of the diffusants, with noticeable deviation from 
linearity in the cases of Ga and Fe. Small atoms such as H 
preferentially reside in interstitials sites resulting in small value 
of activation volume, consistently with the present calculation 
(𝜐𝐻

𝑎𝑐𝑡  ≈ 0.25 𝛺𝜊).  In the case of Si atom which is much larger 

than H, its value of activation volume (𝜐𝑆𝑖
𝑎𝑐𝑡  ≈ 0.77 𝛺𝜊) indicates 

either an interstitial mechanism of diffusion where no defect 

formation is needed (𝜐𝐼
𝑓

= 0) or a vacancy mechanism with a 
strong inward relaxation. Similar speculations could be made 

for the other elements diffused in GaAs, in order to explain (or 

predict) possible diffusion mechanisms. For example, in the 
cases of Zn and Be diffusion in GaAs, activation volume is 

higher in the case of the larger Zn atom (𝜐𝑍𝑛
𝑎𝑐𝑡 > 𝜐𝐵𝑒

𝑎𝑐𝑡) implying 
that diffusion in interstitial sites is more preferable than in 
vacancies where the contribution to the formation volume 
should be significant. This is consistent with the interstitial-
substitutional exchange mechanism (kick-out mechanism) 
which has been proposed by Yu et al. for Zn and Be diffusion in 
GaAs.26 

4. Conclusions 

The present work investigates the self- and dopants-diffusion 

in GaAs, in terms of the cΒΩ thermodynamic model which 

connects the point defect parameters with the bulk elastic and 

expansion properties of the host material. Initiating from 

available experimental data of thermal expansion and the 

usage of the Rose-Vinet equation of state for GaAs, useful 

point defect parameters such as activation enthalpy, activation 

entropy, activation volume and activation isobaric specific heat 

were calculated as a function of temperature.  Our results are 

in excellent agreement with the reported experimental 

activation enthalpies. Thus, we suggest that the activation 

entropies could be generally calculated from the 

experimentally determined activation enthalpies by using only 

the bulk properties of the material under investigation, in 

order to overcome the experimental uncertainties. The 

pressure dependence of Ga self-diffusion coefficients and 

activation volumes of Ga, H and other n- and p-type dopants 

were also estimated for the first time at elevated pressures 

and are discussed in the context of possible diffusion 

mechanisms reported in the literature. The potential of the 

model for the investigation of diffusion processes on a 

theoretical basis in previously studied unary semiconductors 

(Si and Ge) and binary semiconducting systems as in the 

present case may be also extended to other important III-IV 

semiconductors with limited diffusion experimental data and 

may suggest a possible universal application in different kind 

of solid compounds. 

 

Fig. 5 Pressure dependence of activation volumes of n-type (Si) and p-type (Be, Fe, 

Cr, Zn) dopants diffused in GaAs at constant temperature (1124 K). 

 

 

Fig. 6 Activation volume of each diffusing element with respect to the atomic 

volume calculated with the covalent radius of the elements. The (red) line 

represents the linear fit of the data. 
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