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Abstract— This paper describes a model for robot navigation 

that uses an architecture similar to an actor-critic reinforcement 

learning architecture. Contrary to the abundance of models that 

use two neural networks one for the actor and one for the critic, 

this model sets up the actor as a layer seconded by another layer 

which deduce the value function. Therefore, the effect is to have 

similar to a critic outcome combined with the actor in one 

network. Hence, the model paves the way for a deep 

reinforcement learning architecture for future work. The 

reward signal is back propagated through the critic then the 

actor. At the same time, the features layer have been deeply 

trained by applying a simple PCA on the whole set of images 

histograms acquired during the first running episode. The model 

is then able to shrink the whole architecture to fit a new reduced 

features dimension. Initial experimental result on real robot 

shows that the agent accomplished good level of accuracy and 

efficacy in reaching the goal. 

I. INTRODUCTION 

Robot homing is considered one of the important special 
cases of navigation. It pertains to all animals naturally and is 
a must for most of the commercial and entertaining robotics 
application. Central to this ability is the skill of orienting 
towards the home and recognizing it once the agent is around 
it. Animals do that by wiring the surrounding visual memory 
somehow to their neural map of the environment. How they 
do that is yet to be discovered. Traditionally it has been 
linked to distinctive position or places in the environment i.e. 
landmarks. However, the way animals do its navigation and 
find their home suggests something more subtle than only 
landmarks [1, 2, and 3]. In this paper it is argued that a 
plausible proposition is that the brain hard wire the scenes to 
itself and compare it with the look of the home. It forms a 
frame of reference which is used to compare all information 
passed through to obtain internal map of the home as 
opposed to the different paths to its home. It is argued that 
the animal cannot remember all paths to its home neither it 
can remember the links between the landmarks consciously. 
It simply react to what it sees once it set back home and it 
dose not normally plan it unless something novel happened.  
It uses this internal representation to guide itself along with 
other visual aids such as landmarks for the long distance. 
However for the short distance it uses this internal map 
solely. 
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II. REINFORCEMENT LEARNING 

A. Reinforcement learning framework 

Reinforcement Learning, or RL, is considered ideal for 
learning novel scenario where it is impractical to obtain a 
model of the environment [4]. This is the norms for animals 
once they face a new situation. In that moment the actual 
learning begins, and we are interested to know what could be 
going on at that moment. 

RL does not require planning, but planning-like behavior 
comes as a natural consequence of it [4]. Actor-critic 
architecture have been proposed and studied in plenty of 
scenarios [5, 6 and 7] that ranges from simulation to real 
problems and recently an interesting development has been 
proposed [8]. The actor-critic architecture is interesting due 
to the fact that it allows for explicit natural separation of 
concern between a performer, that tries to learn the best set of 
actions in certain situations, and a critic that tries to maximise 
overall future gain strategically. For the learner everything 
can be summed up in terms of a reward signal (food, shelter 
etc.) and the sensory data that feedback to it, as well as the 
actuators that the animal needs to use in order to reach its 
target and maximize the long and short term rewards. Shelter 
is considered a complex but important urge in animals. It 
comes after food as it is less urgent in the short term however 
it could be very important in the long term and could be vital 
in some dangerous situations. Therefore, animals have 
developed a complex behavior around the shelter need and 
through evolution it becomes intrinsic in the brains of higher 
animals. To trace all that back one needs to understand how 
primitive rewards form skills that governs complex behavior. 

B. Deep learning and RL 

Deep learning has been shown to overcome the bottleneck 
representation problem that has long set back the success of 
machine learning applications [9, 10]. It is especially 
important for RL since RL normally takes a long time to 
converge due to the fact that there is no direct answer to the 
input, the answer is just a signal that indicates how good or 
bad the current action is (in the long run), and hence how 
good or bad the overall behavior is [14]. Deep learning 
showed better results when combined with supervised 
learning [11, 12]. When combined with RL it is also believed 
to have a good potential. 

III. THE MODEL 

Our model starts by learning a concise and reduced 
feature representation. The model obtains a reduced 
representation in the first episode by applying a simple PCA 
on the whole set of images acquired during this first 

Towards A Deep Feature-Action Architecture for Robot Homing 

Abdulrahman Altahhan, Member, IEEE 



  

episode(s). This explorative episode aligns with how animals 
normally explore a place by looking around. Then the model 
shrinks the whole architecture to fit the new reduced number 
of features, and this concludes the deep learning phase for the 
feature representation layer. It should be noted that other 
methods could be better for object detection or recognizing a 
certain pattern such as a hand-written digits [13]. However, 
for the purposes of our model we need something fast and 
low-level and we do not need to obtain features that could be 
used for recognizing an object. We just need a set of features 
that is good enough to distinguish the goal from other 
locations. 

A.  Model Architecture and Components 

Next is the turn of Actor-Critic architecture [8]. After the 
Actor layer takes its input form the PCA layer, it then decides 
to do a certain action, accordingly the Critic layer punishes or 
rewards the Actor depending on the reward it receives form 
the environment.  

Formally, the presented model uses the following 
components/stages: 

 Goal representation: As opposed to many models the 
goal or the home is represented by just a snapshot 
taken for that location with the desired orientation of 
the robot. In fact the method used to identify the goal 
is transitionally invariant. Hence the goal location 
could in deed by identified by the agent from an 
angle different to the one it has originally taken from 
as we shall emphasize later by our stopping 
condition. 

Feature vector is calculated in two stages 

 The preliminary stage is to learn a reduced feature 
vector by deducing a representative Eigen vectors 
that gives results similar to a simple autoencoder. 
This is done by running the robot in an explorative 
episode(s) and analyzing the different scenes images 
in each step in an online fashion where the mean of 
the entire Eigen vector set is calculated at the end of 
the episode. And the max dimension is taken in case 
of more than one explorative episode is performed by 
the agent. This stage can be extended to span more 
than one episode to give a stable acceptable dense 
sample of the environment. However almost always 
the agent had to spend relatively long time in the first 
episode due to the fact that the weights are initialized 
to completely random small values (close to zero), 
hence they encouraged disoriented behavior that is 
explorative by nature. Then the model shrinks the 
whole architecture to fit the new reduced number of 
features (by picking Eigen vectors that corresponds 
to Eigen values of certain significance). This 
concludes the deep learning stage for the feature 
representation layer. This stage is done once and will 
not be repeated. 

 The primary step in which the Eigen vectors deduced 
in the preliminary stage is used to calculate a reduced 
features vector. This step helped in focusing the 
policy learning step which is inevitably much longer.  

In both stages the initial features used are differential 
Radial Basis features [14] that make the goal image its 
referential point and make all the views relative to that goal. 
This is consistent with home-aware localization and allows 
the agent to view the world from the perspective of its current 
homing task. The initial features are given by:  
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Using the mean Eigen vector that has been calculated in the 
explorative episode, the new reduced features are given by 
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The dimension of the features f  is d1×d2×3 where d1 and d2 

are the dimensions of the images and 3 coming from having 

three channels. The dimension of the reduced features kF  is 

n<<d1× d2×3. 

 Another component of the model is a similarity 
measure that specifies the termination of the episode 
and is given by  
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 This measure has been used along with two 
thresholds to set the stopping and approaching 
conditions for the agent. In particular, circular 
statistics should be used for this purpose as we want 
the agent to stop regardless of the angle that it faces 
the goal with [15]. Von Mises distribution provides 
such framework; it has nice properties of being easier 
to deal with and being an approximation to the 
warped normal distribution (the Gaussian counterpart 
in circular statistics) [16]. It is capable of dealing 
with directions and rotation in multidimensional 
spaces. 
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We chose multipliers 9 and 10 (through trial and 
error) that yield the values 0.894% 0.879% 
respectively. 

 The reward signal is calculated using the weights of 
the critic which is constituted of three parameters in 
accordance with the number of actions allowed in 
this model. These actions are forward, left and right 
respectively, where left and right have been set to 
equal speeds. The reward function is given as a 
combination of step cost in addition to a reward for 
going towards (approaching) the goal as well as a 
reward for reaching the goal itself (which is 
proportional to how fast the agent reached the goal in 
terms of number of steps) as in [14]. Further a higher 
cost has been associated with turning actions. I.e. 
when the agent turns it will acquire higher costs than 



  

when it goes strait. This had the desired consequence 
of supressing unnecessary turns and emphasising 
going strait. Also a punishment for taking any action 
that leads to a reactive behaviour has been set. This is 
also to help reduce the costal behavior and to 
encourage going directly towards the goal. 

C. Actor-critic Combined Network with Double Eligibility 

Traces 

In this section we show the derivation of the learning 
formulae for the layered actor-critic architecture. The error 
function [4] can be written as  

 22 )()()( sVsVsEr tt  

     (5) 

Using two layered perceptron (one hidden layer and an 
output layer) and two sigmoid activations we have:  
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The update rules for weights that go opposite to the 
gradient direction are: 
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Two layers with forward view using 

tR  as an 

approximation of )( tsV 
 [4] are: 
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By bootstrapping and using the )( 11   ttt sVr  as an 

approximation for )( tsV 
we have: 
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Where:    )()( 11 tttttt sVsVr        (14)  

Two layers with two eligibility traces )(iet , ),( kiet and 

backward view we have: 
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It should be noted that eligibility traces in reinforcement 
learning framework is similar to the momentum for 
supervised learning. It constitutes a way to accommodate 
previous updates into current updates to guide the search for 
the local optima. In RL it traces blame of current decision 
back to older decisions that lead to the current situation. In 
addition, two regularizers have been multiplied by the two 
parameter sets to discount the old values of the parameters 
(hence prevent ovefitting). Also the updates have been 
committed in a mixture of online and off-line fashion.  

B. Deep Blended Actor-critic Architecture 

By setting the second layer to three parameters; one for 
each action and calculating the error signal for the actor layer 
(which is responsible for taking the actions; its decision is the 
one that is being carried out). And by allowing this second 
layer to act as a critic that contemplates the consequences of 
the actions of the actor layer and sends a signal to it to 
indicate how well its current policy is. And by making the 
two layers to work as hidden and output layers of a one 
neural network, we are creating deep blended actor-critic 
architecture in one sound system that depends on two 
eligibility traces. The value function layer (we are calling it 
critic layer but it is not in the strict sense as it does not take 
input directly from the states so one can call it an evaluator 
layer as well) itself is taking its feedback form the reward 
function. The action layer can learn independently form the 
critic layer by utilizing an action-value function approach 
while the critic layer cannot act independently, it still needs 
the actor layer to calculate the estimated value function. In 
that sense the learning process can be thought of as a layer by 
layer learning or deep learning enabled. In the future we will 
explore training in each layer independently by freezing 
learning in each layer and then fine-tune by utilizing the 
presented approach. So this model is deep in terms of its 
feature representation and has the potential to be deep in 
terms of its action representation. All training is done using 
backpropagation. Finally the policy has been formulated as a 
simple greedy police.  

IV. EXPERIMENTAL RESULTS 

The robot was let to run for 30 episodes. Each episode 
starts by going from any location in the environment to the 
goal/home location. The size of the robot makes it relatively 
easier to run it form different locations. Hence, it was 
allowed to run for a 500 steps before the episode is 
considered a failure.   



  

 

 

A. Hardware and Software Settings 

Fig. 1 shows the used robot and its environment. It is 

basically an updated version of Lego Mindstorm that has 

been used with additional camera module and processing unit 

that was mounted and attached on top of it. This robot has 

relatively a low level of sophistication in terms of the motor 

commands, balance, senor reading as well as its shape. Yet 

the results were good, so it is expected to obtain higher 

performance once a finer robot it used. The Raspberry Pi has 

been powered by an off-the-shelf 1000AMP chargeable 

battery that was placed underneath the NXT brick. The sound 

sensor has been set up for external rewards/punishment but 

has not been used in the experiments presented her. 

Matlab have been used throughout the model in the form 

of a set of library functions that have been written 

specifically for this model. In addition the RWTH- 

Mindstorms NXT Toolbox for MATLAB has been used to 

provide the sensory reading and the actuator commands form 

the NXT robot to Matlab. 

 
 

Figure 1.  Left:A snapshot of the built robot with its sensors, actuators, 

and camera module. Right: The training envirnment.  

B. Model Hyper Parameters Settings 

It should be noted that the robot abducts itself after each 

successful/unsuccessful episode by following a rigid set of 

backwards steps that formed a U-shape so that it is as far and 

disoriented form the goal as possible. Each episode stops by 

either reaching the goal (successful) or by exhausting the 

allowed budget (number of steps) that the agent is given 

(unsuccessful). In the case of the presented work it was 500 

steps. The settings of the model hyper parameters are shown 

in Table1 

Table 1. Parameters of The Model 

Symbol Value Description 

Max_e 30 Number of episodes in each run 

α0 1.0  Initial learning rate 

0  EP3.0  Initial exploration rate 

ep0 EP3.0  Start episode for decreasing α and ε 

γ 1 The reward discount factor 

m 1 Number of snapshots of the home 

b 2 Features histograms bin size 

ψupper, ψlower 0.88 0.87 Goal_at_perspective thresholds 

λ 0.8 Eligibility trace discount 

Max_steps

1 

500 steps before agent considered 

unsuccessful 

Images with resolution of 160x120 were sent form the 

Raspberry PI via wireless network adaptor to an off-board 

computer for processing where learning is taking place, then 

the required commands is sent to the actuators of the robot 

via Bluetooth.   

C. Convergence and Performance 

Fig. 2 shows an intermediate stage where the robot was 
still learning. The number of episodes (upper right corner) is 
envisaged (as was evident in the simulation in [14, 15 and 
16]) to show a pattern of convergence towards minimal 
number of step if the robot where left to run for a very long 
time.  

 

Figure 2.  The model learned parameters; a tendency towards turning left 

is developed by the agent, which is what is expected when operating in an 

However, due to the time and physical constraints, this 
was difficult to do. Hence it has been let to run for a limited 
number of episodes. On the other hand, it should be noted 
that the number of steps varied between episodes due to the 
abduction of the robot to a random location after reaching the 
home, which resulted near/further position from the goal. 
Nevertheless, a cubic curve fitting is shown in Fig. 3 that 

  



  

illustrates possible convergence, which is evident indeed. 

Figure 3.  The model learned parameters and episodes number of steps  

Fig. 3 shows the learned parameters, a tendency towards 
turning left is developed by the agent, which is what is 
expected when operating in an open plan. It should be noted 
however that the agent did not just always turned left, the 
behavior depends on the current image/position. 

V. CONCLUSION 

Our results show that out of 40 times (30 trainings + 10 

testing) it mixed the goal twice. This has been verified by 

looking into what the robot has registered as a target in each 

episode. In addition from figure 3 it can be seen that the 

agent runs out of time in two episodes also, i.e. it reaches 

maximum number of steps. These are different than the one 

which it has mixed. Hence, accuracy in identifying the goal 

(training and testing) is 1-2/38 = 947% and efficacy in 

reaching the goal in the allowed steps is (40-4)/40= 90%. As 

opposed to many models the goal or the home is represented 

by just a snapshot taken for that location with the desired 

orientation of the robot. The model uses deep learning for 

feature representation, which set its distinctive novelty. How 

practical is it, will be for future work to verify. Also it is 

intended to show some other interesting properties of the 

model such as convergence and the relationship between 

deep feature learning and deep action learning. 
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