
CURVE is the Institutional Repository for Coventry University

Towards a deep feature-action
architecture for robot homing

Altahhan, A.

Author post-print (accepted) deposited in CURVE February 2016

Original citation & hyperlink:
Altahhan, A. (2015) 'Towards a deep feature-action architecture for robot homing' in 2015
IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE
Conference on Robotics, Automation and Mechatronics (RAM) (pp: 205 - 209). IEEE
http://dx.doi.org/10.1109/ICCIS.2015.7274621

ISBN 978-1-4673-7337-1
DOI 10.1109/ICCIS.2015.7274621

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CURVE/open

https://core.ac.uk/display/228141467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICCIS.2015.7274621

Abstract— This paper describes a model for robot navigation

that uses an architecture similar to an actor-critic reinforcement

learning architecture. Contrary to the abundance of models that

use two neural networks one for the actor and one for the critic,

this model sets up the actor as a layer seconded by another layer

which deduce the value function. Therefore, the effect is to have

similar to a critic outcome combined with the actor in one

network. Hence, the model paves the way for a deep

reinforcement learning architecture for future work. The

reward signal is back propagated through the critic then the

actor. At the same time, the features layer have been deeply

trained by applying a simple PCA on the whole set of images

histograms acquired during the first running episode. The model

is then able to shrink the whole architecture to fit a new reduced

features dimension. Initial experimental result on real robot

shows that the agent accomplished good level of accuracy and

efficacy in reaching the goal.

I. INTRODUCTION

Robot homing is considered one of the important special
cases of navigation. It pertains to all animals naturally and is
a must for most of the commercial and entertaining robotics
application. Central to this ability is the skill of orienting
towards the home and recognizing it once the agent is around
it. Animals do that by wiring the surrounding visual memory
somehow to their neural map of the environment. How they
do that is yet to be discovered. Traditionally it has been
linked to distinctive position or places in the environment i.e.
landmarks. However, the way animals do its navigation and
find their home suggests something more subtle than only
landmarks [1, 2, and 3]. In this paper it is argued that a
plausible proposition is that the brain hard wire the scenes to
itself and compare it with the look of the home. It forms a
frame of reference which is used to compare all information
passed through to obtain internal map of the home as
opposed to the different paths to its home. It is argued that
the animal cannot remember all paths to its home neither it
can remember the links between the landmarks consciously.
It simply react to what it sees once it set back home and it
dose not normally plan it unless something novel happened.
It uses this internal representation to guide itself along with
other visual aids such as landmarks for the long distance.
However for the short distance it uses this internal map
solely.

Abdulrahman Altahhan is with the Computing Department of Coventry

University, CV1 5FB, UK (phone: +44 2477653088; e-mail:

abdulrahman.altahhan@ coventry.ac.uk).

II. REINFORCEMENT LEARNING

A. Reinforcement learning framework

Reinforcement Learning, or RL, is considered ideal for
learning novel scenario where it is impractical to obtain a
model of the environment [4]. This is the norms for animals
once they face a new situation. In that moment the actual
learning begins, and we are interested to know what could be
going on at that moment.

RL does not require planning, but planning-like behavior
comes as a natural consequence of it [4]. Actor-critic
architecture have been proposed and studied in plenty of
scenarios [5, 6 and 7] that ranges from simulation to real
problems and recently an interesting development has been
proposed [8]. The actor-critic architecture is interesting due
to the fact that it allows for explicit natural separation of
concern between a performer, that tries to learn the best set of
actions in certain situations, and a critic that tries to maximise
overall future gain strategically. For the learner everything
can be summed up in terms of a reward signal (food, shelter
etc.) and the sensory data that feedback to it, as well as the
actuators that the animal needs to use in order to reach its
target and maximize the long and short term rewards. Shelter
is considered a complex but important urge in animals. It
comes after food as it is less urgent in the short term however
it could be very important in the long term and could be vital
in some dangerous situations. Therefore, animals have
developed a complex behavior around the shelter need and
through evolution it becomes intrinsic in the brains of higher
animals. To trace all that back one needs to understand how
primitive rewards form skills that governs complex behavior.

B. Deep learning and RL

Deep learning has been shown to overcome the bottleneck
representation problem that has long set back the success of
machine learning applications [9, 10]. It is especially
important for RL since RL normally takes a long time to
converge due to the fact that there is no direct answer to the
input, the answer is just a signal that indicates how good or
bad the current action is (in the long run), and hence how
good or bad the overall behavior is [14]. Deep learning
showed better results when combined with supervised
learning [11, 12]. When combined with RL it is also believed
to have a good potential.

III. THE MODEL

Our model starts by learning a concise and reduced
feature representation. The model obtains a reduced
representation in the first episode by applying a simple PCA
on the whole set of images acquired during this first

Towards A Deep Feature-Action Architecture for Robot Homing

Abdulrahman Altahhan, Member, IEEE

episode(s). This explorative episode aligns with how animals
normally explore a place by looking around. Then the model
shrinks the whole architecture to fit the new reduced number
of features, and this concludes the deep learning phase for the
feature representation layer. It should be noted that other
methods could be better for object detection or recognizing a
certain pattern such as a hand-written digits [13]. However,
for the purposes of our model we need something fast and
low-level and we do not need to obtain features that could be
used for recognizing an object. We just need a set of features
that is good enough to distinguish the goal from other
locations.

A. Model Architecture and Components

Next is the turn of Actor-Critic architecture [8]. After the
Actor layer takes its input form the PCA layer, it then decides
to do a certain action, accordingly the Critic layer punishes or
rewards the Actor depending on the reward it receives form
the environment.

Formally, the presented model uses the following
components/stages:

 Goal representation: As opposed to many models the
goal or the home is represented by just a snapshot
taken for that location with the desired orientation of
the robot. In fact the method used to identify the goal
is transitionally invariant. Hence the goal location
could in deed by identified by the agent from an
angle different to the one it has originally taken from
as we shall emphasize later by our stopping
condition.

Feature vector is calculated in two stages

 The preliminary stage is to learn a reduced feature
vector by deducing a representative Eigen vectors
that gives results similar to a simple autoencoder.
This is done by running the robot in an explorative
episode(s) and analyzing the different scenes images
in each step in an online fashion where the mean of
the entire Eigen vector set is calculated at the end of
the episode. And the max dimension is taken in case
of more than one explorative episode is performed by
the agent. This stage can be extended to span more
than one episode to give a stable acceptable dense
sample of the environment. However almost always
the agent had to spend relatively long time in the first
episode due to the fact that the weights are initialized
to completely random small values (close to zero),
hence they encouraged disoriented behavior that is
explorative by nature. Then the model shrinks the
whole architecture to fit the new reduced number of
features (by picking Eigen vectors that corresponds
to Eigen values of certain significance). This
concludes the deep learning stage for the feature
representation layer. This stage is done once and will
not be repeated.

 The primary step in which the Eigen vectors deduced
in the preliminary stage is used to calculate a reduced
features vector. This step helped in focusing the
policy learning step which is inevitably much longer.

In both stages the initial features used are differential
Radial Basis features [14] that make the goal image its
referential point and make all the views relative to that goal.
This is consistent with home-aware localization and allows
the agent to view the world from the perspective of its current
homing task. The initial features are given by:

2

2

ˆ2

),()(
exp),(

jcvhcsh
jcs

ftf

tf
(1)

Where),(jcvh f
 is histogram, bin f of channel),(jcv , and

)(csh ti
 is histogram bin f of channel c of current image.

Using the mean Eigen vector that has been calculated in the
explorative episode, the new reduced features are given by

),(, jcsF tffik (2)

The dimension of the features f is d1×d2×3 where d1 and d2

are the dimensions of the images and 3 coming from having

three channels. The dimension of the reduced features kF is

n<<d1× d2×3.

 Another component of the model is a similarity
measure that specifies the termination of the episode
and is given by

 nsFsNRB
n

k tkt

1
)(

 (3)

 This measure has been used along with two
thresholds to set the stopping and approaching
conditions for the agent. In particular, circular
statistics should be used for this purpose as we want
the agent to stop regardless of the angle that it faces
the goal with [15]. Von Mises distribution provides
such framework; it has nice properties of being easier
to deal with and being an approximation to the
warped normal distribution (the Gaussian counterpart
in circular statistics) [16]. It is capable of dealing
with directions and rotation in multidimensional
spaces.

 11

11,1

 multmult lowerupper (4)

We chose multipliers 9 and 10 (through trial and
error) that yield the values 0.894% 0.879%
respectively.

 The reward signal is calculated using the weights of
the critic which is constituted of three parameters in
accordance with the number of actions allowed in
this model. These actions are forward, left and right
respectively, where left and right have been set to
equal speeds. The reward function is given as a
combination of step cost in addition to a reward for
going towards (approaching) the goal as well as a
reward for reaching the goal itself (which is
proportional to how fast the agent reached the goal in
terms of number of steps) as in [14]. Further a higher
cost has been associated with turning actions. I.e.
when the agent turns it will acquire higher costs than

when it goes strait. This had the desired consequence
of supressing unnecessary turns and emphasising
going strait. Also a punishment for taking any action
that leads to a reactive behaviour has been set. This is
also to help reduce the costal behavior and to
encourage going directly towards the goal.

C. Actor-critic Combined Network with Double Eligibility

Traces

In this section we show the derivation of the learning
formulae for the layered actor-critic architecture. The error
function [4] can be written as

 22)()()(sVsVsEr tt

 (5)

Using two layered perceptron (one hidden layer and an
output layer) and two sigmoid activations we have:

I

i

tt iwiQ
tt

e

sV

1

)()(

1

1
)((6)

K

k

tt kikF
t

e

iQ

1

),()(

1

1
)(

 (7)

The update rules for weights that go opposite to the
gradient direction are:

)(

)(
)()()(

iw

sV
sVsViw

t

tt
ttttt

 (8)

),(

)(
)()(),(

ki

sV
sVsVki

t

tt
ttttt

 (9)

Two layers with forward view using

tR as an

approximation of)(tsV
 [4] are:

)(

)(
)()(

iw

sV
sVRiw

t

tt
ttttt

 (10)

),(

)(
)(),(

ki

sV
sVRki

t

tt
ttttt

 (11)

By bootstrapping and using the)(11 ttt sVr as an

approximation for)(tsV
we have:

)(

)(
)(

iw

sV
iw

t

tt
ttt

 (12)

),(

)(
),(

ki

sV
ki

t

tt
ttt

 (13)

Where:)()(11 tttttt sVsVr (14)

Two layers with two eligibility traces)(iet ,),(kiet and

backward view we have:

)()(ieiw tttt (15)

),(),(kieki tttt (16)

)(

)(
)()(1

iw

sV
ieie

t

tt
tt

 (17)

),(

)(
),(),(1

ki

sV
kiekie

t

tt
tt

 (18)

It should be noted that eligibility traces in reinforcement
learning framework is similar to the momentum for
supervised learning. It constitutes a way to accommodate
previous updates into current updates to guide the search for
the local optima. In RL it traces blame of current decision
back to older decisions that lead to the current situation. In
addition, two regularizers have been multiplied by the two
parameter sets to discount the old values of the parameters
(hence prevent ovefitting). Also the updates have been
committed in a mixture of online and off-line fashion.

B. Deep Blended Actor-critic Architecture

By setting the second layer to three parameters; one for
each action and calculating the error signal for the actor layer
(which is responsible for taking the actions; its decision is the
one that is being carried out). And by allowing this second
layer to act as a critic that contemplates the consequences of
the actions of the actor layer and sends a signal to it to
indicate how well its current policy is. And by making the
two layers to work as hidden and output layers of a one
neural network, we are creating deep blended actor-critic
architecture in one sound system that depends on two
eligibility traces. The value function layer (we are calling it
critic layer but it is not in the strict sense as it does not take
input directly from the states so one can call it an evaluator
layer as well) itself is taking its feedback form the reward
function. The action layer can learn independently form the
critic layer by utilizing an action-value function approach
while the critic layer cannot act independently, it still needs
the actor layer to calculate the estimated value function. In
that sense the learning process can be thought of as a layer by
layer learning or deep learning enabled. In the future we will
explore training in each layer independently by freezing
learning in each layer and then fine-tune by utilizing the
presented approach. So this model is deep in terms of its
feature representation and has the potential to be deep in
terms of its action representation. All training is done using
backpropagation. Finally the policy has been formulated as a
simple greedy police.

IV. EXPERIMENTAL RESULTS

The robot was let to run for 30 episodes. Each episode
starts by going from any location in the environment to the
goal/home location. The size of the robot makes it relatively
easier to run it form different locations. Hence, it was
allowed to run for a 500 steps before the episode is
considered a failure.

A. Hardware and Software Settings

Fig. 1 shows the used robot and its environment. It is

basically an updated version of Lego Mindstorm that has

been used with additional camera module and processing unit

that was mounted and attached on top of it. This robot has

relatively a low level of sophistication in terms of the motor

commands, balance, senor reading as well as its shape. Yet

the results were good, so it is expected to obtain higher

performance once a finer robot it used. The Raspberry Pi has

been powered by an off-the-shelf 1000AMP chargeable

battery that was placed underneath the NXT brick. The sound

sensor has been set up for external rewards/punishment but

has not been used in the experiments presented her.

Matlab have been used throughout the model in the form

of a set of library functions that have been written

specifically for this model. In addition the RWTH-

Mindstorms NXT Toolbox for MATLAB has been used to

provide the sensory reading and the actuator commands form

the NXT robot to Matlab.

Figure 1. Left:A snapshot of the built robot with its sensors, actuators,

and camera module. Right: The training envirnment.

B. Model Hyper Parameters Settings

It should be noted that the robot abducts itself after each

successful/unsuccessful episode by following a rigid set of

backwards steps that formed a U-shape so that it is as far and

disoriented form the goal as possible. Each episode stops by

either reaching the goal (successful) or by exhausting the

allowed budget (number of steps) that the agent is given

(unsuccessful). In the case of the presented work it was 500

steps. The settings of the model hyper parameters are shown

in Table1

Table 1. Parameters of The Model

Symbol Value Description

Max_e 30 Number of episodes in each run

α0 1.0 Initial learning rate

0 EP3.0 Initial exploration rate

ep0 EP3.0 Start episode for decreasing α and ε

γ 1 The reward discount factor

m 1 Number of snapshots of the home

b 2 Features histograms bin size

ψupper, ψlower 0.88 0.87 Goal_at_perspective thresholds

λ 0.8 Eligibility trace discount

Max_steps

1

500 steps before agent considered

unsuccessful

Images with resolution of 160x120 were sent form the

Raspberry PI via wireless network adaptor to an off-board

computer for processing where learning is taking place, then

the required commands is sent to the actuators of the robot

via Bluetooth.

C. Convergence and Performance

Fig. 2 shows an intermediate stage where the robot was
still learning. The number of episodes (upper right corner) is
envisaged (as was evident in the simulation in [14, 15 and
16]) to show a pattern of convergence towards minimal
number of step if the robot where left to run for a very long
time.

Figure 2. The model learned parameters; a tendency towards turning left

is developed by the agent, which is what is expected when operating in an

However, due to the time and physical constraints, this
was difficult to do. Hence it has been let to run for a limited
number of episodes. On the other hand, it should be noted
that the number of steps varied between episodes due to the
abduction of the robot to a random location after reaching the
home, which resulted near/further position from the goal.
Nevertheless, a cubic curve fitting is shown in Fig. 3 that

illustrates possible convergence, which is evident indeed.

Figure 3. The model learned parameters and episodes number of steps

Fig. 3 shows the learned parameters, a tendency towards
turning left is developed by the agent, which is what is
expected when operating in an open plan. It should be noted
however that the agent did not just always turned left, the
behavior depends on the current image/position.

V. CONCLUSION

Our results show that out of 40 times (30 trainings + 10

testing) it mixed the goal twice. This has been verified by

looking into what the robot has registered as a target in each

episode. In addition from figure 3 it can be seen that the

agent runs out of time in two episodes also, i.e. it reaches

maximum number of steps. These are different than the one

which it has mixed. Hence, accuracy in identifying the goal

(training and testing) is 1-2/38 = 947% and efficacy in

reaching the goal in the allowed steps is (40-4)/40= 90%. As

opposed to many models the goal or the home is represented

by just a snapshot taken for that location with the desired

orientation of the robot. The model uses deep learning for

feature representation, which set its distinctive novelty. How

practical is it, will be for future work to verify. Also it is

intended to show some other interesting properties of the

model such as convergence and the relationship between

deep feature learning and deep action learning.

REFERENCES

[1] A. Vardy and R. Moller, “Biologically plausible visual homing

methods based on optical flow techniques”, Connection Science, vol.

17, pp. 47–89, 2005.

[2] N. Tomatis et al, “Combining Topological and Metric: a Natural

Integration for Simultaneous Localization and Map Building”,

presented at Proc. Of the Fourth European Workshop on Advanced

Mobile Robots (Eurobot), 2001.

[3] Jochen Zeil, “Visual homing: an insect perspective, Current Opinion

in Neurobiology”, Volume 22, Issue 2, pp. 285-293, ISSN 0959-4388,

April 2012

[4] R. S. Sutton and A. Barto, “Reinforcement Learning, an introduction”,

Cambridge, Massachusetts: MIT Press, 1998.

[5] V. Konda and J. Tsitsiklis, “Actor-Critic algorithms”, presented at

NIPS 12, 2000.

[6] O. Ziv and N. Shimkin, “Multigrid Methods for Policy Evaluation and

Reinforcement Learning”, presented at IEEE International Symposium

on Intelligent Control, Limassol, 2005.

[7] C. Zhang at al, “Efficient multi-agent reinforcement learning through

automated supervision”, presented at International Conference on

Autonomous Agents Estoril, Portugal, 2008.

[8] S. Bhatnagar et al, “Incremental Natural Actor-Critic Algorithms”,

presented at Neural Information Processing Systems (NIPS19), 2007.

[9] G. Hinton et al, “A fast learning algorithm for deep belief nets”.

Neural Computation,18(7):1527–1554, 2006.

[10] A. Coates et al, “An Analysis of Single-Layer Networks in

Unsupervised Feature Learning”, in AISTATS 14, 2011.

[11] P. Vincent et al, “Extracting and composing robust features with

denoising autoencoders”. In ICML, 2008

[12] Andrew Ng et al (2010), Tutorial in Deep Learning: Stanford

University [Online]. Available: http://ufldl.stanford.edu/tutorial/

[13] Y. LeCun et al, “Learning methods for generic object recognition with

invariance to pose and lighting”. In CVPR, 2004.

[14] A. Altahhan, “A Robot Visual Homing Model that Traverses

Conjugate Gradient TD to a Variable λ TD and Uses Radial Basis

Features”, in Advances in Reinforcement Learning, A. Mellouk, Ed.

Vienna: InTech Education and Publishing, 2011, pp. 225-254.

[15] A. Altahhan, “Robot Visual Homing using Conjugate Gradient

Temporal Difference Learning, Radial Basis Features and A Whole

Image Measure”, International Joint Conference on Neural Networks

(IJCNN), Barcelona, Spain, ISBN: 978-1-4244-6916-1, 2010.

[16] A. Altahhan et al, “Visual Robot Homing using Sarsa(λ), Whole Image

Measure, and Radial Basis Function”, International Joint Conference

on Neural Networks (IJCNN), Hong Kong, 2008

http://ufldl.stanford.edu/tutorial/

