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Abstract 

It is a well established fact that the behaviour of columns as part of a structure is 

affected by the end restraints. The main aim of the current study is to develop a 

criterion of stability capable of predicting an impending failure by elastic buckling 

of a column of a structure. The rigidities at the ends of a column element are 

modelled using rotational and translational springs, which have been considered by 

taking into account their coupling effects. The role of the springs is to model the 

nodal restraints of any column of a given structure. This formulation offers 

significant practical advantages in the elastic buckling analysis of such structures. 

This approach is performed through a relationship to several parameters, such as the 

non-dimensional rotational and translational restraint indices and the effective length 

factor K. The approach was applied in analysing the elastic buckling of a number of 

structures and good results were obtained, thus justifying its reliability. In 

determining the effective length factor K, a marked difference was noted between 

the results obtained using the Eurocode approach and that proposed by the current 

study, particularly in the case of non-braced structures. 

 

Keywords: Stability, Elastic buckling, Effective length factor, Column, Second 
order. 
1. Introduction and context of the current work 
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A substantial body of research has been carried out by a number of researchers on 

the stability of frames and the concept of effective length and effective length 

factors. In the 70’s, Wood [1, 2, 3] investigated the effective length of columns in 

multi-storey buildings. In doing so, he defined the rigidity of a joint in a multi-storey 

setting in terms of the effective length factor K. The Eurocode later adopted this 

approach. This approach, although limited in practice, remains a powerful analytical 

tool for the engineer [4, 5]. Cheong-Siat-Moy [6] and Chen and Lui [7] have 

developed expressions for the effective length factor for single columns with partial 

lateral end restraints. However, the effect of coupling between rotational and 

translational rigidities is not taken into account. Also the relative stiffness G is 

simply adopted as given in the codes. 

 

The K factor represents an important parameter vis-à-vis the elastic buckling 

analysis. It can easily accommodate the elastic critical load by using a single 

formula covering all situations of boundary condition, expressed by the following 

equation: 

N = π2EI/(KL)2             (1) 

Where, K represents the ratio between the effective length “lf“ and the actual length 

“l” of the column: 

K = lf/l             (2) 

From a physical point of view, “the effective length is the length of the equivalent 

pin-ended column that would have the same elastic critical load as the actual end-

restrained column”. [8] 
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This study offers a simple and yet a global approach that allows a very rigorous 

assessment of the effective length factor K. The criterion of analysis derives from 

the solution of the deflection y(x) of a column element where four springs are 

introduced at the ends to model the rotational and translational flexibilities. This 

formulation offers significant practical advantages in the elastic buckling analysis of 

such structures. Furthermore, the values of the effective length factor K for some 

situations of conventional boundary condition are known. Figure 1 below provides 

an overview regarding the values of K and their respective buckling modes. 

Obviously, in practice there are an infinite number of situations relating to the 

boundary conditions, which do not correspond to conventional situations especially 

when the column element of interest is considered in relation to partially braced 

structures. 

 

 

 

 

 

 

 

 

Hellesland and Bjorhovde [9] used what they described the method of means to 

determine the effective length factors for continuous columns and beams. The 

method uses effective length factors from isolated columns as input. Comparison 

between actual results and those using the method were found to be in order of 5%. 

Fig. 1 Values of K and respective buckling modes for some 
conventional boundary conditions 
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The method was limited when dealing with unbraced frames or when columns were 

laterally very flexible. Also, coupling effects were not considered. 

 

Previous researchers such as Aristizabal-Ochoa [10, 11] and Hellesland [12,13] used 

the so-called fixity factors or as also known degree of rotational fixity factor in 

solving the stability equations. However, such factors do not take into account the 

coupling effects between rotational and translational flexibilities.  

 

The novelty of the current study is that efficient and more general parameters, 

equivalent to those previously cited, were obtained by solving the problem of global 

stability of the column with end restraints with coupling effects fully taken into 

consideration. 

 

The purpose of the current study is to investigate the effect of end restraints on the 

column elastic buckling. This is achieved by proposing a general criterion resulting 

from the solution of the stability equations, taking into account the end conditions of 

the column in terms of non-dimensional translational and rotational end restraint 

indices and their coupling effects. 

 

2. Formulation 

Consider a column segment (ij) given in Figure 2. 
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The equilibrium equation along the element length can be expressed in compressive 

case as: 

       y(x)xx + (β/L)2 y(x) = - M(x) /EI            

(3) 

where the non-dimensional parameter β is given as: 

       
EI

2LN
=β                   (4) 

and (xx) indicate the second derivative operator. 

        M(x) = Mi + Ti.x                    (5) 

 Ti = (Mj – Mi)/L                     (6)

      

N is the axial force, Mi and Mj are the nodal moments, Ti and Tj are the nodal shear 

forces (shown as positives in Figure 1.), E=Young modulus and I= second moment 

of area of the section about the axis of bending. 

 

The solution of Equation (3) is obtained as: 

Vi 

Fig.2 Column model (End moments, forces, rotations and 
deflections) 
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(7) 

C1, C2, C3, C4, are constants depending on the boundary conditions of the element 

(ij). Four degrees of freedom (d.o.f.) are taken into account: two displacements Vi 

and Vj according to OY axis, and two rotations θi and θj around OZ axis, (┴x0y). 

To undertake this task, it is essential to consider the exact boundary conditions on 

the ends of the nodal element. Indeed, the nodal displacements and rotations 

described by the variables (vi θi, vj, θj), depend directly of requirements for the ends 

of the element. In this regard, the physical model illustrated in Figure 3 is adopted, 

which is distinguished by an unconventional behaviour at each node of the element.  

 

The particular solution for eqn. (3), which refers to the loading applied to the 

column has no effect on the formulation of the stiffness matrix, and therefore has no 

influence on the parameter K being the main objective of this study. 

 

 

 

 

 

 

 

 

 

By using the appropriate boundary conditions, 

 

Fig.3 Structural model involving the presence of end restraints relating to 
rotations and translations 
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(8) 

 

where, )v
y
j,v

y
i,φ

r
j,φ

r
i

( refers to equations (8(a), (b), (c), and (d)), the rotations 

and displacements, respectively associated with the springs of rotation and 

translation located at nodes (i) and (j) of the column element. The following 

relations express these quantities: 

 

 

 

 

 

(9) 

where )1,1,1,1(
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i S ====  respectively designate the 

flexibilities of the springs located at the ends of the column element. These 

flexibilities correspond to the inverse of the rigidity ( )kkkk y
j

r
j

y
i

r
i ,,,  of the springs 

located at the ends of the column element. Also, Bending moments and shear forces 

(Ti, Mi, Tj, Mj)., relative to the nodes (i) and (j) of the element, respectively, are 

deduced from the general relations of bending moment and shear force obtained 

from the equilibrium of an infinitesimal elementary section.  
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Quantities y(0) and y(L) in equations 8(a) and (c) refer to the lateral displacements 

associated with nodes (i) and (j) respectively, of the column element. These 

quantities are obtained from equation (7). 

 

Lastly, (x) indicate the first derivative operator and the quantities (y,x(0), y,x(L)) 

refers to relations 8(b) and 8(d), the rotations due to column bending only, 

respectively associated with the nodes (i) and (j). These quantities are obtained from 

equation (7). 

 

For convenience, the following four parameters 




 f

y
j,f r

j,f
y
i,f r

i  respectively 

designate the non-dimensional rotational and translational restraint indices of the 

springs located at the ends of the element. These indices vary from zero for fully 

restrained connection to infinity for simple connection. 

 

 

 

 

 

(11) 

 

Note that the flexibility characterizing the column itself is represented by analogy as 

two springs: one rotational and one translational, denoted by 
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(12) 

Therefore, we can observe that when y(x) is infinitely large, the denominator of y(x) 

will approach zero, leading to a non-dimensional quantity denoted dL expressed by 

the following relationships (13). 

 

 

(13) 

3. Numerical analysis 

The next step is intended to highlight the second order effects associated with the 

phenomenon of instability by buckling. This task is carried out based on the 

expression of the displacement, which mathematically would tend to infinity when 

the axial load approaches the critical buckling load. This extreme limit corresponds 

physically to the condition of instability of the column, which from a mathematical 

point of view is reached when a quantity dL becomes zero for the first time after the 

initial equilibrium (axial load equal to zero). This condition is obtained for specific 

boundary conditions described by the non-dimensional translational and rotational 

restraint indices. Thus, it is sufficient to monitor changes in the quantity dL 

compared to the K factor, which gives the value of K that makes dL equal to zero. 

Finally, the critical axial load of the element is deduced from the value of K 

obtained. This is obtained from the equation (1) given above. 
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The values of K that nullify the expression dL are compared with those obtained 

from the relationships (14) proposed in the Eurocode 2 [14]. Thus, it may be 

observed that for braced structures the equation of K as given by Eurocode 2 is 

expressed in relation to indexes of flexibility on both rotational springs located at 

each end node of the element. 

 

(14) 

  

Figure 4 shows the variation of the effective length factor K of a beam column 

element belonging to braced structures against the indexes of flexibility. It may be 

seen that the curves (blue) obtained numerically in this study and those drawn from 

the relationship of K by Eurocode 2 (red) are virtually identical. 
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perfect similarity between the results of the current study and those proposed by 

Eurocode2 exists. Moreover, both approaches lead to classical results: K = 0.5 when 






 == 5fr

j,0fr
i  and K approaching unity when 





 == 5fr

j,5fr
i  corresponding, 

respectively, to the two extreme cases of a built-in-ended member and a pin-ended 

member. 

 

For elements belonging to partially braced structures, it is necessary to emphasize 

the complexity of the relationship expressing the K factor which depends on a 

number of parameters related to the boundary conditions reflected by the indexes of 

flexibilities, particularly those relating to translational springs. In this context, the 

same reference [14] suggests for non-braced structures, a relationship of K based on 

two limits as shown by the relations (15) below (see also Westerberg [15]). It is 

worth noting in this formulation the lack of parameters reflecting the translational 

springs. 

 

(15) 

 Let us now consider an element whose node (i) is completely fixed 
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column element belonging to partially braced structures versus the indexes of 

flexibility. 

 

It may be seen that factor K tends to value equal to 2 for a quasi-free situation on 

node (j) ( )55 == f
y
jf

r
j , , for both approaches (current study and Eurocode 2). 

Moreover, this approach allows to evaluate the effective length factor K 

corresponding to different levels of fixation relating to transverse displacement, 

which reflects cases of partially braced structures. As an indication, for 5fr
j = (i.e. 

node (j) quasi-articulated), the value of K increases gradually from 0.7 when 0f
y
j = , 

to 1.8 when 5f
y
j = , which approximates the situation when node (j) becomes quasi-

free. 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 6, the analysis conducted by considering node (i) quasi-
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that for ( )55 == f
y
jf

r
j ,  (node (j) quasi-free), Eurocode 2 [14] leads to K= 5.1 which 

is approximately 20% higher than the result obtained by the current study (K= 4.25), 

which will result in an additional cost in design. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

The stability of a beam-column element has been investigated by the current study 

by considering general end conditions with varying flexibilities. A criterion of 

stability is obtained analytically from the resolution of the differential equilibrium 

equation. 

Using the proposed criterion, reliable results are obtained for the effective length 
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braced structures. This is highly desirable for the numerical convergence, and for 

predicting the buckling load accurately. 

 

The results of the effective length factor K obtained from the current study and those 

using the Eurocode 2 are compared. The following observations may be made: 

 

- In the case of braced structures, a perfect correlation in the results exists. 

- In the case of non-braced structures, a relative difference of 20% was observed, 

making Eurocode 2 a more expensive way to design. 

 

Additionally, using the current approach, the value of factor K of any element 

belonging to braced, non-braced or partially braced structures may be obtained. 

 

This performance is achieved through the formulation of the stability criterion, 

which is based on indexes of flexibility that reflect its actual original nodal 

boundaries. 

 

Finally, this result offers to the finite element approach the needed tool of accuracy 

required besides the simplicity of the method. 
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