

Performance analysis of a prototype
wireless monitoring system for a gas
turbine
Brusey, J. , Goldsmith, D. , Poole, N. , Gaura, E. and Mo, Y.

Publisher PDF deposited in CURVE March 2012

Original citation & hyperlink:
Brusey, J. , Goldsmith, D. , Poole, N. , Gaura, E. and Mo, Y. (2009) Performance
analysis of a prototype wireless monitoring system for a gas turbine. Coventry:
Coventry University Cogent Computing ARC.
http://wwwm.coventry.ac.uk/researchnet/cogentcomputing/Pages/Cogentrepositor
y.aspx

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

http://wwwm.coventry.ac.uk/researchnet/cogentcomputing/Pages/Cogentrepository.aspx
http://wwwm.coventry.ac.uk/researchnet/cogentcomputing/Pages/Cogentrepository.aspx
http://curve.coventry.ac.uk/open

COGENT
computing

Technical report number COGENT.007
Cogent Computing Applied Research Centre

Revised 16-March-2009. Confidential until September 2011.

Performance Analysis of a
Prototype Wireless Monitoring
System for a Gas Turbine Engine

J. Brusey, D. Goldsmith, N. Poole, E. I. Gaura, and Y. Mo

{j.brusey,goldsmid,esx040,e.gaura,moy5}@coventry.ac.uk

The report describes the design, development and evaluation of an end-to-
end wireless monitoring system “table-top” demonstrator. The system is
dedicated to gas flow temperature monitoring for gas turbine engines used
in aerospace applications. The demonstrator was built with off-the-shelf
hardware components, in-house produced interface boards, and software
developed by the authors here. The demonstrator was evaluated in terms
of: its added informational value compared with existing wired thermo-
couple harnesses, the performance of the wireless network, and the power
consumption of the wireless nodes.

Contents

1 Introduction 7

2 Design, development and evaluation 8

2.1 Introduction . 8

2.1.1 Problem Statement . 8

2.1.2 Prototype Goals . 9

2.1.3 Systems Requirements . 11

2.2 Systems Design . 18

2.2.1 Design Decisions . 18

2.2.2 Abstract design . 24

2.2.3 The sense component . 25

2.2.4 The base component . 26

2.2.5 Communication subsystem . 28

2.3 Implementation . 32

2.3.1 System level data flow and hardware support 32

2.3.2 Signal processing: Calibration and filtering options 34

2.3.3 Communications . 37

2.3.4 Interpolation Methods . 41

2.3.5 The visualisation component . 43

2.4 Evaluation . 46

2.4.1 Experimental setup . 46

2.4.2 Fulfilment of the application specific goals 47

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

1

2.4.3 Fulfilment of software engineering goals . 49

3 Power consumption evaluation for an end-to-end wireless monitoring system based
on Gumstix devices 88

3.1 What are the power consumption levels in the current unconstrained system and how
could these requirements be served by off-the-shelf batteries? 88

3.1.1 Super-capacitor . 90

3.1.2 Lithium battery . 90

3.2 How is the power consumption distributed across the node’s hardware components
and across the end-to-end system? . 91

3.2.1 Main component power consumption . 91

3.2.2 Temperature sensing power consumption . 93

3.3 What are the optimal trade-offs with respect to power consumption as far as data
processing and information extraction are concerned? 93

3.3.1 Calibrated versus uncalibrated data . 94

3.3.2 Perform the basic fault detection at node or at base 94

3.3.3 Filter at node or at base . 94

3.3.4 Continuously monitor vs event detection facility 95

3.3.5 Sleep vs always awake modes . 95

3.3.6 XML packaging overheads and costs . 97

3.4 How does the support platform of choice (Gumstix) compares with other off the shelf
nodes with respect to power consumption? . 97

3.5 Summary . 99

4 Conclusions 101

A Bluetooth energy cost per bit 102

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

2

List of Figures

2.1 Conceptual flow for prototype gas turbine engine monitoring system 11

2.2 System overview . 21

2.3 XML Schema . 22

2.4 Database Entity-Relationship diagram . 24

2.5 Breakdown of the “Sense” component . 25

2.6 Breakdown of the “Base” component . 26

2.7 Networking modules abstraction stack . 29

2.8 Communication modules class structure . 31

2.9 Prototype hardware architecture . 33

2.10 Cogent interface board . 35

2.11 UDP communications code . 39

2.12 L2CAP communications code . 40

2.13 Nearest neighbour pseudo-code . 43

2.14 Snapshot of the visualiser . 44

2.15 Historical data graph component of the visualiser 45

2.16 Base station and instrumented gas turbine engine 46

2.17 Annulus thermocouple harness (picture supplied by Vibro-Meter UK) 47

2.18 Annulus with I2C sensors and Gumstix attached . 48

2.19 Reduced convection experiment . 49

2.20 Graph module output . 49

2.21 Comparison of unfiltered and filtered uncalibrated Sensor Data 51

2.22 Filtered temperature data over a 16 hour overnight period 52

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

3

2.23 Uncalibrated sensor data without and with on board capacitor 54

2.24 Latency graphs of operation under normal conditions 56

2.25 Latency graphs with unfiltered data . 58

2.26 Latency graphs for operation with maximum sampling rates 60

2.27 Calibrated against uncalibrated temperature readings 66

2.28 Interpolated temperature values against real temperature data (temperature in °C) . 68

2.29 Interpolated delta values against real data (temperature in °C). 69

2.30 Web based cross validation . 70

2.31 Sensor layout on the jet pipe. Note there are two temperature sensing devices on
each I2C line (sensors 65-69,sensors 73-77, etc.) 71

2.32 Lighting arrangement during cross validation . 72

2.33 Sensor Layout and lamps position during cross validation. 73

2.34 Screenshot and interpolation detail at 11:08:11 . 74

2.35 Screen shot and interpolation values at 11:16 . 75

2.36 Screenshot and interpolation values at 11:27 . 77

2.37 Values at 11:29:22 . 78

2.38 User Interface with extra probe sensors. 79

2.39 Screenshot and interpolation detail at 15:44 . 82

2.40 Screenshot and interpolation detail at 15:46 . 83

2.41 Screenshot and interpolation detail at 15:54 . 85

2.42 Screenshot and interpolation detail at 15:56 . 86

3.1 Current consumption over time using Kalman filtering and Bluetooth transmission.
The Gumstix was battery powered. 92

3.2 Current consumption over time using Kalman filtering but with serial transmission.
The Gumstix was battery powered and dropped to a low power mode after 8:15pm. 93

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

4

List of Tables

2.3 Class 2.1 Bluetooth device specification (Bluetooth 2.1 + EDR Features and Speci-
fication). 53

2.4 Latency figures for operation under normal conditions 55

2.5 Latency figures when transmitting unfiltered data 57

2.6 Latency figures at maximum sampling rate . 59

2.7 Latency figures for operation with background noise 59

2.8 Latency figures for operation within noisy network conditions 61

2.9 Sample XML packet and XML overhead for temperature data 61

2.10 Sample XML packet and XML overhead for sound data 61

2.11 Sample XML packet and XML overhead for temperature data 62

2.12 Network Transmission overhead using TCP emulation over Bluetooth 62

2.13 Network statistics during a typical data gathering run 63

2.14 Database Record size with records stored during 280 experiments, total xxx hours of
monitoring . 64

2.15 Experiment Schedule . 68

2.16 Cross validation RMS values over whole experiment duration 68

2.17 Temperature and Interpolation values at 11:08:11 73

2.19 Temperature and Interpolation values at 11:16:33 75

2.20 Values at 11:27:20 . 76

2.21 Values at 11:29:22 . 77

2.22 Experiment Schedule . 79

2.23 Experiment Schedule . 80

2.24 Cross validation RMS values over whole experiment duration 80

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

5

2.25 Temperature and Interpolation values at 15:46 . 81

2.26 Temperature and Interpolation values at 15:46 . 82

2.27 Temperature and Interpolation values at 15:54 . 84

2.28 Temperature and Interpolation values at 15:56 . 85

3.1 A summary of the estimated operation time between different processes using 800mAh
rechargeable batteries. 89

3.2 Dimension, weight and capacity of several types of off-the-shelf battery. [1] 89

3.3 Estimated battery life in hours for each off the shelf battery. 90

3.4 Power consumption levels for the Gumstix before (in standby mode) and during boot
up. 91

3.5 Breakdown of the contribution of different components to the total power utilisation. 92

3.6 Energy and time cost of calibration per iteration. 94

3.7 Energy and time cost of Kalman filtering per iteration. 95

3.8 Power consumption associated with different modes. Taken from the Intel PXA270
data sheet [2]. 96

3.9 Experimentally established power consumption for different mode settings. 96

3.10 Hardware platform evolution. 98

3.11 A comparison of the Gumstix and MSP430 platforms. 99

3.12 MSP430 power modes. 100

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

6

Chapter 1

Introduction

The report describes the design, development and evaluation of an end-to-end wireless monitoring
system “table-top” demonstrator. The system is dedicated to gas flow temperature monitoring for
gas turbine engines used in aerospace applications. The demonstrator was built with off the shelf
hardware components, in-house produced interface boards, and software developed by the authors
here. The demonstrator was evaluated in terms of: its added informational value compared with
existing wired thermocouple harnesses, the performance of the wireless network, and the power
consumption of the wireless nodes.

Particular attention is given to the power consumption studies, which take advantage of the modu-
lar, generic architectural framework the demonstrator has been built upon to facilitate provision of
quantifiable answers to the following questions:

1. What are the power consumption levels in the current unconstrained system and how could
these requirements be served by off-the-shelf batteries?

2. How is the power consumption distributed across the node’s hardware components and across
the end-to-end system?

3. What are the optimal trade-offs with respect to power consumption with regard to data pro-
cessing and information extraction?

4. How does the support platform of choice (Gumstix) compares with other off the shelf nodes
with respect to power consumption?

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

7

Chapter 2

Design, development and evaluation

2.1 Introduction

2.1.1 Problem Statement

Measurement of temperature in a gas turbine engine is critical to its control and the assessment of
its health and performance. Currently, gas temperature is measured predominantly by thermocouples
installed at a number of sites within the engine. For example, in the exhaust region of the engine,
the temperature is measured at different circumferential (and often radial) positions via an array
of thermocouples connected through harness cabling. Transmission of individual thermocouple data
to the central control unit would require many individual cables and so, due to weight restrictions,
measurements are averaged before transmission over a single heavy duty cable to the central control
unit. Not only does this preclude the determination of a detailed picture of the engine gas temper-
ature, which could indicate potential engine problems, but also prevents the diagnosis of individual
sensor faults, de-calibration, and sensor drift. A wireless instrumentation system could substantially
increase the complexity of the data that could be sent to the engine control unit and hence enable
more sophisticated engine health monitoring. Replacing cables with wireless transmissions will reduce
the monitoring system weight and, given the availability of detailed temperature profiles for engine
control, lead to improved fuel efficiency and reduced carbon emissions. On-line statistical analysis
of data from such a wireless system could also permit a clearer understanding of engine/aircraft
health. The system proposed here will allow condition-based maintenance, whereby maintenance
can be scheduled according to actual wear and usage rather than at fixed intervals, thereby reducing
through-life costs. In addition, a wireless system could allow for the sensors in the network to com-
municate their “health metrics” with each other, in turn allowing faults and drift to be identified and
possibly corrected for in the engine control systems. This would give much greater confidence in the
accuracy of the measured temperature and could, potentially, allow the engine to run with less safety
margin and, therefore, more efficiently (with similar benefits on fuel consumption and emissions).

However, embedding wireless technology into an aerospace or industrial gas turbine will have some
significant challenges to overcome, particularly for aero-engines, which require a high degree of safety

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

8

assurance and certification. With regard to temperature measurement, for example, the temperatures
outside the casing of the engine can reach in excess of 250°C, precluding the use of most conventional
silicon-based electronic systems. Moreover, maintaining the integrity of an RF signal transmission in
an environment that is largely composed of metal whilst not interfering with (or having interference
from) other electronic equipment will present major hurdles. Powering the sensors also presents a
significant challenge as battery power is not appropriate, hence some means of energy harvesting
will be required. However, if these hurdles can be overcome, the benefits to engine management
will be significant and could also pave the way for use with other types of engine sensors such as
vibration sensors, tip clearance and speed sensors. With a view of establishing a proof of concept
for the application at hand, an end-to-end instrumentation system prototype has been designed,
implemented and evaluated. The system consists primarily of a wireless sensor network with five
nodes, 24 sensors, and a back-end system for receiving, storing, analysing, and visualising collected
data. The end-to-end system has been successfully deployed on a cold jet-pipe section and detailed
testing carried out. The project, within which the work described here represents the first step is
funded as a EPSRC CASE Studentship through the Integrated products Manufacturing KTN and it
conducted in collaboration with Vibro-Meter UK Ltd and TRW Conekt Ltd (suppliers and developers
of engine temperature sensors and harsh environments electronics respectively).

2.1.2 Prototype Goals

Building a proof of concept demonstrator of an end-to-end health monitoring wireless networked
system has been motivated by several factors, in two distinct categories:

A) User led, application specific goals The demonstrator’s goals were to allow initial feasibility
and wireless technologies suitability analyses for the real-life problem at hand. The study has been
commissioned by the industrial partners in the research, TRW Conekt and Vibro-Meter UK. The
primary aim here was to build a table-top technology demonstrator which could ease the identifi-
cation of further research, implementation and deployment issues. Solutions to these issues would
lead to the development of an engine-deployable health monitoring wireless instrument for gas tur-
bines. Secondly, the demonstrator, set as an end-to-end system, was seen as an enabler of system
requirements gathering for the instrument design and development. Given the novelty of wireless
networked sensing technologies, it was found that defining system requirements starting from a fully
working (albeit not deployable in uncontrolled environments) end-to-end system demonstrator will
shorten the instrument design cycle, by capturing the essential instrument features either in contrast
with implemented functionality or through similarity with such functionality. Indeed, within the de-
sign cycle of the demonstrator, such a requirements gathering phase has been run twice – firstly as
a “wish list” from the application specialists (the two industrial partners) and, secondly, mid-way
through the development by observing and discussing the implemented functionality of a very basic,
end-to-end demonstrator, precursor of the system described in this report. The sharpness of focus
on the requirements at this stage was indeed observed, by the design team, to be higher.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

9

B) Researchers led, software engineering goals This motivational category is somewhat richer
and forms a key element in the research carried by the authors towards an unified architectural frame-
work for the development of WSNs for monitoring applications. The architectural framework aims
to facilitate practical high-level deployment, maintenance and development of WSNs. The research
methodology adopted involves a succession of system design/implementation / deployment cycles
with the requirement that, at each stage, both a clear set of design requirements and testing plans
exist, gradually allowing the core functionality of WSN for monitoring applications to be encapsulated
into an architectural framework. This research methodology should allow the scope of the frame-
work to be modified to take into account new advances in the fast moving field of WSN research.
Moreover, by implementing a series of “real-world” WSN monitoring applications the results from
each stage of experimentation can be compared to those in the literature, allowing evaluation of the
framework.

Considering the above, the specification of intent and the evaluation of the demonstrator would be
as follows:

• the demonstrator needs to be a fully-functional end-to-end system, developed using best soft-
ware engineering practise and fully exploiting prior, published research in wireless sensor net-
works system design;

• at least one novel service has to be incorporated in the end-to-end system, beyond the “sense
and send” state of the art; information visualisation and fault handling and management have
been chosen to be integrated as novel services;

• the system should seamlessly integrate debugging and performance analysis tools at several
levels, within all functional components;

• the system should allow “plug and play” of several functional components; this needs to be
ensured both at core functional components level (to allow for refined components to be
tried out without re-design) and “additional functionality” level (for example, a “calibration”
component might be plugged in and out, depending on the use of the system; similarly, various
“visualisation” modes should be plug-able);

• the design should allow clear assessment of the value of the novel middleware developed which
glues the functional components together and also allow encapsulation of core functionality ;

• three ways evaluation of the system design versus application requirements and versus sys-
tem performance should enable identification of some design patterns to be of further use in
research towards structuring functional requirements for an architectural framework for moni-
toring applications;

• the system should enable organic growth both in terms of its networking component and in
terms of refinement of application requirements; for example, the system should have a scalable
architecture with opportunity to add or reduce node numbers, sensors and sensor types; the
design should allow for smooth adaptation to functional specification changes (such as sensor
sample rate, bandwidth availability, multi-hop networking, communication protocols changes);

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

10

maintenance

visualise

decision

analyse

sense

model

test strategy

(off−line)(on−line)

Figure 2.1: Conceptual flow for prototype gas turbine engine monitoring system

• the tools developed and integrated should enable assessment of how the demonstrator addresses
(or should be modified to better address) the traditional WSN concerns of overhead, size, and
energy. The relative benefits of performing in-network information extraction should be able
to be evaluated also;

• the demonstrator should provide insight into whether a fixed API would enable applications to
be developed without low-level hardware access and, if low-level access is required, how can it
be provided whilst still retaining the advantages of an architectural framework.

2.1.3 Systems Requirements

The instrumentation system presented here is designed to sit within a larger conceptual flow, repre-
sented in Figure 2.1 as a closed, human-in-the-loop system with several possible routes through, as
described below.

Temperature is sensed at a number of circumferential and radial locations (“sense”) within the gas
turbine engine. Raw sensor data is noisy and in some cases, sensors may be faulty. Modelling using
a Kalman filter (“model”) smooths the data, making use of assumptions about the rate of change
of temperature. An interpolation model is also used here to derive a continuous field function that
fits the sensed data. From the model, real-time visualisation (“visualise”) is performed, allowing
temperature events to be identified as they occur. Furthermore, analysis of data over a time period
(“analyse”) can also be performed off-line, post event.

These two information flows allow the human expert to either derive a “maintenance decision”
(referring to the instrumentation itself - component or sensor is faulty and must be replaced- or,
to the engine/component being monitored), or to devise a “test strategy” (such as modifying the
engine actuation during testing, in some way to try to even out the heat distribution). The set of
steps and actions can be seen as part of a control loop, feeding back changes to improve or maintain
the engine. Further control loops such as the above could be designed for the situation where the

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

11

instrumentation is permanently fitted onto the engine and in-flight engine control and actuation
decisions are generated by the integrated instrument. It is indeed here, i.e. the addition of actuation
to sensing and the integration of the wireless instrumentation into closed loop systems, that the hope
for future killer applications of the WSN technologies lay and also, in the authors’ opinion, how their
contribution to increased safety, environmental control and active monitoring would be maximised
to benefit society.

In order to enable the control loop described in Figure 2.1, several end-to-end system requirements
have been established for the instrumentation prototype described here. The instrument should
enable:

Requirement Reason Possible approaches

Multi-point and multi-modal
sensing

Sensing at multiple points
allows a detailed picture of
the phenomena to be built.

Multi-modal sensing (such as
temperature and vibration)
should allow inter-modal
correlations to be better

understood and thus yield
more reliable high level

information.

Multiple sensors (say,
temperature and sound),

possibly supported by
multiple wireless nodes.

Sound can be used as a place
holder for vibration

monitoring given the similar
characteristics of the two

signals in this context.

Communication of sensed
data wirelessly to a

base-station

This requirement is central to
this work: communication

back to a base-station should
be over a wireless link,

reliably over a short distance.

Most popular choices for this
type of application are
Bluetooth and ZigBee

although WiFi might also be
used.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

12

Requirement Reason Possible approaches

Field mapping of sensed
parameter in real-time

Without some form of field
mapping, it is difficult to

understand or interpret the
multitude and variety of

sensed data. This
requirement avoids the “data

overload” at user end,
problem often encountered in

WSN applications.

Various function
approximation approaches,
such as linear interpolation
and radial basis functions,

may be used.
Important note: conceptually

this is a worthy design
requirement, however, its

fulfilment from a
fusion/signal processing
viewpoint would need

research into appropriate,
specific interpolation

methods (possibly model
based) which can credibly

represent in space and time
the phenomena and the

system under observation,
from sparse data points.

Selection of sensors for
history/time-series type

display

For better interpretation of
localised phenomena,

individual sensor time-series
display is required. Previous
experience has shown that

displaying a single sensor at a
time is more intuitive than
showing all and providing a
legend, when a particular
aspect of the phenomena

needs to be analysed in detail.

Time series graphs could be
produced in a separate

window, following sensor(s)
selection by the user, in

real-time.

Data storage Essential given the proposed
use of the system for

maintenance and engine
testing, enabling post analysis

upon experimentation and
testing.

A possible, user friendly
approach, is to use a MySQL

database.

Post event data retrieval Tools are needed to be able
to extract previously logged

data to allow for post
analysis, system validation,

calibration, etc.

A SQL query approach could
be appropriate.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

13

Requirement Reason Possible approaches

Cross-validation of the
mapping produced at point

and over specified intervals of
time

It is necessary to identify the
accuracy of the function
approximation used to

produce a field map so that it
can be used with some
degree of confidence.

A possible approach is to
gather data using standard

sensors and then use
leave-one-out and

leave-two-out cross-validation
methods. Supporting

supplementary mobile probes
should also be considered in
order to enable validation of

interpolation accuracy
between data points.

System extensibility (ease of
addition of sensors and

nodes)

If sensing or communication
devices break, it is important
to be able to replace them
quickly. Also, due to the
prototype nature of the

system, it is important to be
able to add in or remove

sensors or nodes easily. The
design should be scalable in
essence and allow for easy

user end expansion of
network size.

Configuration files could be
used to control which specific

nodes are used in a given
monitoring task. Nodes may

be able to automatically
detect which sensors are

available for data acquisition.
Upon evaluating the

prototype, guidance should
be offered as to the overall
capacity of the network in

terms of bandwidth
considering the RF stack

used.

Integration of calibration
tools

Considering the type of
sensors used (likely in the

lowest MEMS price bracket),
it is expected that there will

be a need for frequent
calibration and compensation

of the thermal effects and
drift in sensors, given the
temperature ranges the

system is aimed at.

Calibration slope and
intercept for each sensor

should be stored in a
configuration file. An

approach to calibration is to
take ground truth values
versus sensed values and
estimate a line of best fit.
The procedure should be
automated and system

integrated as far as possible.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

14

Requirement Reason Possible approaches

Networked system debugging
and testing

Networking, wireless
configuration and sensors

issues may cause unreliability.
It is important to be able to

identify such sources of
unreliability and correct them
on-the-flight, without system

redeployment.

Several third party tools exist
for displaying transmitted
packets, assessing latency

and packet loss, and so forth.

Fault isolation and
management

Faulty or missing sensors
should be clearly identified
and old (stale) data should
not be processed towards
information extraction or

displayed.

Use of NTP to support time
synchronisation between

nodes will allow identification
of data that has been delayed
in arrival. Both faulty nodes

and faulty sensors can be
displayed as such shortly after

detection. Transient faults
should be allowed for with
clear indication at user end
that nodes or sensors are

back on line.

Easy adaptation of sensor
sampling rates to fit data in

the sensed phenomena

Changing sampling rates is
important to allow for a
balance between power

consumption and
responsiveness / time
resolution of the data.

Manual alteration of
sampling rates via start up
configuration is the most

basic approach but an
adaptive approach that

responds to data needs or
battery depletion is also

possible.

Power via either batteries or
mains power supply

Given current power usage,
long running tests will require
mains supply but batteries are
also important to show how
the prototype might be used

in real time deployments.

An approach is to use
external DC transformers that
provide the correct voltage to

substitute for batteries.

Easy distribution of modified
code into the network

During the prototype phase,
it is important to be able to

quickly update code.

Tools for automatically
distributing code to all nodes
are required to do this well.

Given the deployment
considerations, this procedure

should not require
dismantling of the prototype

system from the jet pipe.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

15

Further requirements identified during a meeting with experts from Rolls Royce are shown below:

Requirement Reason Possible approaches

Tolerance to EMI (Electro
Magnetic Interference)

EMI is likely to be a big
challenge to any wireless

system responding to
applications such as the one

in hand.

Careful antenna placement
and / or design may avoid
interference due to EMI.

Support modularity in engine
design.

This requirement is
particularly relevant to engine
test rigs where the time taken

to assemble or disassemble
engines, which are largely

modular, is limited by wiring
of sensors.

Wireless approaches will
support this well if other
factors can be overcome.

Fault diagnosis support and
residual life estimation

Identifying when and where
to perform maintenance

operations will be aided by
this requirement.

Development of a full blown
end-to-end fault management
system to include the energy
related fault forecasting could

be developed. This is a
complex research question on

its own. Presently, an
extension of the basic fault
management system in view

for the prototype can be
considered to cater for some

aspects of this design
requirement.

Tolerance to high
temperatures

Temperatures around engine
casing are not well

understood (and may be
quite high) and conventional
electronics can not be placed

in the areas where sensors
would be needed.

Both research into
deployment opportunities

offered by the engine coupled
with harsh environment
electronics design and a

mixture of wired and wireless
transmissions are possibilities.

Minimal EMI produced As with any in-flight system,
the instrument should not

produce interference that is
likely to interfere with

navigation or other critical
systems.

This requirement was not
researched so far.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

16

Requirement Reason Possible approaches

Secure from malicious or
accidental interference

Without some form of
security mechanism, wireless

transmission might be
intercepted and / or fake
transmissions generated.

Security protocols suitable for
constrained WSN systems are

currently an active area of
research. An approach is to
treat this issue as resolvable
with a software off-the-shelf
component to be integrated

into the nodes support
software.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

17

2.2 Systems Design

The engine monitoring system developed here is not intended to be just a proof-of-concept prototype,
but, more importantly, a framework for developing middleware, tools, interfaces and persistent storage
components, integrated into a end-to-end system that can be used throughout the lifetime of a larger
in-flight engine instrumentation development project. Moreover, from the software development
perspective, solutions for a whole class of monitoring applications should be able to be retrofitted
onto the designs produced here. Hence, while certain elements of the design are “placeholders”
(such as the microphones in lieu of vibration sensors, or the low-cost temperature sensors in lieu of
dedicated high temperature thermocouples), the software framework in which they are to function
needs not be altered when they are replaced. This should remain true for higher level features of
the design such as the fault management functions for example. It is hence important to note that
a view of “organic growth” has been kept at the forefront of the design process and informed many
of the design decisions.

Since most of the system components are intended to have a longer lifetime than the current prototype
described here, many design decisions need careful thought as they will dictate structure, capability
and extensibility of this system and other systems for some time. Section 2.2.1 summarises the key
design decisions.

2.2.1 Design Decisions

In-network or centralised processing In their simplest and most common form to date, imple-
mented wireless sensing systems follow a “sense and send” philosophy and hence use centralised
processing entirely. Each node in a centralised system transmits sensed data back to a single point,
the sink node. The sink can either be an identical sensing node that has the extra task of passing
data to a point outside the network, or a “special” node, such as a desktop computer, laptop, or,
in a limited number of applications, a hand-held device. The raw data is only processed once it has
left the network and been successfully stored.

In-network processing, a concept well founded theoretically, allows nodes themselves to process the
data in some way before transmission. This approach allows for a more timely processing of data,
close to the source (filtering, for example) but is more complex to design and deploy on constrained
nodes. The benefits of most forms of in-network processing are however well documented and mostly
have to do with minimising the energy needed to transmit the data or information from the network
to the sink [3].

For the prototype here it was decided that the nodes would need to be able to perform at least some
minimal processing of data and benefit from some level of distribution of computation. By filtering
the data, for example, at each node, this functional overhead is distributed. Additionally, since
the interface to the network is simplified, writing new applications that use the network becomes
simpler. Further, by having a framework that caters for some level of processing on the node, later
developments towards more sophisticated tasks distribution schemes (for data processing, information
extraction and complex querying) are easier to incorporate. An example of a more complex processing

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

18

in view is aggregating data from multiple, node wired 3D vibration sensors and converting it to a
unit vector - the weight of the transmitted data packages will be reduced by an order of magnitude
at least. Further, should the design evolve towards incorporating one of the many network self-
organisation algorithms found in the literature, providing neighbouring nodes with access to higher-
level information/meta-data at the individual node level would be very important.

From an hardware implementation viewpoint, the in-network processing feature can be easily accom-
modated by the powerful platform used in this work, as documented in the Implementation Section
of this document.

Sensor/node ratio. The classic view of a wireless sensor network contains processing and com-
munication nodes with sensors attached directly to them. The sensors usually sample the observed
phenomena at the position of the node. The hardware platform used here, through an in-house
sensing expansion board provide the opportunity to add many sensors and sensor types to each node,
up to a bus limit of 128. Whilst in deployments over large areas it is not feasible to reduce node
numbers and run wires to multiple sensors, in a system such as this, however, deployed in a small
area, it is possible and advantageous to do so: Firstly, the communication load is reduced through
the use of a mixed wired-wireless system, in terms of actual data sent over the wireless link. Packets
become more efficient as the data/overhead ratio increases, and also, in terms of network satura-
tion, fewer nodes have fewer collisions in a CSMA scheme or less wait between slices in a TDMA
scheme. Optimising the instrumentation system from energy consumption viewpoint is essential in
further stages of the project as the nodes are ultimately aimed to become self-powered (few powering
options are viable at the high temperatures exhibited in a jet engine). Hence, since the biggest drain
on the battery life of a node is communication, the argument for fewer nodes for a given number of
sensors is strong. Secondly, in this particular system, there is an additional user pressure to minimise
weight and take advantage of the deployment conditions (relatively small, confined space on the jet
pipe) and the availability of appropriate cabling for this deployment environment.

As an outcome, the final decision is to use four processing and communication nodes, each with four
temperature sensors and one microphone. The sensors are arranged in a pattern dictated by engine
design and the experience of engine designers, while the node placement is based on simplicity, with
each node mounted outside of the pipe, at equal distances.

Active/passive data collection. Although there are a number of ways to structure the sending and
receiving of data within a network, they are almost always sufficiently described in the abstract as
either a polling, publish/subscribe or passive collection method.

In a polling system, the receiver is responsible for requesting data. In a WSN this would be the
base-station or sink node. The base station would poll, possibly indirectly, the sensing node. The
sensing node would then respond with the required data.

A publish/subscribe model works by each node publishing the availability of a “stream” of data.
Other nodes, typically the base-station, then “subscribe” to the stream and from then on will be sent
data without having to make further requests. This reduces overheads somewhat, since the requests
are sent just once, and works well for continuous monitoring systems where there is a requirement
for the base station to receive all data. Rule-based modifications to this system are possible and
allow customisation to selective data flows.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

19

For a system in which all data from all nodes is always required, the overheads of polling puts that
model in it’s worst-case for efficient communication. In the publish/subscribe model, the act of
subscription becomes an unnecessary formality, since all streams will always be subscribed. In this
situation, a passive collection of data by the base station might be recommended. Each node sends
data to the base-station without polling or subscription. In the application presented in this report,
this is the most suitable method and is the one that has been implemented.

The other methods have not been ruled out for future work and every effort has been made to ensure
that decisions made now will not preclude their inclusion at a later date.

Communications The hardware platform available (a combination of the Gumstix platform and in-
house expansion board) offers a number of possible modes for communication: Bluetooth, Zigbee,
WiFi and wired Ethernet.

The simplest of these to use in developmental work are WiFi and wired Ethernet as they are the
most common methods of networking and, as such, are well understood. Neither is a good fit in a
system such as this one - while WiFi meets the requirement of wirelessness, it does not perform well
in terms of power consumption.

ZigBee, a standard developed for wireless personal area networks (WPANs), has been put forward as
a strong communications technology candidate for wireless sensor networks. It is low-power, cheap
and capable of automatically creating multi-hop networks of many nodes. However, the prescriptive
nature of the standard makes it difficult to implement many of the leading edge efficient routing
algorithms, develop and integrated middleware and so on, while the automatic network discovery and
prescribed routing are not useful features for the system under design here.

Bluetooth is less flexible than Zigbee in terms of numbers of devices able to be accommodated in
a network (limited to just seven connections to base). It also has a shorter range (approx. 10m
indoors) and, according to the literature, higher power consumption. And yet, its point-to-point
nature makes it fairly attractive for small networks. Also, authors’ previous comparative experiments
have shown very little difference between Bluetooth and ZigBee in terms of energy consumption and
range.

Considering the above, Bluetooth is, presently, the most appropriate mode of communication for this
application. However, there is also an identified need for ability to perform prototype monitoring and
logging into the running instrumentation system during testing and prototype development without
affecting the normal functionality and performance of the wireless network. Hence, a secondary mode
of communication has also been deployed, to avoid adding demand to the network that is not related
to the application or final system, or causing network performance degradation by interference. The
wired Ethernet connection will allow such tasks to be performed in a strictly out-of-band fashion.

Since the system itself is expected to outlive the application, however, the other communication
modes should not be ignored. In environments with access to a power source, WiFi supports faster,
larger, networks, while, if large networks are required with low power consumption and no specific
network topology requirement, ZigBee would be suitable.

Consequently, a combination of Bluetooth and Ethernet has been implemented whilst work advanced
towards developing implementations of the other communications modes using the same (API). To

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

20

Audio

Heat

sense

<f rame . . .>

base

User

Gumstix Base station

Figure 2.2: System overview

date, in the current system, it is possible to swap between WiFi and Bluetooth with nothing more
than a configuration change.

Time Synchronisation Time synchronisation is a important service in this prototype, The main-
tenance of a network time where the clock on the basestation and nodes are synchronised allows
comparing the timestamps on the data samples to the system time at the base station, to provide an
effective (if somewhat simple) error and fault handling mechanism. Whilst having a global network
time is essential, synchronising the clock of the base station and to that of the real world is also
important, allowing the sampled data to be stored in a logical way within the persistent storage
database, and facilitating the retrieval of historical experiment data according to logged experiment
date and time rather than some arbitrary value. It follows that the time synchronisation problem
needs to be addressed in two stages: first, the basestation is synchronised with the real world, then
the nodes within the network are synchronised with the basestation.

In the work here, the use of Ethernet emulation over Bluetooth has allowed Network Time Protocol
(NTP) to be used for clock synchronisation. NTP is the most widely used protocol for synchronising
computer clocks to Coordinated Universal Time (UTC) and generally provides an accuracy within
1ms within LAN conditions. This level of clock accuracy within the prototype system is greater
than that achieved in current WSN systems and more than adequate for the error handling and
data logging purpose. The accuracy of the node clocks as compared to the base station is also
important, particularly for evaluating and specifying the network performance in terms of the end-
to-end system latency. Whilst NTP can provide the individual nodes synchronisation as well as the
base synchronisation, other time stamping methods should be considered for the nodes data, such
as for example stamping on arrival at base procedures.

Data Packet Design Data is formatted for transmission using XML - whilst not ideal for use within
a WSN deployment due to the large packet size overhead associated with the markup language, within
the prototype system it provides a simple, easy to understand and standardised syntax for formatting

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

21

<?xml ver s ion=" 1 .0 " encod ing="UTF−8"?>
<schema xmlns=" h t t p : //www. w3 . org /2001/XMLSchema">
<a t t r i b u t e name=" v e r s i o n " type=" f l o a t "></ a t t r i b u t e>
<complexType name=" frameType ">

<sequence>
<element name=" tstamp " type=" f l o a t " maxOccurs="1" minOccurs="1">
</ e l ement>
<element name=" sample " type=" tn s : s amp l eType " maxOccurs=" unbounded " minOccurs=
</ e l ement>

</ sequence>
</complexType>

<complexType name=" sampleType">
<a t t r i b u t e name=" i d " type=" i n t "></ a t t r i b u t e>

<a t t r i b u t e name=" cov " type=" f l o a t "></ a t t r i b u t e>
</complexType>

<a t t r i b u t e name="mode" type=" s t r i n g ">
</ a t t r i b u t e>
</schema>

Figure 2.3: XML Schema

data.

Whilst the prototype system gathers two types of sensed data (temperature and sound), the simi-
larities in data format allows one general encoding schema to be used, with different attributes for
temperature and sound modes. This flexibility inherent in XML will allow the system to be extended
without requiring a large change in encoding for different sensing modes. Figure 2.3 shows the XML
schema for the prototype application.

Debugging and evaluation tools The immaturity of WSN hardware and general lab-limited state-
of-the-art in the field of deployable WSNs means that standardisation is lacking and so is detailed
design documentation for existing working systems. Most research efforts in the area of real-life WSNs
have involved bottom-up developments towards working systems and little of the work is documented
in such a way that it is transferable to the design and implementation of few applications. With
particular reference to the hardware support used in the WSN application here, given the combination
of sensing, processing and communication functions mapped onto the platform, there can be many
causes to hardware failures which in turn affect software development strategies. To this end, a suite
of hardware and software debugging and evaluation tools are necessary, to allow hardware failures to
be diagnosed, and the developed software to be tested and functionally assessed.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

22

1. Hardware debugging tools The hardware debugging tools are required to provide information
about the sensors and communication modules. In the prototype here, the choice of physical and
software connectivity between the individual sensors and the nodes provides the first level of hardware
debugging at no extra cost: the I2C interface software used to gather temperature data allows the
nodes to determine sensor connectivity and recognise invalid data values, hence allowing the user to
understand which sensors are functioning correctly.

Debugging the communication stack can generally be performed using stack-relevant debugging tools.
Given that the design choice here is the use of Bluetooth stack, its Bluez utilities, hcidump and pand
can provide a high amount of low level information on the current state of the communication
module. WiFi communication stacks also provide the same information via kernel level tools. These
are the tools drawn upon in the prototype.

2. System performance evaluation tools In contrast to the “real-time” nature of the hardware
debugging tools. Many of the software evaluation tools will make use of the data gathered during
experimental runs, using the data storage facility to retrieve and post process data and information.
Several dedicated tools need to be considered:

a) To assess the accuracy of the interpolation algorithms a “leave one out” cross validation approach
has been decided on.

b) Given that the aim of the end-to-end system is to provide real-time spatio-temporal representations
of the phenomena, latency (time elapsed between a data sample is acquired and the time it is delivered
to the visualisation component) is an important issue. Latency information is also a valuable tool
in diagnosing the network as a whole and tuning a variety of parameters, such as sampling rate for
example for best performance. A way of measuring latency is through the use of timestamps, both
when the data sample is gathered from the hardware sensor, and when the processed information is
passed to the visualisation system by the basestation. This is the approach implemented here.

Other network performance measurements can be made using a “packet sniffing” tool such as
hcidump or wireshark, which allow the user to see details of all packets transmitted within the
network. The use of such tools is common practise when studying the effectiveness of wired networks,
and have reached a high level of maturity providing a wealth of information on network statistics.
These tools have been integrated in the prototype here, with a view towards ease-of-use.

Database design decisions Data storage is an essential requirement of the end-to-end system to be
developed. A database approach has been chosen. The database is expected to hold a large amount of
data, given that engine monitoring experiment runs involve gathering approximately 64 temperature
samples/second and 4 sound samples/second for prolonged periods of time (days/weeks). This will
hence require an efficient database design. After normalisation, the database consists of four tables
as shown in figure 2.4.

event Holds details of interesting events within experiments. Each experimental run begins with a
“start” event, which logs the time stamp and details of the particular experiment. The design

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

23

Figure 2.4: Database Entity-Relationship diagram

of the table is such that a user can “tag” events (such as the start of a heating phase, for
example) within experiments, with entries within this table.

sensorConf Holds details of nodes’ configuration. For each sensor involved in an experiment a sen-
sorConf entry is generated, allowing the user to understand the exact setting and configuration
of the sensors during the particular experiment.

Sensor Holds details of individual sensors; each sensor is given an id based on its individual id and
Gumstix id. This will allow the exact pairing of sensor-Gumstix to be traced for each experiment
run (this is also helpful debugging information).

Sample Contains details of sound and temperature samples received by the system.

2.2.2 Abstract design

Figure 2.2 shows a high-level abstract view of the system. External phenomena are sensed in two
modes: Audio and Heat. (As mentioned before, the Audio component is presently a place-holder for
the investigation of vibration monitoring. The decision to use microphones at this stage comes from
the similarity of vibration and audio data in terms of format, frequency profiles and data rate.) The
sensors are attached to wireless processing nodes that communicate with the base-station. Within
the sense component, mode dependent sub-components deal with temperature and sound, while a
generic filtering system applies filtering as required. (Details of the filtering options accommodated
as plug-ins in the architecture are given separately).

The base-station, which is running on an ordinary desktop/laptop computer, is responsible for storing
data, displaying the visualisation and interacting with the user. The “sense” and “base” components
are shown in Figures 2.5 and 2.6 and detailed below.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

24

Audio

Heat
sense.temp

Base
Station

<f rame . . .>

sense.sound

sense.kalman

kalman model

Figure 2.5: Breakdown of the “Sense” component

2.2.3 The sense component

The breakdown of the “Sense” component are given in Figure 2.5

The sense.temp module makes use of an in-house written I2C library to query each temperature
sensor in turn.

Timestamps are also gathered at this point. The use of NTP is important here in ensuring that the
timestamps correspond to the actual time. Through trial and error, it was found that a transmission
cycle time of about 0.25 seconds maximised the data rate without causing congestion or loading the
processor too heavily.

The sense.sound module uses the platform’s on-board AC’97 processor and periodically extracts
signal peak levels over short periods of time, currently the sampling period for sound data is 1
second. .

The sense.kalman module performs filtering on the data. The initial approach for filtering was to
use a simple Kalman filter that took no account of the proximity of nearby sensors or their current
reading but rather assumed that the ground truth sensor value was constant. The Kalman “model”
is on a per sensor basis and consists of the current estimate and the covariance matrix. It was found
that the assumption of constant value was not valid for sound, which tends to vary rapidly and a
pass-through filter was used instead for this sensing modality.

A later requirement added to the system specification was to allow the user to visualise the rate of
change of temperature. To support this, a new Kalman filter was developed based on the assumption

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

25

Gumstix

Gumstix

base.gather

User

base.display

base.interpolate

posit ion table

sample history

f(x,y)

Sample

State

Sample

Frame

Frame

Sample

Figure 2.6: Breakdown of the “Base” component

of a constant rate of change of temperatures. The advantage of this approach is that both the
absolute value and the rate of change are smoothed.

Note that the component based design and the care exercised at integration stage allows for the
three filtering options above to be easily swapped.

2.2.4 The base component

The breakdown of the “Base” component is shown in Figure 2.6.

The base.gather module is responsible for receiving frames and breaking them up into individual
samples. Each frame is a recording of the environment at a given instant and can contain multiple
samples – two volume measurements, for example, for the audio sensing mode. The base.gather
module tracks the current state of the sensor value and reports this, on request, to base.display. The
timestamps of original transmission are used to determine if the value is “stale” (hence identifying
a faulty sensor or group of sensors/node). The base.gather module also logs all received sensor
samples to a remote MySQL database. This module deals with both calibration of sensor values
(by applying a linear transform) and identifying the position of the nodes physically and on-screen,
within the visualiser. Again, the calibration component is in the form of a plug-in and can be readily
changed to apply suitable transforms to the data, drawn from sensor calibration and drift correction
procedures.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

26

In base.interpolate, three interpolation methods have been developed and fully integrated into the
end-to-end system:

• cinterpol - based on a radial basis function (RBF) applied to provided sensor points

• QSHEP2D - based on a series of quadratic curve fits

• Nearest neighbour – estimating the value for any point as being the same as its nearest
neighbour.

The user-interface allows the user to select which interpolation algorithm is to be used. Furthermore,
a number of false-colour schemes have been developed: red-scale (values between black and red);
jet-map (provided by TRW); thermograph. The thermograph false-colour scheme has been selected
for implementation in the current prototype but, could easily be replaced by a more appropriate scale,
according to the user-requirements without interference with the rest of the system.

The maximum and minimum values of the interpolated result at every given instant in time are used
to scale values before being mapped through the false-colour look-up table, allowing for an adaptive,
easy-to-interpret scale to be obtained.

The interpolated region shape is a ring (doughnut), corresponding directly to the deployment ar-
rangements for the sensor network as described in the Introduction section. Specifically, it is a large
circle with a smaller circle cut out from the centre, representing the hollow region of the engine ex-
haust (lumen). A number of options for region topology exist. The method used here is to consider
the distance between two points to be the Euclidean distance.

The base.display module displays interpolation results and time series history of a selected sensor.
The base.display module performs the following main functions:

• periodically (default of 0.25 seconds, but user adjustable) requests gathering of new samples;

• initiating the logging of data to the database;

• interpolation of current data;

• displays interpolation results and history of selected node;

• allows configuration, including: whether to display sound or temperature; selection of which
sensor to provide history for; block size (to improve or reduce resolution) setting; desired frame
rate (adjusting block size automatically to meet set frame rate) setting.

In summary, the software support for the system here performs, at node, sensed data acquisition and
time synchronisation, Kalman filtering of values and gradients and data forwarding via Bluetooth to
the base station. Base station software receives and stored temperature, temperature gradients and
sound samples and interpolates one of these, as per user request, in real time to obtain an estimated
map of the desired parameter. Stale sensor values (possibly due to sensor faults or power loss) are
also identified and excluded from the real-time map. Historical data is maintained and can be queried
by selecting any sensor from the display. Whole test runs can be post analysed using the integrated
database storage coupled with a multifunctional user interface.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

27

2.2.5 Communication subsystem

Both the base and sense component make use of a communication subsystem, developed as part of
a middleware framework for WSN (under development by one of the authors here as part of their
PhD). The following section describes this work, and discusses it in context of the prototype system.

Background

As the availability of low cost, low power computing hardware increases, one of the common goals
of WSN research is to achieve mainstream adoption of WSN technologies. However, the inherent
complexity of WSN systems, combined with the wide range of existing hardware platforms, sensor
technologies, communication technologies and design methodologies means that specialist knowledge
is required to develop, test and deploy WSN applications. This provides a significant roadblock to
the wider adoption of WSN technology, as it is difficult for non specialist users to develop, deploy
and maintain WSN applications.

The majority of research effort in the WSN community is “protocol centric”. That is, the focus of the
research is in developing protocols for storage, transmission or processing with as little resource use as
possible, but without the context of a real application. Whilst this work has been of great benefit in
terms of theory, protocols and techniques developed, the diversity of hardware and software solutions
mean there is little standardisation of design and algorithmic approaches, with most applications
implemented with a tight coupling between the application and hardware stack. Such tightly coupled
approaches have created two impediments to development, which in turn increase the difficulties
associated with developing applications:

• Lack of interoperability between individual components on different systems

• Lack of a common framework for new developers to build applications

The communications modules used in the prototype have been designed as part of a middleware API
(Application Programming Interface) for supporting WSN development and deployment, addressing
the issues above by abstracting away the difficulty associated with programming common WSN
tasks. As communication tasks are common to all WSN applications, providing a cross platform
API for performing these tasks is a logical starting point for middleware development. Presently,
the communications modules provide a transparent, cross platform, service for multiple transmission
media such as TCP/IP (WiFi / Ethernet) or Bluetooth Networks. (Support for Zigbee networks is
currently under development.)

Design Principles

Layered Model Abstraction based middleware frameworks typically use layers of abstraction to hide
implementation details of a common task, providing a cleaner work flow, allowing functionality to
be compartmentalised, and enabling a component based code design. The communications modules
developed as part of our framework use a three layer stack as shown in Figure 2.7.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

28

Figure 2.7: Networking modules abstraction stack

• The Abstraction Layer provides the user with a functional API to access the common func-
tionality. Within the communications system this API is common to all hardware platforms
and communication media, calling upon functionality contained within the presentation layer
to facilitate communications tasks.

• The Presentation Layer is responsible for formatting data for passing between the Abstraction
and Hardware interface layers. This ensures that each layer receives the data it is expecting,
regardless of the Hardware Interface layer in use.

• The Hardware Interface Layer is responsible for interacting with the hardware devices. This
performs hardware specific, low level communication tasks, such as sending and receiving data
via the radio chip.

Cross media design The design of the communications modules facilitates cross media communi-
cations. Differences in communication media such as Bluetooth and Zigbee are abstracted away by
the Presentation and Hardware Interface layers. With the Application layer providing one API for all
communication types, it allows applications to migrate between communications methods without
requiring a large amount of code re-factoring.

This allows the developed code to be executed on any hardware platform with communications
modules developed (currently Linux x86/arm, Windows, Symbian) without modification. Different

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

29

communications protocols such as UDP, TCP and Bluetooth RFCOM and L2CAP are also inter-
changeable without major modification. However, due to differences in the node addressing scheme
used such as TCP’s IPv4 and Bluetooth hardware addressing, some modification of the nodes ad-
dressing scheme may be required if switching between communications media.

An illustration of cross transmission media design is given in 2.3.3.

Cross platform functionality. Much like the cross media functionality, another key objective of the
middleware framework is cross platform functionality, allowing code developed on one platform to be
executed on other hardware without extensive modification. This offers a significant advantage, as
sensing applications can be developed and tested on “resource rich” desktop computers, utilising the
wide range of development tools available for these platforms, and giving the opportunity to address
many common implementation errors. Once the underlying code is shown to function correctly in
this environment it can then be deployed on the intended platform, where testing can concentrate
on issues raised by using constrained resources.

The choice of an interpreted language such as Python for the framework implementation reduces some
of the difficulties associated with cross platform design. Python was intended from conception to
be cross-platform and implementations for platforms such as Windows, Mac and Linux are available.
More importantly recent increases in hardware capability has meant that a new generation of Linux
based embedded devices are becoming common in WSN development. Devices such as Gumstix,
iPAQ, and Stargate nodes are capable of running a full Linux kernel and compilation tool chain, and
have the Python interpreter available.

As with the frameworks cross media capabilities design choices such as layers of abstraction and
object orientation make cross platform design a relatively trivial task for the user, as applications
developed using the communications framework can be ported to these devices without source code
modifications. However, the cross platform capability requires hardware specific versions of the code
base used in the Presentation and Hardware interface layers to be developed for each platform,
taking account of the specifications of the intended hardware. Currently implementations of the
communications framework are available for Windows and Linux devices, and also for the ARM
Linux used on the Gumstix, with a implementation for Symbian based series 60 Nokia mobile phones
also under development.

Object oriented design. The communications modules take a object orientated design, with super
classes defining general functionality subclassed into hardware specific implementations. Keeping to
the pre and post conditions in the superclass function definitions ensures that hardware specific
implementations perform in the same way. Hence, applications can be written with code reuse
in mind, as any applications developed using the communications subsystem can expect tasks to
function in the same way. The development of hardware specific modules is also simplified, as a
template for class functionality is provided via the superclass.

Figure 2.8 shows a class diagram for the Link classes, these classes function at the Presentation and
Hardware Interface layers, allowing the communications modules to interact with different networking

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

30

Figure 2.8: Communication modules class structure

hardware. The links.socketLink superclass contains the generic functionality required by the com-
munications subsystems, subclasses such as btlinks.l2capLink provide hardware and protocol specific
implementation of communication methods (in this case allowing communication via the Bluetooth
native L2CAP protocols).

Plug-and-play code reuse Following the object oriented paradigm presents a greater opportunity
for code reuse, as methods using the communication modules are able to be transferred between
applications, communications media and hardware platforms without requiring refactoring. For ex-
ample, if a routing algorithm is developed, the framework should allow the same code base to be used
in any other application using the framework without the need for extensive modification. Allowing
plug-and-play code reuse is a major consideration of the middleware framework, aimed at reducing
the complexity of developing code by offering a library of pre-developed modules.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

31

2.3 Implementation

2.3.1 System level data flow and hardware support

Hardware architecture

The hardware architecture of the implemented system is given in Figure 2.9.

The prototype system is comprised of 4 data gathering nodes. (Note that a fifth node is added
to the system for evaluation purposes as described earlier in the report). These collect sound and
temperature data from the attached sensors, filter and calculate “delta” values then forward the
processed data to the basestation via a Bluetooth connection.

The basestation processes the incoming data, attaching to each data packet information such as
node position from the configuration file. Following this the calibration coefficients are also applied
resulting in calibrated data being used further in the chain. At this stage the calibrated data is checked
for errors (stale data is excluded), before being passed to the interpolation engine. The interpolated
field is then displayed on the user interface. Concurrently the calibrated data is forwarded to the
external database for storage and post processing.

Node hardware

The Gumstix platform was chosen as the base for the sensing nodes. The Gumstix Verdex board
includes an Intel XScale PXA270 400MHz processor, 16MB of flash memory, 64MB of RAM, a
Bluetooth controller and antenna, and 60-pin Hirose, 120-pin MOLEX and 24 pin flex ribbon con-
nectors for expansion boards. The in-house custom expansion board provides Zigbee communications
via a MaxBee chip, I2C bus support, and audio processing, and is discussed fully in Section 2.3.1.
Temperature sensing is achieved via the Analog Digital ADT75A chip, which performs sampling and
conversion internally, before delivering the sensed temperature values via an I2C bus. The ADT75A
provides temperature resolution of 0.0625°C via a 12 bit ADC, and is rated for operation between
-55°C and +125°C.

During operation, the software running on the node consumes approximately 6MB of RAM. The
operating system consumes a further 15MB, leaving around 43MB free for further application software
that might be developed in the future. Secondary storage requirements are very low, and typically
each node has 7MB free out of a total 16MB available. When in full operation the application uses
between 11-14% of the available processing capability.

Networking using Bluetooth, Ethernet or WiFi is offered here as a system service, and can be used by
multiple applications at any one time, just as with a desktop operating system. (Zigbee is currently
limited to a single user. That is, more than one application can communicate using Zigbee but they
must all use the same UID. Only a Python API has been developed for Zigbee at the moment. When
it has been fully evaluated, the single user limitations will be overcome if Zigbee is considered a
suitable choice.)

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

32

Figure 2.9: Prototype hardware architecture

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

33

Interface board design

To deploy the Gumstix [4] processor module in this application with a compact footprint and rea-
sonable power budget, a special purpose interface board was designed as shown in Figure 2.10.
Connecting to the Gumstix via its 60-pin Hirose connector, the main functions of the 100x30mm,
double-sided surface mount board are to provide essential interconnection features and a flexible
power scheme.

External power is sourced from either a 5V DC jack or a 5V USB bus, where a 500mA capable
device is required to provide adequate power. The external power supplies a Maxim 1551 [5] battery
charger which will select between the DC and USB source to either charge a connected battery or
provide direct power to the system if no battery is present. The battery is a single cell Lithium-
polymer 1000mAh device. Power to the interface electronics and processor board is supplied at 3.3
V through a Maxim 8887 [6] low drop out regulator incorporating overload protection and thermal
limiting. The power budget depends on precise operating conditions but an unloaded interface
typically consumes between 10 - 20mA, rising to between 200 - 300mA with a processor and typical
interface configuration. The power consumption of the Gumstix processor is particularly peaky during
its boot cycle which can see consumption rise to over 400mA for short periods.

Interface capabilities provided by the design include: USB master/slave port over a mini-B connector;
4-way I2C buffered bus for connecting a variety of sensors to suit the application; Line-level stereo
audio input/output and microphone input provided by the Phillips UCB1400 [7] codec connecting to
the Gumstix XScale processor via AC97; Asynchronous serial connection to an on-board Maxtream
XBee [8] module for IEEE802.15.4 radio; Programmable LED indicator for status monitoring.

The most complicated aspect of the board design was determining the correct GPIO signals to use
for the serial connection and monitor LED across a few different versions of the Gumstix module
given the multi-functional nature of the XScale processor IO. In future it is planned to increase the
battery charger power capability to allow faster battery charge while also powering a processor.

2.3.2 Signal processing: Calibration and filtering options

Sensor Calibration

To calibrate the temperature sensors, a process similar to that used in industry was followed. Placing
the sensors in a water bath and recording the ground truth temperature of the bath with a reference
thermometer. Recordings of the temperature values reported by the sensors were gathered and
compared to this reference temperature value to discover the sensor offset.

The offset is calculated using the following process:

It is assumed that the water bath cools according to Newtons law of cooling.

T (t) = Tenv + (T (0)−Tenv)e−rt

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

34

Figure 2.10: Cogent interface board

where T (t) is the temperature at time t, and T (0) is the initial temperature at time 0.

Therefore, treating T (0) and r as unknown

ln(T (t)−Tenv) = ln(T (0)−Tenv)− rt

Assuming Tenv= 24(°C) this is an equation of the form

y =mx+ c

where

x = t

y = ln(T (t)−Tenv)

m = −r

c = ln(T (0)−Tenv)

So a line of best fit for t versus ln(T (t)−Tenv) gives an estimate of the slope and offset, mx and c
respectively.

This line allows us to estimate temperature for any time t based on a small set of readings. We
estimate a line of best fit between Tref(e)and the sensor temperature Ts(t) to identify sensor response.
It is assumed that actual response is linear and without hysteresis. The slope was formed to be close
to 1 and so was assumed to be so.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

35

The calculated calibration values are recorded in a configuration file on the basestation. This is read
upon systems start up, and the reported temperature values from the sensing nodes, adjusted using
the calibration values calculated using the above process.

Kalman filter and “delta” calculation

The generic framework defines a node level filter f . In the gas turbine engine demonstrator, the
filter was comprised of several processing steps: First, outliers were removed; second, sensor values
were calibrated according to sensor-specific calibration coefficients; third a Kalman filter was used to
reduce sensor noise.

Outlier removal is necessary because the sensors occasionally produce extreme values, possibly due to
I2C bus communication errors. This is not dealt with by the Kalman filter, which assumes that noise
is distributed normally with a zero mean. Although the digital thermal sensors provide degrees Celsius
as output and are factory calibrated, sensor readings differed slightly from the actual temperature.
Sensor response tends to be quite linear with a roughly unitary slope. Therefore, calibration was
restricted to adding a sensor-specific offset. This calibration coefficient was obtained by placing
sensors in a stirred water bath and comparing with a calibrated mercury thermometer.

The third stage of filter processing is to use a Kalman filter. There are several reasons for incorporating
Kalman filtering [9, 10]: 1) to recover some resolution in the temperature measurement that is lost
through A/D conversion; 2) to reduce sensor and measurement noise; and 3) to fuse multiple
redundant sensor readings into a single estimate. Temperature in the jet pipe over time is clearly a
non-linear function. However, since there are so many factors (both measurable and unmeasurable)
affecting it, and since it tends to change relatively slowly, the linear assumption implicit in a Kalman
filter is a good compromise. Two possible state models for the filter were considered for this work:
one that assumes that the temperature does not change (and thus any change is noise), and one
that assumes that the rate of change of temperature is constant (and thus any change in the rate
of change is noise). In the present system, the latter was used, as it provides smoothed estimates of
both temperature and rate of change of temperature.

Given a single location temperature τℓ, a constant temperature rate model is comprised of the state

space for the location xℓ = (τℓ, τ̇ℓ)
T , a transition model F =

(

1 ∆t
0 1

)

, and some model noise w,

such that at time k,
xk = Fxk−1 + wk

The vector of sensor measurements for a probe zk is given by

zk = Hxk+ vk

where H = (1,0) is the sensor model (corresponding to a single, calibrated temperature sensor) and
v is noise affecting the sensor. Sensor measurement noise is distributed normally with a zero mean
and covariance R. It is assumed that sensor noise is uniform across sensors and uncorrelated between
sensors and thus R = σ2

z , where σ2
z is the variance due to measurement noise. This variance was

estimated for the sensors used by measuring a series of values for two sensors at room temperature and

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

36

taking the individual variance as half the variance of the difference. This estimate is valid if the sensor
noise for the two sensors can be considered to be independent. The model noise w is also distributed
normally with a zero mean and covariance Q. In terms of the model, the noise wk corresponds to
the change in temperature and temperature rate due to the temperature “acceleration” ak, which is

wk = Gak

where G = (∆t/2,∆t)T . It is thus possible to derive an expression for the covariance Q in terms of
∆t and the variance in the acceleration rate σ2

a. The acceleration rate variance provides a convenient
tuning parameter to allow for more or less rapid variations in temperature.

A key challenge is to support the Kalman filter with minimal computational cost. In the prototype
system, Python was used with matrix manipulation done via Numeric, and although this is a relatively
inefficient approach, it reduced coding time dramatically and was still able to run in a real-time mode
on the platform of choice for this prototype.

The result of filtering is to produce a state / management vector of the form xℓ,t= (τ, τ̇ ,ν,p1,1,p1,2,p2,1,p2,2)T

where τ is the temperature, τ̇ is the temperature rate, ν is the sound level, and p is the 2×2 estimate
covariance matrix. Note that the sound level ν is not processed by the Kalman filter. Also, in the
implemented system, sensor locations for sound and temperature were always distinct and thus the
state vector contained one or the other but not both.

No event triggers were used in the gas turbine engine demonstrator, nor any priority ordering. Event
detection could be used to substantially reduce traffic when the system is relatively stable. For
example, an event might be “temperature has increased by 2°C.” Note that event detection can
make use of knowledge of the state evolution model m, and only transmit when the model error
would be too large. Under this view, an event might be “based on the last transmitted state, the
base station estimate error will exceed 0.5°C.” In a sense, the event predicate must make a judgement
about the information value of the state vector to the user.

2.3.3 Communications

Much of the networking and message passing in the prototype is controlled by the communication
modules discussed in Section 2.2.5, however it was still necessary to implement communications
functionality specific to the jet pipe application on top of this framework.

TCP emulation over Bluetooth

Whilst the communications subsystem offers native Bluetooth communications, Ethernet emulation
over Bluetooth via PAND was used to facilitate networking. Whilst this may not be optimal from a
communications viewpoint as the Ethernet emulation does inflate packet size, experimentation has
shown this overhead to be minimal. Emulation offered many benefits in the implementation, allowing
TCP based networking tools NTP for time synchronisation and packet sniffing to be used. If future
work requires native Bluetooth communications, a time synchronisation module would need to be
implemented.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

37

The network topology used in the prototype is based on Bluetooth Piconets, with each sensing device
connected as a slave to the basestation. The network is initiated using a start up script, that starts
the networking daemon on each sensing device. The basestation can then form a network using
PAND commands run as a setup script on the basestation.

Communications methodology

The communications engine was configured to use UDP sockets, providing best effort, connectionless
packet delivery. UDP offered a sensible choice for the underlying communications protocol, as
although it is possible for packets to be dropped due to errors, the high data rates used in the
prototype mean the effect of this is minimised. The low overhead of UDP compared to TCP based
communications means there is sufficient bandwidth available for the data rate used.

Sensing nodes passed filtered data directly to the communications engine, to be sent in real time.
This was in keeping with the passive nature of data collection used by the basestation, allowing
the nodes to offer a stream of data that can be queried at any time by the basestation. Whilst
data collection forwards sensed data to the sink without a publish / subscribe or polling based
methodology, a method of collecting data from the communications subsystem was still required. As
the bulk of the processing on the basestation was performed by the interpolation algorithms, it was
beneficial to retrieve data from the network when each interpolation cycle was complete, rather than
deal with updated temperature data during interpolation. Hence, a polling approach was used on
the basestation to retrieve data from the communications subsystem. Incoming data was stored in
the network buffer, the communications system then checked for new data after each interpolation
cycle, updating the values used in interpolation with the latest data from the sensors.

Implementation Examples

Whilst UDP communications were originally implemented, it was possible to switch between com-
munications protocols without extensively modifying the code. To illustrate the “minimum effort”
approach the communications modules offer, the UDP based communication was migrated to Blue-
tooth native L2CAP. However, as discussed above this method of communication meant that time
synchronisation was unavailable, affecting the error handling system. Bluetooth native communica-
tions are only shown here as an example.

Figures 2.11-2.12 show the source code required for the two different communications protocols.
Note that for clarity the examples are without the optional address look up table, as this would
obscure the problems presented by the different between the addressing schemes used.

Whilst the two communication protocols provide similar connectionless best-effort delivery, they
make use of very different hardware and communication methodologies. However, the software
implementation differs in only two ways. The first difference is the modification of:

l i n k = e t h L i n k s . udpLink (. . . .)
to

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

38

import s o ck e t S e t

import e t h L i n k s

def onRecv (addres s , data) :
" " " S imp le c a l l b a c k method tha t i s p r o c e s s ed when we get data " " "
p r i n t "%s s en t %s " %(addres s , data)

def s e t u p S ocke t s (s e l f) :
" " " Setup the s o c k e t s e t " " "
#L i s t e n on someAddress po r t 8080
l i n k = e t h L i n k s . udpLink ((" 192 . 168 . 0 . 1 " , 8080))

#And a s o c k e t s e t to use t h i s l i n k
s ockSe t = s ocke t S e t . SocketSet (l i n k , t heHand l e r = onRecv)
#Use c a l l b a c k s and s e r v e f o r e v e r
s ockSe t . s e r v e F o r e v e r ()

def sendData (s e l f , data) :
" " " Send data v i a the s o c k e t s e t " " "
#Send to anothe r Addres s po r t 8080
s ockSe t . sendData (data , (" 192 . 168 . 0 . 2 " ,8080)

Figure 2.11: UDP communications code

l i n k = b t L i n k s . l 2 c a p L i n k (. . . .)

this informs the SocketSet which network protocol to use, and is a simple substitution for the desired
communications protocol.

The second alteration of

l i n k = e t h L i n k s . udpLink (" 1 9 2 . 1 6 8 . 0 . 1 " ,8080)
to
l i n k = b t L i n k s . l 2 c a p L i n k (" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 " ,0 x1001)

And

so ckSe t . sendData (data , (" 1 9 2 . 1 6 8 . 0 . 2 " ,8080)
to .
s o ckSe t . sendData (data , (" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 " ,0 x1001)

illustrates the requirement to modify the addressing scheme to use the hardware based addressing
scheme of Bluetooth rather than UDPs IP address based scheme:

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

39

import s o ck e t S e t

import b t L i n k s

def onRecv (addres s , data) :
" " " S imp le c a l l b a c k method tha t i s p r o c e s s ed when we get data " " "
p r i n t "%s s en t %s " %(addres s , data)

def s e t u p S ocke t s (s e l f) :
" " " Setup the s o c k e t s e t " " "
#L i s t e n on a d d r e s s 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 po r t 0 x1001
l i n k = b t L i n k s . l 2 c a p L i n k ((" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 " ,0 x1001))

#And a s o c k e t s e t to use t h i s l i n k
s ockSe t = s ocke t S e t . SocketSet (l i n k , t heHand l e r = onRecv)
#Use c a l l b a c k s and s e r v e f o r e v e r
s ockSe t . s e r v e F o r e v e r ()

def sendData (s e l f , data) :
" " " Send data v i a the s o c k e t s e t " " "
#Send to 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 po r t 0 x1001
s ockSe t . sendData (data , (" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 " ,0 x1001))

Figure 2.12: L2CAP communications code

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

40

2.3.4 Interpolation Methods

The generation of field-like visualisations is essentially a problem of interpolation from sparse and
irregular points. Given a set of known data points representing the nodes’ perception of a given
measurable parameter of the phenomenon, what is the most likely complete and continuous map of
that parameter? That is, with only a small number of points within the area for which a measurement
can be taken, the problem is one of interpolating between them to produce a complete visualisation.

In the field of computer graphics, this problem is known as an unorganised points problem, or a
cloud of points problem. Since we assume that the position of the points in xy is known, the third
parameter can be thought of as height and surface reconstruction algorithms can be applied.

Simple algorithms use the point cloud as vertices in the reconstructed surface. These are not difficult
to calculate, but can be inefficient if the point cloud is not evenly distributed, or is dense in areas
of little geometric variation. Since the interpolation is linear, it does not usually produce a good
approximation of the propagation of the phenomena.

Approximation, or iterative fitting algorithms define a new surface that is iteratively shaped to fit the
point cloud. Although approximation algorithms can be more complex, the positions of vertices are
not bound to the positions of points from the cloud. For applications in WSNs, this means that we
can define a mesh density different to the number of sensor nodes, and produce a mesh that makes
more efficient use of the vertices. Self organising maps are one of the algorithms that can be used
for surface reconstruction [11]. This method uses a fixed number of vertices that move towards the
known data.

Note that surface reconstruction on typical non-overlapping terrains is equivalent to sparse-data
interpolation. This kind of geometric parameter interpolation has been shown to work well for
reconstructing underlying geography when the entire network has been queried [12]. However, it
does not extend well to variable surfaces or overlapping local mapping, since it requires a complete
data set to define the surface.

Radial basis function

The simple inverse distance algorithm, used in WSN applications before [13], is defined as:

f(P) =

N
∑

i=1

d−ui zi

N
∑

i=1

d−ui

if d 6= 0 for all Di

zi if di = 0 for some Di

Where, P is the point at which the interpolated value is required, di is the distance from P to the
point numbered i in the N known points and zi is the known value at point i. The exponent, u, is
used to control the smoothness of the interpolation. High values lead to sharp edges between regions

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

41

while low values lead to soft edges.

Simply: given a point, P , the function evaluates to the interpolated value at that point.

Looking more closely at the function, we find two parts. The second simply states that if there exists
a known value at the given point, the function returns that value. It does not interpolate when there
is a known value.

The first part,

∑

N

i=1
d
−u

i
zi

∑

N

i=1
d
−u

i

, is used when there is no known value at the given point. In this case,

in the top of the fraction each known point is multiplied by a value calculated to be inverse to its
distance to P . In other words, the further from P a known point is, the smaller the value it is
multiplied by becomes. The bottom part of the fraction is simply the sum of all of those weights.
The division, then, results in a value ranging between the smallest and highest known values.

Although much of our development work has been done in Python, because of its flexibility and the
ease of porting software to the nodes after developing on a desktop, the more processor intensive
tasks, like interpolation, have been implemented in C. The C implementation is then made available
using a Python wrapper.

The RBF interpolation was first implemented as a function that takes a range of values representing
known points and the coordinates of the point for which an interpolation is required and returns
the result. This improved the speed of calculation greatly over our first Python prototype, but it
was found that passing a large number of values in Pythonic form to retrieve each value (up to
480,000 times per frame) took up more time than calculating the value. So, instead, a linked list
was developed in C and then wrapped in Python to produce a data structure that was fairly intuitive
while in python, since it appears as an object with methods for adding, etc., but was also natively
understood by the code written in C. Now when the interpolation function is called, it is simply
given the list object containing the known points. The C function actually receives a pointer to the
beginning of the list and so there is no copying or translation to be done.

Even with this speed improvement, in an unpredictable environment like a desktop computer, there
is no guarantee of how much load is currently on the processor. It is not always possible to achieve
a target frame rate of around 12FPS when interpolating each point. To compensate for this, the
implementation recognises when the frame rate has fallen below the target and adjusts the quality
of the visualisation. The reduction in quality is given by interpolating fewer points, but doing so
in a regular grid so that the returned values can be drawn as boxes. The overall result is that the
visualiser appears to move to a lower resolution as demand increases.

Shepard interpolation

The implementation used is QSHEP2D [14] a modified quadratic Shepard interpolation, that produces
the function Q(X,Y) such that Q interpolates a set of N data values, The FORTRAN QSHEP2D
implementation [15] is used, with the original FORTRAN code wrapped to allow access by the python
application.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

42

Input: Point to Interpolate
closestPoint = None;
foreach Known dataPoint do

calculate Distance from queryPoint;
if Distance < closestPoint.distance then

closestPoint = dataPoint;
end

end
queryPoint.value = closestPoint.value;

Figure 2.13: Nearest neighbour pseudo-code

Nearest-neighbour interpolation

Is a simple method of interpolation, that applies to the field points the value of the nearest known
data point. The nearest neighbour interpolation algorithm implemented performs a simple linear
search of all known data points, calculating the Euclidean distance between these and the unknown
value points and selects the value of the closest point. Figure 2.13 gives pseudo-code for the nearest
neighbour interpolation

2.3.5 The visualisation component

A snapshot of the visualiser is shown in Figure 2.14. The main portion of the screen is a live display
of the interpolated values received from the network. The top left-hand corner shows the current
sensing mode being viewed and the algorithm used to produce it. In Figure 2.14 the snapshot shows
temperature values interpolated using the radial basis function.

Since one of the goals of this work is the construction of a re-usable framework for WSN application
development, the interface has been designed to be as flexible as possible. That is, apart from the
strings containing identifiers for sense modality and their human-readable counterpart, the visualiser
contains nothing that precludes it from being used to display any interpolation of scattered-point
data. In fact, this generality was exploited to add to the visualisation component the ability to show
relative changes in the sensing data displayed rather than absolute values, at the users request. (This
mode of visualisation was used to report the “delta” values.)

Further, the graph facility of the visualiser, shown in Figure 2.15, has no details peculiar to this
project. Using remote method invocation (RMI), the graph runs in a separate interpreter and is
given all details at run-time, including the X and Y ranges, labels and, of course, data. This facility
allows the user to select individual sensors for the time-series validation.

As well as providing an interface that can be used for multiple sense modalities, The authors here
were keen to provide an interface suite that can be used for a variety of applications. At the moment,
the layout of the visualiser is fixed. However, each component has been developed to require only
the provision of a reference to screen-estate to function. In other words, each visual component is

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

43

Figure 2.14: Snapshot of the visualiser

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

44

Figure 2.15: Historical data graph component of the visualiser

unaware of the others. This is the first step towards a UI library for WSNs. Next steps include the
addition of isopleth generation and topology visualisation.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

45

Figure 2.16: Base station and instrumented gas turbine engine

2.4 Evaluation

Preliminary evaluation of the system as a whole and in parts has been performed. Over a period
of 30 days, in excess of 6 million samples have been logged in the database and made available
for post-analysis. Experimental results and observations, and evaluation conclusions against the set
demonstrator goals are detailed below.

2.4.1 Experimental setup

The deployment environment for the prototype instrumentation consists of a jet pipe, with the
sensors mounted in a radial pattern within the pipe. Sensors are wired in sets to five microprocessing
and communication nodes mounted on the outside of the jet pipe (Figure 2.16). Sensor values are
wirelessly transmitted to a base station (a laptop), which provides a visualisation of the sensed data
or its rate of change over the monitored surface area, and, on demand, a history of individual sensor
values. As well as temperature sensors, a smaller number of microphones are connected to the nodes
to demonstrate the system’s capability for multi-modal sensing and the ability of the prototype to
function with high bandwidth sensors. All-in-all, the wireless gas turbine engine monitoring system
consists of 20 temperature sensors and 4 microphones; 5 processing nodes based on Gumstix Connex
400xm-bt, with custom-built expansion board to provide audio and I2C connectivity and a base station
with visualisation software and a non-volatile database for data storage. Four of the processing
nodes are part of the fixed experimental set-up whilst the 5th is a “probe” node used for evaluation.
Temperature sensors are arranged in a similar manner to Vibro-Meter’s existing thermocouple harness
shown in Figure 2.17.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

46

Figure 2.17: Annulus thermocouple harness (picture supplied by Vibro-Meter UK)

The basic annulus configured with sensors and Gumstix microprocessors is shown in Figure 2.18.
The annulus came with holes that were intended for thermocouple sensors. Dowelling was placed
into these holes to support the I2C sensors at two insertion depths: one roughly on the rim and
one halfway between the rim and the central cone. The I2C sensors were connected to the Gumstix
processing and communication nodes situated on the outside of the annulus, with 4 temperature
sensors per Gumstix, 2 sensors on each I2C data cable. The microphones were mounted on the
Gumstix. The experimentation took place in the Cogent Computing lab, a room of approximately
4m x 8m with natural ventilation through windows and doors. Two types of heat actuation tools
have been used: a hair drier and several stage lights.

Some of the experiments were carried out with the annulus in the open environment as shown in
figure 2.18, whilst some of the experiments were slightly more controlled in terms of convection by
covering the top of the annulus with clingfilm as shown in figure 2.19.

2.4.2 Fulfilment of the application specific goals

Functionality based on User Requirements

The prototype has been developed in a two stage process - first, basic functionality was implemented
according to user requirements; a demonstration of the functionality was given and allowed for
focused user feedback. Based on this, addition of functional features followed, in order for the design
to better achieve the perceived goals of the prototype. The following three features are notable from
within the functional enhancements:

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

47

Figure 2.18: Annulus with I2C sensors and Gumstix attached

Provision of “delta” field visualisation The original prototype design displayed field representa-
tions of current temperature values. Whilst this allowed a view of the overall state of the sensed
phenomena, the end-user claimed that a more effective way of interpreting the data acquired by the
prototype is through observation of temporal temperature variations. This feature was catered for
through the implementation of a “delta” mode. This involved adding another level of in network
processing, at the sensing nodes that measured the current rate of change of the sensed temperature,
allowing changes to the values to be communicated to the base station and displayed.

Ability to request historical information on temperature readings. Time-series based graphing
functionality has been developed to allow the user to display, on request, sensor historical values.
Figure 2.20 gives an example of the information displayed by the graphing module. Similarly to the
“delta” mode, this allows the user to observe the changes in sensed data values, creating a better
picture of the state of the system being monitored in case of interesting events.

Tools and features to allow assessment and comparison of different interpolation methods
To assess the usefulness of the interpolation options offered by the system, a method of validating the
field representations produced by the interpolation algorithms was required. To this end the “leave
one out” cross validation approach was developed as discussed elsewhere in the report. Moreover,
a “probe node” has been added to the system of fixed sensors, holding four temperature sensing
devices, able to be placed at an location within the field of interest, in order to validate interpolated
data accuracy between the fixed sensing points.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

48

Figure 2.19: Reduced convection experiment

Figure 2.20: Graph module output

2.4.3 Fulfilment of software engineering goals

End to end system performance

Several issue have been considered when evaluating the end to end systems performance, with
particular attention given to system robustness. This was evaluated through:

Repeated start-stop tests Within a period of four hours the system has been started 5 times and
found to function correctly most times. During one such test required the NTP server to be reset as
the time forwarded to the Gumstix was incorrect. Using a protocol such as NTP that is dependent
on a external network connection has the potential to cause failures in time synchronisation if the
system is deployed outside of laboratory conditions. To this end, the use of a time synchronisation
protocol such as [16] would allow the network time to be synchronised to that of the base station,
providing a global system time based on the basestations current clock, regardless of the correctness
of this compared to world time servers.

Further tests involved the system being dismantled from the pipe, used on a table top, re-arranged

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

49

on the pipe and tested. No loss of functionality has been observed.

Continuous functional tests The system has been left to gather data continuously for a period
of 7 days without node failure, or incurring any data loss. Repeated functional tests have led to very
rare node failures, with the worst case being that of one node failing after 20 hours over a 24 hours
test; this was due to the Bluetooth connection between the node and basestation failing, although
the reason for this was unclear.

Given that in the current system design the Bluetooth network is created manually each time a test
or demonstration is needed, this has allowed modification to the network parameters such as node
connection/topology, or master slave role swapping between devices for testing purposes. In further
prototypes, it will be possible to have the Bluetooth connections created during the devices boot
cycle, in which case one can create a persistent Bluetooth connection, where the instrument monitors
the Bluetooth link and attempts to reconnect if the link is broken.

In the current prototype, various problems with the Bluetooth connection were diagnosed using the
utilities provided by the Bluetooth stack; these include hcidump that can output a report of all packet
information between paired Bluetooth devices.

Sensing performance

As with any measurement system, sensor calibration is an important issue. The system reported here
has been built with low cost integrated temperature sensors that would not be suitable for industrial
deployment where reliably accurate temperature measurement is required. Repeated experimentation
with the ADT75A sensors showed that in near uniform environments their response varied greatly.
Both offset and slope errors in factory calibration are significant.

Use of a Kalman filter has helped to remove noise from sensor data. Figure 2.21 compares filtered
and non filtered temperature data from three sensors in the system over a 60 second period in a
even un-stimulated indoor environment. Figure 2.22 shows filtered temperature data from 16 sensors
(grouped by associated Gumstix) over a 16 hour overnight period. The room environment was,
during the data collection, even over the sensors set. However the sensor reading show variations of
up to 3.6°C on the maximum sensed temperature and of 2.5°C on the minimum sensed temperature.
Sensor sensitivity variations have also been observed.

Whilst the effects of sensor to sensor and sensor to ground truth variation can be alleviated through
additional calibration (using the integrated calibration facility) experimentation has shown that the
temperature response of the ADT75A tends to drift over time and an adjustment to the calibration is
needed every so often. The calibration errors in sensor values prevented, initially, a clear evaluation of
the absolute temperatures visualisation and interpolation procedures. However, the “rate-of-change”
(“delta mode”) visualisation method removes some of the problems to do with lack of calibration as
it inherently ignores offsets between sensors and is hence explored and evaluated more fully below.

Lengthy experimentation has revealed a design fault in the sensor boards, leading to high instability
of the sensed data. 100nF capacitors were fitted on the temperature sensor boards which lead to

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

50

 25

 25.5

 26

 26.5

 27

 200 210 220 230 240 250 260

T
em

pe
ra

tu
re

Experiment Time (S)

Temperature over time

Sensor 64
Sensor 55

Sensor 111

(a) Unfiltered Sensor Data

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 29.6

 29.8

 30

 200 210 220 230 240 250 260

T
em

pe
ra

tu
re

Experiment Time (S)

Temperature over time

Sensor 64
Sensor 55

Sensor 111

(b) Filtered Sensor Data

Figure 2.21: Comparison of unfiltered and filtered uncalibrated Sensor Data

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

51

 22

 23

 24

 25

 26

 27

 28

 29

05/06
16:00

05/06
18:00

05/06
20:00

05/06
22:00

06/06
00:00

06/06
02:00

06/06
04:00

06/06
06:00

06/06
08:00

06/06
10:00

T
em

pe
ra

tu
re

Time

Gumstix 24

113
115
117
111

 22

 23

 24

 25

 26

 27

 28

 29

05/06
16:00

05/06
18:00

05/06
20:00

05/06
22:00

06/06
00:00

06/06
02:00

06/06
04:00

06/06
06:00

06/06
08:00

06/06
10:00

T
em

pe
ra

tu
re

Time

Gumstix 29

59
57
55
56

 22

 23

 24

 25

 26

 27

 28

 29

05/06
16:00

05/06
18:00

05/06
20:00

05/06
22:00

06/06
00:00

06/06
02:00

06/06
04:00

06/06
06:00

06/06
08:00

06/06
10:00

T
em

pe
ra

tu
re

Time

Gumsitx 34

72
68
61
64

 22

 23

 24

 25

 26

 27

 28

 29

05/06
16:00

05/06
18:00

05/06
20:00

05/06
22:00

06/06
00:00

06/06
02:00

06/06
04:00

06/06
06:00

06/06
08:00

06/06
10:00

T
em

pe
ra

tu
re

Time

Gumstix 38

77
65
69
73

Figure 2.22: Filtered temperature data over a 16 hour overnight period

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

52

Table 2.3: Class 2.1 Bluetooth device specification (Bluetooth 2.1 + EDR Features and Specifica-
tion).

Maximum Permitted Power 2.5mW (4dBm)
Range 10m

Signalling Rate 3Mbits/s
Transmission Speed 2.1Mbits/s

the performance of the sensors increasing as shown in figure 2.23. The capacitor smooths the power
supplied to the node, and removes fluctuations in the data supplied to the end user, increasing the
accuracy reliability of the gathered data. Future work will assess the usefulness of filtering the sensed
data with the sensor-capacitor pairs, as the increase in reliability of raw data values compared to that
gathered by nodes without capacitors, may make this smoothing step unnecessary. Analysis of the
end-to-end data processing and transmission time 2.4.3 indicate that the time overhead associated
with this filtering step is approximately 0.18s. Whilst at current sampling rates of 4 samples a
second the impact of this on overall performance is minor. If further experimentation with capacitors
proves that there is a significant reduction in sensor noise there is scope for increasing the processing
performance of the system without adversely affecting accuracy by removing the Kalman system.

Given that in the future the project aims to use high quality thermocouples with well specified
properties and well understood behaviour in the next prototype, it is expected that, from a viewpoint
of sensed data accuracy, the system will undergo further development and evaluation.

Network performance

In a system designed to monitor and provide information on sensed phenomena, the timeliness of the
displayed data is important, old data can lead to the incorrect information being displayed, which in
turn affects any decisions made based upon the information offered by the system. To this end the
wireless network performance has been analysed in terms of latency, data throughput, bandwidth
and communications range.

A selection of network level tools are used for this, including the hcidump Bluetooth debugging
tool provided within the Linux Bluez Bluetooth stack. This provides packet level information on all
Bluetooth devices paired with the basestation. The logs supplied by the hcidump tool were analysed
with the wireshark analysis tool.

Device Bluetooth Specification The Bluetooth module used to provide network communications
is a Infineon singlestone PBA 31308 [17], which follows the Bluetooth 2.0 +EDR specification. Table
2.3 shows the specification for Class 2 Bluetooth devices.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

53

 25

 25.5

 26

 26.5

 27

 200 210 220 230 240 250 260

T
em

pe
ra

tu
re

Experiment Time (S)

Temperature over time

Sensor 64
Sensor 55

Sensor 111

(a) Unfiltered Sensor Data

 25

 25.5

 26

 26.5

 27

 200 210 220 230 240 250 260

T
em

pe
ra

tu
re

Experiment Time (S)

Temperature over time

Sensor 64
Sensor 55

Sensor 111

(b) unfiltered data with capacitor

Figure 2.23: Uncalibrated sensor data without and with on board capacitor

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

54

Maximum transmission range The maximum transmission range has been found to be 11m
indoors after which the transmission signal was lost. This is consistent with the quoted range for
class 2 Bluetooth devices. Class one Bluetooth devices have a quoted range of 100m, hence if
further transmission range was required, upgrading the Bluetooth device would allow an increase in
transmission distance. The systems design is such that no software changes are required when a
change of device class is made.

Latency The latency performance of the network has been measured in several circumstances,
designed to give a overview of systems performance under various conditions.

The following conditions have been selected to provide an cross section of circumstances the appli-
cation will potentially operate under:

• Normal operational conditions

• Maximum sampling rate applied

• Transmission of unfiltered data

• Noisy Bluetooth environment

Each experiment followed the same approach: sampling 10 minutes of data under stable unstimulated
conditions. Timestamps were taken when the system requested data from the sensors, and when
the data was passed to the visualiser by the basestation, giving an indication of performance of the
entire sampling process (gathering - filtering - transmission - visualisation). The data recorded in
the database was then analysed using tools to generate latency information. Packet information was
also recorded using the hcidump Bluetooth packet sniffing tool.

Operation under normal conditions This experiment was intended to provided reference latency
figures, offering a baseline for systems performance, and allowing comparison against the latency
figures gathered from the other experiments. Table 2.4 shows the latency figures for this experiment.
Figure 2.24 shows a graph of the latency values over the course of the experiment, after the initial
start up phase.

Table 2.4: Latency figures for operation under normal conditions

Latency Value in seconds

Minimum 0.03
Maximum 8.48

Mean 0.568
Median 0.270

Lower Quartile 0.210
Upper Quartile 0.380

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 300 302 304 306 308 310

E
nd

 to
 e

nd
 p

ro
ce

ss
in

g
tim

e
(S

)

Experiment duration (S)

Gumstix 21
Gumstix 24
Gumstix 36
Gumstix 34

(a) Latency over 10 seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 350 400 450 500

E
nd

 to
 e

nd
 p

ro
ce

ss
in

g
tim

e
(S

)

Experiment duration (Seconds)

Gumstix 21
Gumstix 24
Gumstix 36
Gumstix 34

(b) Latency over experiment duration

Figure 2.24: Latency graphs of operation under normal conditions

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

56

The maximum latency value of 8.48s corresponds to the systems start up process, where the clock
is synchronised with the basestation takes place. During this period the temperature sensing nodes
attached to the device are also discovered, requiring a poll of all possible I2C device addresses.
This can cause the bus to timeout where no device is connected. After this process is completed
the devices known to be connected are used to gather temperature data and the latency reduces
considerably. Whilst the mean end-to-end processing time of 0.56s is high, the figure is skewed by
the high latency values associated with systems start up, therefore the median value, of 0.270s gives
a more accurate measure of the systems performance. This average end to end transmission time is
acceptable in this application, given that in current engine monitoring applications temperature data
is sought on average once every second.

Transmission of unfiltered data The filtering of data to “smooth” the samples forwarded to the
visualiser requires a significant amount of processing on the sensing nodes. This experiment turned
off the filtering process on the sensor nodes, to provide a baseline for the network performance,
where no node processing takes place. Table 2.5 shows the latency figures over the course of the
experiment.

Table 2.5: Latency figures when transmitting unfiltered data

Latency Value in seconds

Minimum 0.01
Maximum 5.1

Mean 0.100629
Median 0.09

Lower Quartile 0.06
Upper Quartile 0.11

As expected, removing the processor intensive filtering operation performed on the nodes improved
the end to end processing time of the system. Again the maximum end to end transmission time is
high due to the start up process. It can be noted that the difference between the Median times in
the tables above indicates a 0.18s overhead per sample to filter the data. Should unfiltered data be
transmitted, the filtering operation needs to be performed before the visualisation/interpolation step.
The unfiltered data processing latency gives an idea of the baseline performance of the Bluetooth
radios used in this work, as only the data gathering and transmission time is taken into account,
rather than the entire gathering-filtering-transmission process.

Figure 2.25 provides some latency graphs over the experiment, after system start-up phase has
finished.

Operation using maximum sampling rate. Here the system was run at the maximum operational
rate, i.e. with data sampled and forwarded at the fastest rate possible. This will provide an indication
of the systems performance at the hardware’s operational and processing limits. Table 2.6 gives the
latency information gathered during the course of the experiment. Figure 2.26 provides some latency

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 300 302 304 306 308 310

E
nd

 to
 e

nd
 p

ro
ce

ss
in

g
tim

e
(S

)

Experiment duration (S)

Gumstix 21
Gumstix 24
Gumstix 36
Gumstix 34

(a) Latency over 10 seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 350 400 450 500

E
nd

 to
 e

nd
 p

ro
ce

ss
in

g
tim

e
(S

)

Experiment duration (Seconds)

Gumstix 21
Gumstix 24
Gumstix 36
Gumstix 34

(b) Latency over experiment duration

Figure 2.25: Latency graphs with unfiltered data

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

58

graphs over the experiment, after system start-up phase has finished.

Table 2.6: Latency figures at maximum sampling rate

Latency Value in seconds

Minimum 0.03
Maximum 15.20

Mean 0.502
Median 0.21

Lower Quartile 0.12
Upper Quartile 0.33

Statistically the end to end processing times here are similar to those generated using the standard
experiment, although the system is functioning at its maximum sampling rate. Each node is sending
a temperature data sample on average every 0.05 seconds rather than the standard setups 0.25 of
seconds.

Operation within a noisy Bluetooth environment Although Bluetooth performs automatic chan-
nel hopping as an effort to maximise throughput, it is expected that a noisy Bluetooth environment
will result in lower throughput within the system. This experiment gathered latency figures for
operation within such a environment, and took part in two stages.

The first stage of experimentation was a repeat of the first baseline latency experiment performed,
though a large amount of background Bluetooth noise was added by creating a separate network of
seven Bluetooth nodes. These nodes then transmitted ICMP (Internet Control Message Protocol)
pings to provide a known level of background noise. Table 2.7 shows the latency statistics for this
experiment.

The second stage of experimentation added an extra 3 nodes to the applications piconet, with
1024byte ICMP pings from these nodes every 0.2 seconds. This added a level of extra traffic to
the sensing network and provides an indication of the systems performance under these conditions.
Table 2.8 gives the latency information during this experiment.

Experimentation within a noisy Bluetooth environment shows little difference between the prototypes
operation in both clean and noisy environments, suggesting that the native Bluetooth channel hopping

Table 2.7: Latency figures for operation with background noise

Latency Value in seconds

Minimum 0.09
Maximum 15.38

Mean 0.544
Median 0.260

Lower Quartile 0.200
Upper Quartile 0.380

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 102 104 106 108 110

E
nd

 to
 e

nd
 p

ro
ce

ss
in

g
tim

e
(S

)

Experiment duration (S)

Gumstix 21
Gumstix 24
Gumstix 36
Gumstix 34

(a) Latency over 10 seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

E
nd

 to
 e

nd
 p

ro
ce

ss
in

g
tim

e
(S

)

Experiment duration (Seconds)

Gumstix 21
Gumstix 24
Gumstix 36
Gumstix 34

(b) Latency over expermet duration

Figure 2.26: Latency graphs for operation with maximum sampling rates

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

60

Table 2.8: Latency figures for operation within noisy network conditions

Latency Value in seconds

Minimum 0.1
Maximum 10.1

Mean 0.479
Median 0.3

Lower Quartile 0.23
Upper Quartile 0.4

algorithm is effective at combating network congestion due to background noise.

XML performance The use of XML to transmit data also increased the transmission overhead as
opposed to a raw data stream. Tables 2.9 and 2.10 show the network overhead resulting from the
use of XML to package sound and temperature data for transmission during an experimental run.

Table 2.9: Sample XML packet and XML overhead for temperature data

<frame version ="1" mode="temp">

<tstamp >1214398901.21</tstamp >

<sample id="4" cov=" 1214398901.22">26.6875 </sample >

<sample id="5" cov=" 1214398901.22">26.875 </ sample >

<sample id="6" cov=" 1214398901.22">27.3125 </sample >

<sample id="7" cov=" 1214398901.22">25.9375 </sample >

</ frame>

Total Bytes Data Bytes XML Bytes Overhead (%)

Average 278 103 175 62.94

Table 2.10: Sample XML packet and XML overhead for sound data

<frame ver s ion="1" mode=" sound ">
<tstamp>1214398899.67</ tstamp>
<sample i d="0" cov=" 1214398900.83 ">95</ sample>
</ frame>

Total Bytes Data Bytes XML Bytes Overhead (%)

Average 120 35 85 70.83

Given the current data rates, it means that there is a large overhead caused by the current XML
scheme. This gives scope to improve the network performance by optimising the schema used.
However, obviously, if sample rates are to be increased or multiple sound sensors are to be connected
to one node, the percentual overhead will decrease. For the system usage foreseen here, Table 2.11

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

61

Table 2.11: Sample XML packet and XML overhead for temperature data

<f v="1" m="t">

<t>1214398901.21</t>

<s id="4" c=" 1214398901.22">26.6875 </s>

<s id="5" c=" 1214398901.22">26.875 </s>

<s id="6" c=" 1214398901.22">27.3125 </s>

<s id="7" c=" 1214398901.22">25.9375 </s>

</f>

Total Bytes Data Bytes XML Bytes Overhead (%)

Average 190 103 87 54.2%

Table 2.12: Network Transmission overhead using TCP emulation over Bluetooth

Header Size Payload Total Packet size Protocol Overhead
(Bytes) (Bytes) (Bytes) (%)

UDP 42 274 316 13.29%
Bluetooth HCI frame 40 274 314 12.73%

Bluetooth L2Cap Packet 31 274 305 10.16%

gives an example of one optimised scheme for the sound data given above. Although optimising
the XML scheme offers a small improvement in efficiency, any future improvement would require a
different approach to formatting data for transmission. However as discussed below optimising the
XML schema is currently unnecessary, as the current throughput is only a small percentage of the
total available bandwidth.

Network Overhead Given that the network was formed using Ethernet emulation over Bluetooth
using the Bluetooth PAN daemon, a level of overhead was expected in the data transmitted, as each
packet was formatted for transmission using UDP packets. Data on latency and timing is gathered
from the database, as timestamps are logged both when the data is gathered from the sensors and
processed on the basestation.

The overhead of using TCP emulation over Bluetooth has been analysed using logs provided using the
network analysis tools described previously in the report. Table 2.12 shows the overhead associated
for a typical data packet sent during the systems operation whilst transmitting data using various
network communication protocols. The packet header overhead for the communication protocols is
shown, along with the total payload and percentage of packet taken by the protocol header. The
table shows little difference in requirements for each protocol, with the lightweight Bluetooth native
L2CAP having the least overhead requirements.

The use of Bluetooth TCP emulation also involves a small amount of network overhead used in flow
control and routing. Table 2.13shows the figures gathered during a typical sampling run.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

62

Table 2.13: Network statistics during a typical data gathering run

Total no of Packets transmitted 10430
Overall Experiment Time 526s

Avg Packets/s 19.825
Avg Packet Size 271.108b

Bytes transmitted 2827657
Avg. bytes/s 5374.804
Avg. MBit/s 0.043

The figures in Table 2.13 show that even with an unoptimised XML schema, and the overhead
associated with the TCP/ IP suite of protocols, the application can support a high level of expansion
before the throughput exceeds the available bandwidth. The current sampling rate of 4Hz on 18
sensors, requires only 2% of the total available bandwidth. This suggests that the system could
be extended use approximately 1050 temperature nodes sampling at the same frequency without
impacting performance.

Power management

The systems design allows the network to be powered using either mains or battery power, although
no power management is implemented in the software. Within the prototype system the power
consumption is less of a concern than the correctness of the data gathered and processed. To date,
no assessment of power consumption has been made.

Persistent Storage and Database

Storing the gathered data in a remote database provides the opportunity of preforming post analysis
on gathered data. Several tools have been implemented to this effect, acting on the database.

The first of these tools provides a ’replay’ function, which allows a user to view previous experimental
runs in the visualiser, similarly to the real-time play. This allows interesting phenomena to be framed
in time and post-analysed, using the same visualisation tool as that available for real-time analysis.

The information stored in the database also allows system performance analysis to be performed
as detailed above with regard to latency, etc. Gathered data analysis, including the “leave one
out” cross-validation approach used to evaluate the usefulness of the interpolation algorithms is also
enabled.

Normalisation of the database tables has given an efficient data storage mechanism, with data
gathered from 280 experiments (over 9million separate records) stored within 580Mb. Table 2.14
shows the record size, for each table in the database and the overall table size at the present time.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

63

Table 2.14: Database Record size with records stored during 280 experiments, total xxx hours of
monitoring

Table Record Size Total Records Table Size

event 62 bytes 280 17.1Kb
sample 64 bytes 9,605,406 582.8Mb
sensor 56 bytes 75 4.1Kb

sensorConf 85 bytes 8,221 681.3Kb

Distribution of source code updates.

Updates to the code used on the sensing nodes can be distributed using a script that takes the latest
version of the application code and forwards it to each node in the application. This automated
source code distribution allows modification to the sensing nodes code base to be distributed from
the basestation. This method of distribution is suitable for small single hop networks, but a more
efficient method of source code distribution and modification may be required for a larger multihop
network. Whilst current source code updates are “offline” with application code updated whilst the
system is not operational, experimentation has taken place with “real-time” source code updates,
allowing the application code to be modified whilst the system is operation. It is envisaged that this
method of updating will be integrated into the system shortly.

Extending the system

The modular design of the software allows nodes to be interchanged in case of hardware failure. The
prototype was originally designed to use four sensing nodes to gather data on the sensed phenomenon
although new nodes or temperature sensors can be introduced to the system to increase the resolution
of the field data. On systems start-up the application polls the I2C bus to discover which temperature
sensors are attached. (Polling addresses without a sensor attached causes a timeout on the bus.)
These sensor Id’s are recorded and used to gather data and network related information from the
attached sensors in a timely fashion. This design allows sensors to be swapped between nodes and
new sensors to be added (or excluded) without modification of the source code, providing a simple
method of both maintaining and extending the system.

To evaluate the above capabilities and also in order to aid evaluation of the visualisation and infor-
mation extraction components, the system has been extended beyond the 4 nodes, with a “probe”
node, equipped in the same way as the nodes used to gather data during normal operation. This
node can be deployed at any place within the jet pipe cross section. The probe node has been used
throughout the instrument evaluation to provide temperature data values between the fixed sensors,
providing extra information for the cross validation process.

Consequently, currently there are 5 nodes in the network, configured into a single Bluetooth piconet.
Given that a piconet can support up to 8 active network devices, the system is extensible up to
this limit with the only changes required to the software support being pairing the devices with the

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

64

basestation in the system start-up script. If further nodes were to be added beyond the 8 nodes,
the network would become more complex as Bluetooth scatternets would be required to be built,
allowing multiple piconets to be connected, with one node acting as a gateway between piconets. The
network performance would suffer here, as multihop routing is necessary to transmit data between
the devices in two separate piconets. Depending on the design of the Bluetooth network, the end to
end latency of the system would increase due to the time taken to process and forward messages.
Such a scatternet of 12 Bluetooth nodes has been developed and deployed and is documented and
evaluated elsewhere.

Fault isolation

Given that the instrument itself is aimed at engine health monitoring, it is of out most importance
that instrument faults are detected, isolated and managed, leading to increased data confidence.
Whilst designing and implementing a full blown fault management system for a wireless network
is a large research effort in itself, a placeholder for such a component has been catered for n this
design and a simple fault isolation and management component was deployed to cater for nodes
irrecoverable faults and sensing devices faults (presence at bus level and data freshness). To this
end each data sample is given a time stamp when it is gathered. This time is taken from the
global system clock synchronised with the basestation using NTP. Upon receiving a data sample,
the basestation software updates global sample list with the most recent sample received from each
node. If the most recent sample received is over 30 seconds old, the data from this node is marked as
stale and ignored in any interpolation and visualisation routines. Although this method provides no
fault diagnostics or error correction removing erroneous data from the display reduces the potential
to misinterpret the data displayed. Cross validation of the visualiser as discussed below, has shown
that the interpolation algorithms used can provide a high level of confidence in the data displayed in
areas with no physically sensed data.

Sensor Calibration

It is important to provide accurate data for the visualisation and interpolation processes, and increase
the confidence in the processed data. The ADT75A temperature sensor nodes were put subjected
to calibration, to better fit the reported values to the ground truth temperature. The calibration
followed a similar process to that used in industry [18], where the sensors are immersed in a water bath
and recordings of the reported values taken at intervals. These readings are compared to a ground
truth temperature reading taken using a reference thermometer, to provide a offset and multiplier for
each sensor. During our calibration run the water bath temperature ranged between 50°C and room
temperature at approximately 25°C. Calibration coefficients were then calculated through a curve
fitting process and loaded to the calibration component of the prototype which then applies them
automatically to the sensed data. Figure 2.27 shows some sensed data before and after calibration.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

65

 34

 36

 38

 40

 42

 44

 46

 48

 50

14:45:00 15:00:00 15:15:00 15:30:00 15:45:00 16:00:00 16:15:00 16:30:00 16:45:00 17:00:00 17:15:00

ground truth
un-calibrated

calibrated

Figure 2.27: Calibrated against uncalibrated temperature readings

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

66

Visualisation performance

Generating field representations of the sensed / sampled phenomena is a useful means to enable event
detection and isolation, and flow characterisation in the application at hand. It is important, from
a information utility viewpoint however, to be able to assess / measure the accuracy of such field
representations, produced through interpolation from sparse data. The evaluation of this facility, as
a system component has been preformed in two ways.

• Starting from a hypothesis that sensors do fail, within a deployed system, it is interesting to
asses the effect of such failures on the global, field view of the sensed phenomena for the
data-to-information chain supported by the prototype here.

• Should all the sensors in the system be functional, it is important to evaluate the accuracy of
predictions at points between the sensor sample points, leading to the field representation of
the sensed phenomena.

With this in mind, the aforementioned “leave-one-out” cross-validation tool has been developed.
The tool allows the user to retrieve historical data from the database for off-line processing and
evaluation. Upon user selection of a logged test and selection of a point in time within the test,
the cross-validation tool excludes the data for each sensor in turn (simulating a sensor failure) and
attempts to predict it from the remaining points. The difference between the actual and predicted
values provides an error value and hence an indication of the interpolation quality on the absence of
sensed data at a measurement point. The root-mean-square (RMS) of the errors between the actual
and predicted values over the duration of individual tests also provides a good indication of the level
of error expected to be encountered in the interpolated representation if a sensor has failed. An
example of interpolated versus actual sensor values for both temperature and “delta” mode during a
cross validation run are given in Figures 2.28-2.29, for one of the sensor in the system (sensor 117).
Figure 2.30 represents a snapshot of the cross validation tool interface.

In this instance, the experiment consisted of two heating and stabilisation cycles, providing a indica-
tion of the interpolation performance between 20-40°C. The heating was performed using two high
powered stage lamps, placed to provide heating without “hotspots” on individual sensors. Figures
2.31-2.33 show the sensor layout during the experiment and the heating arrangement.

Each heating and stabilisation cycle lasted for approximately 10 minutes with 2 minutes of heating
followed by a 8 minute stabilisation period. The timing associated with this particular test is given
in Table 2.22.

For the experiment duration Table 2.16 shows the error values between actual and interpolated
temperatures for all sensors and all samples. To be particularly noted are the extremely low errors
for the delta mode, and also the similar performance of the RBF based and nearest-neighbour based
interpolations.

Screen shots have also been taken at key points during the experiment to illustrate the data displayed
on the User Interface, as follows:

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

67

 10

 15

 20

 25

 30

 35

 40

 45

 50

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

Time

Sensor 117

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Figure 2.28: Interpolated temperature values against real temperature data (temperature in °C)

Table 2.15: Experiment Schedule

Event Id Description Time (UTC + 0:00) Time stamp

279 Experiment Start 11:03:57 1217903637

Stabilisation

280 Start 1st heating with lamps 11:08:11 1217930891

281 Stop 1st Heating with lamps 11:16:33 1217931393

Stabilisation

282 Start 2nd Heating 11:27:20 1217932040

283 Stop 2nd Heating 11:29:22 1217932162

284 Experiment End 11:35:21 1217932521

Table 2.16: Cross validation RMS values over whole experiment duration

Interpolation method Mode MSE

RBF Absolute sensed 2.06664110461

RBF Delta 5.74338546652e-05

Nearest Neighbour Absolute sensed 2.23771360624

Nearest Neighbour Delta 6.15025572264e-05

QShep2D Absolute sensed 4.34863757561

QShep2D Delta 0.000142017859048

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

68

-0.1

-0.05

 0

 0.05

 0.1

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 117

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Figure 2.29: Interpolated delta values against real data (temperature in °C).

End of stabilisation before first heating (11:08:11)

Screen shots and values were taken prior the commencing the first heating cycle. The temperature
and “delta” values for all the sensors at that point in time can be found in Table 2.17

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

69

Figure 2.30: Web based cross validation

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

70

(a) Node Layout

Figure 2.31: Sensor layout on the jet pipe. Note there are two temperature sensing devices on each
I2C line (sensors 65-69,sensors 73-77, etc.)

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

71

(a) heating overview

Figure 2.32: Lighting arrangement during cross validation

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

72

(a) Lamp positions

Figure 2.33: Sensor Layout and lamps position during cross validation.

Table 2.17: Temperature and Interpolation values at 11:08:11

Interpolated estimate Error (between measured
and interpolated values) (°C)

E
xc

lu
d
ed

se
n
so

r
Id

Measured
Tem-
pera-
ture
(°C)

RBF (°C) QSHEP
(°C)

RBF (°C) QSHEP (°C)

72 23.39 23.4 23.59 -0.01 -0.2

73 23.7 23.8 23.92 -0.1 -0.22

61 23.65 23.73 23.9 -0.08 -0.25

64 23.74 23.64 23.54 0.1 0.2

65 23.7 23.74 23.5 -0.04 0.2

115 23.45 23.72 23.68 -0.27 -0.23

68 23.36 23.41 23.11 -0.05 0.25

69 23.71 23.75 23.95 -0.04 -0.24

117 23.62 23.54 23.4 0.08 0.22

111 24.17 24.05 23.91 0.12 0.26

113 24.23 24.06 24.48 0.17 -0.25

77 23.82 23.7 23.63 0.12 0.19

RBF RMS error over all cross validated sensors: 0.12 (0.49%)

QSHEP RMS error over all cross validated sensors: 0.23 (0.94%)

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

73

 10

 15

 20

 25

 30

 35

 40

 45

 50

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

Time

Sensor 115

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

-0.1

-0.05

 0

 0.05

 0.1

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 115

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.34: Screenshot and interpolation detail at 11:08:11

End of 1st Heating (11:16:11)

Screen shots were taken at the end of the first period of heating. The temperature and “delta”
values for all the sensors at that point in time can be found in Table 2.19.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

74

 10

 15

 20

 25

 30

 35

 40

 45

 50

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

Time

Sensor 61

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

-0.1

-0.05

 0

 0.05

 0.1

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 61

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.35: Screen shot and interpolation values at 11:16

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

72 38.66 40.02 37.29 1.37 -1.36

73 34.18 33.72 31.86 2.32 0.46

61 41.34 38.61 42.01 -0.67 2.73

64 38.62 41.15 38.32 0.3 -2.53

65 38.17 36.23 37.22 0.95 1.94

115 37.71 38.86 38.73 -1.02 -1.15

68 40.43 38.53 42.08 -1.65 1.9

69 36.13 37.74 36.54 -0.41 -1.61

117 38.64 38 37.8 0.84 0.64

111 39.96 39.92 38.3 1.66 0.04

113 40.86 39.51 43.17 -2.31 1.35

77 33.01 34.92 34.39 -1.38 -1.91

RBF RMS error over all cross validated sensors: 1.66 (4.07%)

QSHEP RMS error over all cross validated sensors: 1.39 (3.44%)

Table 2.19: Temperature and Interpolation values at 11:16:33

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

75

Prior to commencing 2nd heating (11:27:20)

Screen shots were taken approximately half way into the stabilisation period between the two heating
cycles. The temperature and “delta” values for all the sensors at that point in time can be found in
Table 2.20.

Table 2.20: Values at 11:27:20

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

72 26.8 26.91 26.98 -0.18 -0.11

73 26.77 26.71 26.8 -0.03 0.06

61 27.08 27.36 27.79 -0.71 -0.28

64 27.38 27.06 26.87 0.51 0.32

65 26.94 26.74 26.94 0 0.2

115 26.44 26.61 26.63 -0.19 -0.17

68 26.91 26.81 26.56 0.35 0.1

69 26.76 26.86 26.68 0.08 -0.1

117 26.63 26.46 26.35 0.28 0.17

111 26.47 26.56 26.45 0.02 -0.09

113 26.53 26.51 26.67 -0.14 0.02

77 26.69 26.78 26.72 -0.03 -0.09

RBF RMS error over all cross validated sensors: 0.17 (0.60%)

QSHEP RMS error over all cross validated sensors: 0.30 (1.03%)

End of 2nd heating (11:29:22)

Screen shots were taken at the end of the second heating period. The temperature and “delta”
values for all the sensors at that point in time can be found in Table 2.37.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

76

 10

 15

 20

 25

 30

 35

 40

 45

 50

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

Time

Sensor 113

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

-0.1

-0.05

 0

 0.05

 0.1

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 113

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.36: Screenshot and interpolation values at 11:27

Table 2.21: Values at 11:29:22

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

72 34.78 35.7 33.74 1.04 -0.92

73 31.23 31.31 30.55 0.68 -0.08

61 37.28 34.52 36.77 0.51 2.76

64 34.52 37.11 35 -0.48 -2.59

65 34.21 32.63 32.31 1.9 1.58

115 33.97 34.65 34.79 -0.82 -0.68

68 35.99 34.68 37.46 -1.47 1.31

69 32.45 34.01 33.6 -1.15 -1.56

117 34.32 34.24 33.82 0.5 0.08

111 36.35 35.87 34.61 1.74 0.48

113 36.72 35.85 38.84 -2.12 0.87

77 30.86 31.78 31.17 -0.31 -0.92

RBF RMS error over all cross validated sensors: 1.42 (3.86%)

QSHEP RMS error over all cross validated sensors: 1.21 (3.32%)

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

77

 10

 15

 20

 25

 30

 35

 40

 45

 50

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

Time

Sensor 69

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

-0.1

-0.05

 0

 0.05

 0.1

10:03 10:06 10:09 10:12 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 69

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.37: Values at 11:29:22

Probe based validation

The “leave-one-out” cross-validation procedure explained above, however, does not provide a clear
measure of the difference between real and predicted values between the sensed data points should
all the sensors in the system be functional. In order to assess the quality of the interpolation between
points, a fifth node was added to the network, geared with 4 temperature sensors, and used as a
“probe” node. This node and its sensors have no fixed location. Instead, the sensors are used to take
measurements at arbitrary points in various test runs. Combined with the cross-validation tool, the
probe node provides a method to determine the accuracy of predicted (interpolated) temperature
values between sensing points. The experiment reported here consisted yet again of two heating and
stabilisation cycles performed as per Section 2.4.3. The same layout as shown in Figure 2.31 was
used. Figure 2.38 shows the user interface updated with the positions of the probe sensors.

Each heating and stabilisation cycle lasted for approximately 10 minutes with 2 minutes of heating
followed by a 8 minute stabilisation period. The timing associated with this particular test is given
in Table 2.23.

For the experiment duration Table 2.24 shows the error values between actual and interpolated
temperatures for all sensors and all samples.

Whilst the examples above have focused on the interpolated predictions for all sensors, the tables
below focus on the RBF interpolated values for the four probe sensors. Screen shots have also been

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

78

Figure 2.38: User Interface with extra probe sensors.

Event Id Description Time (UTC + 0:00) Time stamp

279 Experiment Start 11:03:57 1217903637

Stabilisation

280 Start 1st heating with lamps 11:08:11 1217930891

281 Stop 1st Heating with lamps 11:16:33 1217931393

Stabilisation

282 Start 2nd Heating 11:27:20 1217932040

283 Stop 2nd Heating 11:29:22 1217932162

284 Experiment End 11:35:21 1217932521

Table 2.22: Experiment Schedule

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

79

Table 2.23: Experiment Schedule

Event Id Description Time (UTC + 0:00) Time stamp

279 Experiment Start 15:36 1221233932

Stabilisation

280 Start 1st heating with lamps 15:44 1221234248

281 Stop 1st Heating with lamps 15:46 1221234368

Stabilisation

282 Start 2nd Heating 15:54 1221234852

283 Stop 2nd Heating 15:56 1221234968

284 Experiment End 16:05 1221235739

Table 2.24: Cross validation RMS values over whole experiment duration

Interpolation method Mode MSE

RBF Absolute sensed 0.570255985441

RBF Delta 2.73757913681e-05

Nearest Neighbour Absolute sensed 0.82868825714

Nearest Neighbour Delta 4.00779552564e-05

QShep2D Absolute sensed 0.996146376516

QShep2D Delta 5.18516559429e-05

taken at key points during the experiment to illustrate the data displayed on the User Interface, as
follows:

End of stabilisation before first heating (15:44)

Screen shots and values were taken prior the commencing the first heating cycle. The temperature
and “delta” values for the probe sensors at that point in time can be found in Table 2.39.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

80

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

56 24.32 24.33 24.5 -0.01 -0.18

57 24.45 24.46 24.41 -0.01 0.04

59 24.46 24.46 24.39 0 0.07

61 24.2 24.35 24.68 -0.15 -0.48

64 24.35 24.22 24.32 0.13 0.03

65 24.53 24.71 24.59 -0.18 -0.06

68 24.11 24.08 22.87 0.03 1.24

69 24.36 24.99 25.64 -0.63 -1.28

72 24.02 24.18 24.28 -0.16 -0.26

73 24.37 25.02 24.5 -0.65 -0.13

77 24.38 25.39 25.64 -1.01 -1.26

111 24.74 24.64 24.62 0.1 0.12

113 24.36 24.77 24.73 -0.41 -0.37

115 24.49 24.73 24.8 -0.24 -0.31

117 24.65 24.64 24.72 0.01 -0.07

125 24.79 24.67 24.69 0.12 0.1

127 25.96 24.6 24.58 1.36 1.38

129 25.4 24.93 25.34 0.47 0.06

130 24.9 24.63 24.57 0.27 0.33

RBF MSE error over all cross validated sensors: 0.22

QSHEP MSE error over all cross validated sensors: 0.37

RBF MSE error over probe sensors: 0.54

QSHEP MSE error over probe sensors: 0.51

Table 2.25: Temperature and Interpolation values at 15:46

End of first heating period (15:46)

Screen shots and values were taken at the end of the first heating cycle. The temperature and
“delta” values for the probe sensors at that point in time can be found in Table 2.26.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

81

-0.1

-0.05

 0

 0.05

 0.1

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 125

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

 10

 15

 20

 25

 30

 35

 40

 45

 50

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 (
D

eg
 C

)

Time

Sensor 125

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.39: Screenshot and interpolation detail at 15:44

Table 2.26: Temperature and Interpolation values at 15:46

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

55 32.96 32.87 35.95 0.09 -2.99

56 32.85 32.95 31.12 -0.1 1.73

57 32.52 31.26 28.4 1.26 4.12

59 31.03 32.66 32.26 -1.63 -1.23

61 34.84 32.45 32.59 2.39 2.25

64 32.33 34.72 33.86 -2.39 -1.53

65 33.77 31.56 29.88 2.21 3.89

68 36.63 34.25 37.47 2.38 -0.84

69 29.83 33.9 34.1 -4.07 -4.27

72 34.31 36.26 33.93 -1.95 0.38

73 34.57 34.07 36.39 0.5 -1.82

111 36.64 35.07 36.08 1.57 0.56

113 33.78 35.37 35.33 -1.59 -1.55

115 32.4 34.98 36.54 -2.58 -4.14

117 32.99 33.57 29.41 -0.58 3.58

125 37.12 34.2 34.59 2.92 2.53

127 33.37 33.29 30.47 0.08 2.9

129 34.55 33.67 34.16 0.88 0.39

130 33.59 34.97 35 -1.38 -1.41

RBF MSE error over all cross validated sensors: 3.69

QSHEP MSE error over all cross validated sensors: 6.58

RBF MSE error over probe sensors: 2.8

QSHEP MSE error over probe sensors: 4.24

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

82

 10

 15

 20

 25

 30

 35

 40

 45

 50

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 (
D

eg
 C

)

Time

Sensor 127

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

 10

 15

 20

 25

 30

 35

 40

 45

 50

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 (
D

eg
 C

)

Time

Sensor 127

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.40: Screenshot and interpolation detail at 15:46

Start of 2nd heating period (15:54)

Screen shots and values were taken at the start of the second heating cycle. The temperature and
“delta” values for the probe sensors at that point in time can be found in Table 2.27.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

83

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

56 25.98 25.98 25.88 0 0.1

57 26.02 25.93 26.05 0.09 -0.03

59 25.95 25.99 26.04 -0.04 -0.09

61 26.06 26.15 25.92 -0.09 0.14

64 26.17 26.05 26.36 0.12 -0.19

65 26.13 25.77 25.95 0.36 0.18

68 26.12 25.95 25.6 0.17 0.52

69 25.89 25.84 26.12 0.05 -0.23

72 25.95 26.1 25.57 -0.15 0.38

73 26.13 25.61 26.03 0.52 0.1

111 25.49 25.29 25.19 0.2 0.3

113 24.88 25.61 25.16 -0.73 -0.28

115 25.8 25.54 25.91 0.26 -0.11

117 25.76 25.71 25.46 0.05 0.3

125 25.29 25.64 26.47 -0.35 -1.18

127 25.55 25.81 25.7 -0.26 -0.15

129 25.58 25.87 25.94 -0.29 -0.36

130 25.85 25.38 26.16 0.47 -0.31

130 25.85 25.38 25.06 0.47 0.79

RBF MSE error over all cross validated sensors: 0.09

QSHEP MSE error over all cross validated sensors: 0.24

RBF MSE error over probe sensors: 0.15

QSHEP MSE error over probe sensors: 0.22

Table 2.27: Temperature and Interpolation values at 15:54

End of 2nd heating period (15:56)

Screen shots and values were taken at the end of the second heating cycle. Temperature and “delta”
values for the probe sensors at that point in time can be found in Table 2.28.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

84

 10

 15

 20

 25

 30

 35

 40

 45

 50

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 (
D

eg
 C

)

Time

Sensor 129

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

-0.1

-0.05

 0

 0.05

 0.1

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 129

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.41: Screenshot and interpolation detail at 15:54

Interpolated estimate Error (between measured
and interpolated values) (°C)

Excluded sensor Id Measured Temperature (°C) RBF (°C) QSHEP (°C) RBF (°C) QSHEP (°C)

56 33.94 34.04 36.89 -0.1 -2.95

57 33.61 32.39 32.26 1.22 1.35

59 32.18 33.72 29.74 -1.54 2.44

61 36.01 33.63 33.3 2.38 2.71

64 33.52 35.88 33.82 -2.36 -0.3

65 34.87 32.52 34.93 2.35 -0.06

68 37.86 35.38 30.68 2.48 7.18

69 31.07 34.73 38.97 -3.66 -7.9

72 35.45 37.46 34.72 -2.01 0.73

73 35.71 34.55 34.99 1.16 0.72

111 37.3 35.51 36.18 1.79 1.12

113 33.99 36.1 36.38 -2.11 -2.39

115 33.41 35.63 36.36 -2.22 -2.95

117 33.9 34.43 37.04 -0.53 -3.14

125 37.45 35.02 30.98 2.43 6.47

127 33.91 34.09 35.47 -0.18 -1.56

129 34.89 34.57 31.69 0.32 3.2

130 34.53 35.51 35.26 -0.98 -0.73

130 34.53 35.51 35.25 -0.98 -0.72

RBF MSE error over all cross validated sensors: 3.45

QSHEP MSE error over all cross validated sensors: 5.48

RBF MSE error over probe sensors: 0.51

QSHEP MSE error over probe sensors: 3.43

Table 2.28: Temperature and Interpolation values at 15:56

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

85

 10

 15

 20

 25

 30

 35

 40

 45

 50

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 (
D

eg
 C

)

Time

Sensor 130

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

-0.1

-0.05

 0

 0.05

 0.1

15:36 15:39 15:42 15:45 15:48 15:51 15:54 15:57 16:00 16:03 16:06 16:09

T
em

pe
ra

tu
re

 r
at

e
(d

eg
. C

/s
ec

)

Time

Deltas for Sensor 130

First Heating Start

First Heating End

2nd Heating Start

2nd Heating End

actual
RBF estimate

QSHEP2D estimate
Nearest neighbour estimate

Temperature Values

Delta Values

Figure 2.42: Screenshot and interpolation detail at 15:56

Summary

The visualiser has proven to be robust, able to display data for both sound and temperature, using
several different interpolation functions. Extending the user interface to display “delta” information
enabled a greater understanding of the state of the system being monitored, by displaying rate of
change in temperature rather than absolute values.

Wit respect to the interpolation accuracy, the experimental results produced encouraging results,
with the RBF interpolation producing lower levels of error for the chosen experimental environment,
than either Nearest Neighbour or the Quadratic Shepard methods. The experimental results obtained
using the “probe” node are especially encouraging, with the extra sensing points greatly increasing the
accuracy of the estimated field values. However, a close examination of the estimated field values at
specific points in time highlights some issues with all the interpolation functions implemented. When
subjected to a high level of stimulation, as experienced during the heating cycles, all interpolation
methods produce higher levels of error than in unstimulated conditions. Given the non uniform
heating of the sensors, the differences in temperature between the sensors are exaggerated by the
interpolation function. Interpolation also relies on a flat field of stimulation for accuracy. The non-
uniform field represents a noisy environment, which the interpolation methods did not cope well with
(therefore, there are high error levels at the end of each heating cycle).

The interpolation function used is a placeholder for future work. The airflow within a jet pipe is
complex, and Computational Fluid Dynamics (CFD) coupled with industry experience is required to

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

86

accurately model the flow.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

87

Chapter 3

Power consumption evaluation for an
end-to-end wireless monitoring system
based on Gumstix devices

This chapter presents all experimentation and results obtained from evaluating the existing prototype
in light of the set of possible design trade-offs that could be made to reduce the power consumption
for 1Hz temperature sampling, including:

• alternative batteries with best small footprint,

• alternative ways of distributing the data processing and the information extraction (filter at
node or base, continuously monitor or event based wake-up, XML overhead and energy cost
evaluation—how else can it be done with less power?)

3.1 What are the power consumption levels in the current uncon-
strained system and how could these requirements be served by

off-the-shelf batteries?

Different power consumption levels are linked to the operating mode of the Gumstix module. The
Gumstix changes power mode depending on charge left in the batteries. For an example of this
effect, see figure 3.2 on page 93. The prototype system uses three 800mAh capacity batteries, with
a nominal output voltage each of 1.2V. This gives an estimate of the total battery capacity to be
10.37kJ. A rough estimate, based on current used over time, suggests that the batteries supply close
to their capacity.

During the first 3 hours of operation in normal mode, the Gumstix was accessible over Bluetooth.
During the next 6 hours of the experiment, the Gumstix switched to low power mode and disabled

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

88

Table 3.1: A summary of the estimated operation time between different processes using 800mAh
rechargeable batteries.

With Bluetooth
communication

and Kalman filter
(216mA)

With only
Bluetooth

communication
(186mA)

With only
Kalman filter
and serial port

(167mA)

In Idle Mode
(136mA)

Full operation 3.7 hours 4.3 hours 4.8 hours 5.9 hours

Table 3.2: Dimension, weight and capacity of several types of off-the-shelf battery. [1]

Type of
Battery

Diameter
(mm)

Height
(mm)

Volume
(mm3)

Mass
(g)

Capacity
(mAh)

Density
(mAh/mm3)

AAAA 8.3 42.5 2299.5 6.5 625 0.27
N 12 30.2 3415.5 9 1000 0.29

AAA 10.5 44.5 3853.3 11.5 1250 0.33
AA 14.5 50.5 8339.1 23 2850 0.34
C 26.2 50 26956.4 66.2 8350 0.31
D 34.2 61.5 56495.9 148 20500 0.36

all wireless communications. The LCD controller also becomes disabled (although we do not attach
an LCD display and so did not test this). Serial communication was still available, however. When
the batteries are almost completely depleted, the Gumstix switches to sleep mode. In sleep mode,
every major component in the node is powered down. Only the memory modules are powered to
retain stored data.

Table 3.1 shows the different operational lifetimes achieved when running different processes. These
lifetimes were calculated using the capacity of the battery divided by the current draw rate for each
process, however they are consistent with experimental data.

Off-the-shelf batteries offer a range of physical sizes with different energy capacities. Table 3.2 shows
a list of technical data for different batteries from the Energizer range. An AA battery offers the
best trade off between the size and capacity in the list. Alkaline batteries were used for constructing
the table because they are more available in the market and offer a good working temperature range
from -25 to 65 degrees Celsius. Lithium batteries, on the other hand, offer a better weight and size
to energy ratio. Unfortunately they are not as available in the market. Lithium batteries also offer a
0 to 55 degree Celsius working temperature range.

The capacity data from the Energizer data-sheet is an estimate of battery life between the different
types of processing against the different types of battery in normal mode. (Table 3.3)

Battery technology is an important factor in optimising operational lifetime. Because of the relatively
slow improvements in battery technology compared to the growth of the power requirements of
electronic hardware, effective power management on the node is needed to increase energy efficiency.

The next research task was to investigate two alternative methods to store energy. The super-

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

89

Table 3.3: Estimated battery life in hours for each off the shelf battery.

Type of battery Bluetooth
and Kalman filter

Bluetooth Kalman filter Idle mode

AAAA 2.3 2.5 2.7 3.7
N 3.7 4 4.3 5.9

AAA 4.6 5 5.4 7.4
AA 10.5 11.4 12.3 16.8
C 30.9 33.4 36.3 47.1
D 75.9 82 89.1 120.6

capacitor is popular for storing harvested energy and Lithium batteries offer high capacity at low
weight and size.

3.1.1 Super-capacitor

Super-capacitors are an alternative to batteries for storing rechargeable energy. They are especially
useful for storing harvested energy. The device offers a better energy ratio than re-chargeable batteries
in terms of energy transferred from the power supply when charging, and the energy transferred from
the super-capacitor to the load. There are two advantages of using a super-capacitor: it does not
require a complex charging circuit and has a longer operational lifetime with no memory effect (a
common effect in re-chargeable batteries where the battery loses capacity gradually during charge
and discharge cycles). The super-capacitor, also known as electrochemical double layer capacitors
(EDLC), offer longer product life (in term of usage), shorter charging times, and low current leakage
compared with re-chargeable batteries on the market. Although there is no limit on the number of
charging cycles, the EDLC suffers from electrolyte ageing. Depending on the temperature, the super-
capacitors can retain 50% of stored energy for 3 months. The EDLC was created from capacitor
technologies with a higher energy density than the standard capacitor [19].

3.1.2 Lithium battery

Lithium batteries are the most common contemporary batteries for powering mobile devices like lap-
tops, mobile phones and radio scanners. Both primary (non-rechargeable) and secondary (recharge-
able) forms exist. Lithium batteries offer large capacity whist having small physical dimensions.
Some specialist Lithium batteries will operate on a wide temperature range (−55◦ to +125◦C). The
Lithium Ion battery loses 20% of capacity each year, and requires complex electronic circuitry for
charging. The Lithium coin cell (non-rechargeable) battery is the smallest off-the-shelf battery on the
market. A typical non-rechargeable Lithium coin cell battery, such as the CR2354, gives an output
of 3V with a capacity of 540mAh. This is around 2/3 of the capacity of the rechargeable batteries
employed in this experiment [20].

On the whole, super-capacitors are a good way to store energy from energy harvesters, while lithium

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

90

Table 3.4: Power consumption levels for the Gumstix before (in standby mode) and during boot up.

Settings Voltage (V) Current (A) Power (W)

Before boot up in standby mode 4.3 0.1286 0.553
During boot up sequence 4.6 0.23 1.458

batteries offer the best capacity. Other developments, such as nano wire battery technology, also
have potential to provide improved capacities for future WSN devices.

3.2 How is the power consumption distributed across the node’s
hardware components and across the end-to-end system?

An experiment was setup with an end-to-end system connected to a computer via a serial connection.
The sensor node was powered by a bench power supply and both the supply voltage and current
were measured with a multimeter. The first part of the experiment investigated the power required
for boot-up and standby. These modes of operation can be monitored by logging onto the system
using a computer with a serial communication port. The experiment used a bench power supply, an
interface board, a serial board, and a Gumstix.

The second part of the experiment investigated the power consumption of each individual component.
The experiment was conducted by powering up each component individually using a bench power
supply with a multi-meter attached to measure the voltage and current. The system was made up of
four components, an interface board, a serial board (for testing), a ZigBee module and the Gumstix
(main unit). All of the control was handled by the Gumstix and the experiment was conducted
using the default operation mode of the Gumstix (normal mode). Power was supplied via a port
on the interface board. The component power consumption was measured by first determining the
power used by the interface board, and subsequently stacking each additional component on top, to
measure the increased power consumption. It was assumed that there was no change in individual
unit power when the components were coupled together.

3.2.1 Main component power consumption

The results from the first part of the experiment are shown in table 3.4. The minimum end-to-end
system power consumption using a bench power supply (with a low internal resistance) was around
0.553W when set to standby mode. This is the default operation mode the system enters before
booting into the embedded Linux system. In standby mode, the wireless communication modules,
such as the on-board Bluetooth device, are disabled. This mode also disables other peripheral devices.

At boot, the system switches from standby mode to fast mode operation. Fast mode operation
involves the processor being set to its highest performance processing configuration. In this system,
with a Intel XScale PXA270 processor, the highest clock speed setting on the processor is 400MHz.
The fastest bus speed setting is 200MHz. Fast mode operation also includes all peripheral devices

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

91

Table 3.5: Breakdown of the contribution of different components to the total power utilisation.

Components added Power (mW)

Cogent interface board 78.2
Serial board 146.8

Gumstix 631.2
ZigBee module 224.8

Total 1081

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10:40 10:50 11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10

C
ur

re
nt

 (
A

)

Time (hh:mm)

Figure 3.1: Current consumption over time using Kalman filtering and Bluetooth transmission. The
Gumstix was battery powered.

being switched on. This configuration exhibits the highest power consumption observed in this
system.

Contribution of various components to the total power consumption are shown in table 3.5. The
results were obtained by progressively adding components and checking power used.

The Gumstix itself includes an on-board Bluetooth communications module, which is one of the
reasons for it drawing more power. The system power consumption was measured after the Gumstix
had entered normal mode, after boot up. The mode can be observed by monitoring the serial
connection, which shows console messages during boot. From boot to the power measurements
shown in table 3.4 required a time delay of 3 seconds.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

92

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22

04:30 05:00 05:30 06:00 06:30 07:00 07:30 08:00 08:30 09:00

C
ur

re
nt

 (
A

)

Time (hh:mm)

Figure 3.2: Current consumption over time using Kalman filtering but with serial transmission. The
Gumstix was battery powered and dropped to a low power mode after 8:15pm.

3.2.2 Temperature sensing power consumption

According to the manufacturer’s data sheet, the ADT75A sensor requires 1.65mW. However, to
perform temperature sensing requires some additional CPU to run the associated Python code. An
estimate of this cost was made by sampling as quickly as the sensors would provide sensor values
and examining the time taken and power used. Based on a trial with 4000 iterations, the combined
CPU and sensing cost was 412µJ per sensor, per iteration.

3.3 What are the optimal trade-offs with respect to power consump-
tion as far as data processing and information extraction are

concerned?

In this section, the following possible optimisations are considered:

1. transmitting calibrated vs uncalibrated data,

2. perform the basic fault detection at node or at base,

3. filter at node or at base,

4. continuously monitor vs event detection facility,

5. sleep vs always awake modes,

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

93

Table 3.6: Energy and time cost of calibration per iteration.

Elapsed time (µsec) Energy (µJ)

Linear calibration 37 18

6. XML packaging overheads and costs

3.3.1 Calibrated versus uncalibrated data

Calibration can be performed at the base station or at the node. The ADT75A temperature measure-
ment package includes conversion to degrees Celsius and is factory calibrated. Further calibration
was found to be necessary since several degrees difference is reported by different ADT75A pack-
ages when measuring the same temperature. The prototype uses a calibration equation of the form
y =mx+c, however other work [21] suggests that the temperature error for this type of digital tem-
perature sensor varies non-linearly with temperature. It was later decided to fix the main coefficient
m to 1, and only apply an offset.

The energy cost of calibration is shown in table 3.6. This was estimated using 800,000 iterations.

3.3.2 Perform the basic fault detection at node or at base

The main form of fault detection implemented in the prototype is to check for no received sensor
readings for greater than some threshold time. This “stale” test is performed at the base station.
The prototype also checks for non-communicating sensor packages, however there is no explicit
communication about failing packages. Rather it is left to the staleness test. Therefore, there is
currently no cost associated with fault detection at the node.

3.3.3 Filter at node or at base

The prototype system described in chapter 2 performs Kalman Filtering of sensor data. Kalman
filtering is useful partly to reduce the effect of sensor noise and partly to provide a noise-reduced
estimate of the rate of change of temperature. To find the energy and CPU time cost associated
with performing this filtering on the Gumstix, the Kalman filter was run in a loop for a large number
of iterations and Gumstix power usage was measured. Note that the Kalman filter was implemented
using Python and the Python Numeric package both of which have an influence on the cost of
filtering.

The results comparing the energy cost of Kalman filtering versus pass-through filtering are shown
in table 3.7 on the following page. Note that there is almost no processing performed in the pass-
through filter however there is some (such as the overhead of the function call and so forth). The
cost of this implementation of Kalman filtering is relatively large in terms of the energy budget for a
long lasting device. The implementation could be improved in a number of ways. First, recoding in

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

94

Table 3.7: Energy and time cost of Kalman filtering per iteration.

Elapsed time (msec) Energy (µJ)

Pass through filter 0.21 97
Kalman filter 15.6 6830

C is likely to produce the largest benefit. Second, and possibly most significantly if using a processor
such as the MSP430, floating point computation could be converted to some form of fixed point
calculation.

3.3.4 Continuously monitor vs event detection facility

The use of event detection can reduce communication and thus associated transmission energy cost.
In terms of this analysis, a key difficulty is that the relative performance of such a scheme relies
entirely on the actual changes in temperature and the threshold mechanism used to determine if an
event has occurred. It is difficult to estimate the relative saving that an event-based approach might
yield without making an arbitrary assumption about the frequency of “events”.

Given the estimates for the energy cost of Kalman filtering ek (see table 3.7), the energy cost of
sensing es, and the energy cost of transmitting et, and given an average ratio of events to sensing
operations α, the expected energy cost is

E[e] = es+ ek+αet

As discussed in work elsewhere [22], event detection can assume that the receiver can do some
forward prediction and may even be able to work out when that forward prediction is likely to be
significantly wrong. Given that es+ek≪ et (since 412µJ+6830µJ≪ 347mJ) it is worth performing
a small amount of extra processing to perform event detection in order to reduce the number of
transmissions.

3.3.5 Sleep vs always awake modes

In the case of high data rate sensing applications, using sleep cycles will probably have little effect.
However, if it is assumed that the data rate is sufficiently low, such as once every five minutes, then
sleeping between sensing operations will give some benefit.

The Gumstix processor’s resources such as clock and bus speed remain the same even when the
system is not processing data. The first approach investigated for reducing power consumption was
to reduce the Gumstix’s execution speed. This was done by modifying the multiplier of the timing
crystal with the processor’s configuration registers. The PXA270’s clock multiplier is found inside
the Core Clock Configuration Register (CCCR). Modes and associated power requirements are shown
in table 3.8. Power consumption found experimentally for various power modes is shown in table 3.9.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

95

Table 3.8: Power consumption associated with different modes. Taken from the Intel PXA270 data
sheet [2].

CPU clock
speed (MHz)

Bus speed
(MHz)

Power requirement
(mW)

Operation
mode

99 50 92 Sleep mode
200 100 184 Deep idle mode
400 100 276 Idle mode

(normal mode)
200(100 %
utilisation)

100 552 Fast mode

400(100%
utilisation)

100 1,012 Maximum
configuration
at boot-up

Table 3.9: Experimentally established power consumption for different mode settings.

Operation
Mode

Power(W) Note:

Default setting 1.125W All peripherals switched on, and
interface board attached.

Normal mode 0.8562W LCD controller disabled, interface
board attached.

Low power
mode

0.805W Bluetooth communication, with
interface board attached.

Standby mode 0.525W All RF communication suspended,
only serial connection.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

96

To achieve even lower power consumption, the sleep and deep sleep modes can be employed. The
Gumstix module draws as low as 92mW in these modes. To get from normal mode to sleep requires
1–2 seconds due to the need to transfer the contents of memory from RAM to flash. To get from
sleep mode back to normal requires a boot-up cycle. Using the sleep interrupt pin reduces the
delay to move between the two modes but also decreases bus speed. This is because rather than
using RAM the system relies on flash memory storage. If an application requires a large amount of
processing it is preferable to keep the Gumstix in normal mode or low power mode.

Another technique for decreasing the power consumption is to reduce the supply voltage to 3.5V
from its nominal 4.5V level. The Gumstix module voltage regulator achieves a higher efficiency when
converting from a lower input voltage.

3.3.6 XML packaging overheads and costs

According to previous calculations, XML increases the required transmission by 63% assuming that
the smallest packet structure would still transmit floating point values as text strings. Binary encoding
as 4 byte floating point values reduces the smallest packet for four temperature sensor values to 42
bytes (9 bytes per sensor including sensor id byte and covariance plus a further 6 bytes for timestamp,
packet type and packet version). Since UDP is used, this adds further overhead in terms of packet
structure of 42 bytes. Combined Bluetooth overhead for the HCI frame and L2CAP frame add 40
and 31 bytes, respectively. Taking into account the packet structure, the overhead due to XML is
actually 60% (or 1− (42+ 113)/(278+ 113)).

The energy cost per bit of Bluetooth packet transmission was found experimentally (see section A
on page 102) to be 280nJ/bit (nano Joules per bit). This value was found by using the l2ping

utility in flood mode with 60kB packets and recording the increase in power usage. Note that there
is some small amount of increased CPU usage during the ping transmission and so the energy cost
attributable to Bluetooth transmission may be slightly less than this figure.

Based on the above, the energy cost of transmitting four temperature readings in an XML packet
over UDP is (278+ 113)×8×280nJ/bit = 876 millĳoules, whereas to transmit the same information
in a compressed form is (42+ 113)×8×280nJ/bit = 347 millĳoules.

3.4 How does the support platform of choice (Gumstix) compares

with other off the shelf nodes with respect to power consump-
tion?

Table 3.10 on the following page gives a summary of some of the other available platforms. The
Marvell PXA 270 is sufficiently powerful to run embedded Linux. The Texas Instruments MSP430
233X however, is not, due to limited flash memory and RAM. Of the 64Mb available to the Gumstix,
6 MB of RAM is reserved, the Linux OS consumes about 15 MB and so around 43 MB of memory
is available to the application. It is possible to run TinyOS on the MSP430 class of devices, however

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

97

T
ab

le
3.10:

H
ard

w
are

p
latform

evolu
tion

.

Mote WeC rene dot mica mica2 mica2
dot

iMote btNode Gumstix MSP430

Released 1999 2000 2001 2002 2003 2003 2003 2003 2003 2004
Processor (MHz) 4 4 4 4 7 4 12 7 200-400 16
Flash (code,kB) 8 8 16 128 128 128 512 128 16MB 8

RAM (kB) 0.5 0.5 1 4 4 4 64 4 64MB 0.5
Radio (kBaud) 10 10 10 40 40 40 460 460 1MB 250

Radio type RFM RFM RFM RFM ChipCon ChipCon Zeevo
BT

Ericsson
BT

Internal
BT

ZigBee

Micro-controller Atmel Atmel Atmel Atmel Atmel Atmel ARM Atmel Xscale TI
Expandable no yes no yes yes yes yes yes yes yes

C
o
g
e
n
t

C
o
m

p
u
tin

g
A

p
p
lie

d
R

e
se

a
rc

h
C

e
n
tre

—
R

e
p

o
rt

C
O

G
E

N
T

.0
0
7

R
e
v
ise

d
1
6
-M

a
rc

h
-2

0
0
9
.

C
o
n
fi

d
e
n
tia

l
u
n
til

S
e
p
te

m
b

e
r

2
0
1
1
.

98

Table 3.11: A comparison of the Gumstix and MSP430 platforms.

Component MSP430 233X Intel PXA 270

Memory 8 kB Flash 16MB Flash
RAM 512 Bytes 64 MBytes
ADC 10 bit 10 bit

Processor speed 16 MHz 200~400 MHz
Word size 16 bit 32 bit

Oscillator clock speed 32 kHz 32 kHz ~ 3.22 MHz
Additional features N/A Bluetooth, u.fl antenna

(2.4GHz) USB host and CCD
camera signals

it has not been established if the 233X will support it. Further comparison is shown in table 3.11.

In the prototype, each node uses the I2C bus to gather temperature data from the solid state
temperature sensor. The sensor package has its own 12 bit Analogue to Digital Converter (ADC)
and does not use the PXA270’s 10 bit ADC. With the MSP430, the micro-controller also contains
an I2C bus and a 10 bit ADC. So, in principle, the hardware used with the Gumstix could also be
supported on the MSP430.

Communication for prototype uses Bluetooth. Although it has a nominal bandwidth of up to 2.1
Mbit/s, it also draws considerable power (see appendix A on page 102). The CC2480 802.15.4
controller supplied with the MSP430 has a nominal bandwidth 250kbit/s and its power is rated at
80.7mW.

In summary, the MSP430 consumes less power than the PXA270. A rough estimate is that with
(1Ah) batteries that would only power the PXA270 for 5 hours, the MSP430 would last for about
107 days. Some additional benefit might be obtained by using one of the several low power modes
available (see table 3.12 on the next page).

3.5 Summary

This chapter has examined the power requirements of the prototype wireless gas turbine engine
monitoring system presented in chapter 2.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

99

Table 3.12: MSP430 power modes.

Setting Hardware configuration

Active mode (AM) All clocks are active
Low-power mode 0 (LPM0) CPU is disabled, ACLK and SMCLK remain

active, MCLK is disabled, FLL loop control
remains active

Low-power mode 2 (LPM2) CPU is disabled, MCLK and FLL loop control
and DCOCLK are disabled, DCO’s dc-generator

remains enabled ACLK remains active
Low-power mode 3 (LPM3) CPU is disabled, MCLK, FLL loop control, and

DCOCLK are disabled, DCO’s dc generator is
disabled, ACLK remains active

Low-power mode 4 (LPM4) CPU is disabled – ACLK is disabled – MCLK,
FLL loop control, and DCOCLK are disabled –

DCO’s dc generator is disabled – Crystal
oscillator is stopped – Complete data retention

Low-power mode 5 (LPM5) (“A” versions only) Internal regulator disabled, No data retention,
Wakeup from RST, digital I/O

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

100

Chapter 4

Conclusions

A fully integrated end-to-end system prototype has been designed, implemented and evaluated, which
builds upon and advances research in the area of WSNs for monitoring applications. The work on
this project built was aimed at:

• rapid production of a fully functional prototype instrument for monitoring and visualising field
temperature profiles in jet engines

• through the experience gained, enable a generic design framework to be produced for a larger
class of WSN based monitoring applications.

The system proposed has a high innovative value, potentially allowing detailed in-flight monitoring of
temperatures within a gas turbine engine, with extension to a wide range of potential aircraft moni-
toring applications. A key potential benefit of the instrument is weight reduction through replacing
cabling with wireless transmission. Additional benefits are in the area of providing better exploitation
of available sensor data through computer visualisation of the data and autonomous identification of
sensor faults. The work described here is building on existing test-bed demonstrators and visualisation
systems at the Cogent Computing Applied Research Centre. The application domain specialism is
covered by Vibro-Meter UK through Dr. Mark Langley whilst the electronics for harsh environments
issues are brought forth with proposed solutions by TRW Conekt through Roger Hazelden.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

101

Appendix A

Bluetooth energy cost per bit

The energy cost per bit of Bluetooth packet transmission on the Gumstix device was found experi-
mentally to be somewhere between 280 mJ/Mbit (milli joules per megabit) and 470 mJ/Mbit. The
former value is based on a nominal estimate of bits transmitted and assumes constant transmission
at 544 kbps whereas the latter is based on actual bits transmitted (and does not consider packet
overhead nor the echo response). When in operation, the transmitter was found to use about 152
mW. The additional current used during transmission was roughly 37mA, which corresponds to the
value stated in the data sheet for the Infineon Bluetooth chip.

The energy cost per bit was found by using the l2ping utility in flood mode with ten 60kB packets
and recording the increase in power usage. It took 15 seconds to perform the transmission. It is likely
that some reception (as well as transmission) would have been involved but because the transmitted
packets were large, this should introduce only a small error in the estimate. Voltage and current
were sampled twice a second using a digital multimeter.

On the basis that there were a number of factors likely to increase the estimate and none (known
of) reducing it, the lower estimate of 280 mJ/Mbit (or 280 nJ/bit) is preferred when calculating
transmission energy costs in the body of this report.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

102

Bibliography

[1] Energizer. Energizer technical information. http://data.energizer.com, 2009.

[2] Intel. Intel PXA270 processor for embedded computing. http://www.intel.com/design/

embeddedpca/applicationsprocessors/302302.htm, 2006.

[3] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commun. ACM, 43(5):51–
58, 2000.

[4] Gumstix motherboard io [online] http:/docwiki.gumstix.org/, 11th September 2008. accessed
11th September 2008.

[5] Maxim Intergrated Products. SOT23 Dual-input USB/AC Adapter 1-cell Li+ Battery Charger.
Sunnyvale, CA, 2003.

[6] Maxim Intergrated Products. Low-drop out, 300mA Linear Regulators in SOT23. Sunnyvale,
CA, 2006.

[7] Phillips Electronics N.V. UCB1400 Audio codec with touch screen controller and power man-
agement monitor. Eindhoven, 2002.

[8] MaxStream Inc. XBee Series 2 OEM RF Modules. Lindon, UT, 2007.

[9] Peter S. Maybeck. Stochastic models, estimation, and control, volume 141 of Mathematics in
Science and Engineering. 1979.

[10] Greg Welch and Gary Bishop. An introduction to the Kalman filter. Technical report, University
of North Carolina at Chapel Hill, 1995.

[11] Yizhou Yu. Surface reconstruction from unorganized points using self-organizing neural net-
works. In Proceedings of IEEE Visualization, pages 61–64, 1999.

[12] J. K. Shuttleworth, E. I. Gaura, and R. M. Newman. Surface reconstruction: Hardware require-
ments of a som implementation. In Proceedings of the ACM Workshop on Real-World Wireless
Sensor Networks (REALWSN’06), pages 95–96, June 2006. ACM ISBN: 1-59593-431-6.

[13] R. Tynan, G.M.P. O’Hare, D. Marsh, and D. O’Kane. Interpolation for wireless sensor network
power management. In Proceedings of the International Workshop on Wireless and Sensor
Networks (WSNET-05). IEEE Press, June 2005.

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

103

[14] Robert J. Renka. Multivariate interpolation of large sets of scattered data. ACM Trans. Math.
Softw., 14(2):139–148, 1988.

[15] Robert J. Renka. Algorithm 660: Qshep2d: Quadratic shepard method for bivariate interpolation
of scattered data. ACM Trans. Math. Softw., 14(2):149–150, 1988.

[16] Daniela Tulone. A resource–efficient time estimation for wireless sensor networks. In DIALM-
POMC ’04: Proceedings of the 2004 joint workshop on Foundations of mobile computing, pages
52–59, New York, NY, USA, 2004. ACM.

[17] infineon. http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab68
accessed 16/06/2008.

[18] B. G. Lipták. Instrument Engineers’ Handbook. CRC Press, 2002.

[19] Costis Kompis and Simon Aliwell. Energy harvesting technologies to enable wireless and remote
sensing. Technical report, Sensors & Instrumentation KTN Action Group Report, London, UK,
June 2008.

[20] Andreas Savvides Sung Park and Mani B. Srivastava. Battery capacity measurement and analysis
using lithium coin cell battery. In Proc. ISLPED, Huntington Beach, California, USA, August
2001. ACM.

[21] Maxim. Application note 208: Curve fitting the error of a bandgap-based digital temperature
sensor.

[22] James Brusey, Elena I. Gaura, Dan Goldsmith, and James Shuttleworth. Fieldmap: A spatio-
temporal field monitoring application prototyping framework. IEEE Sensors, 2009. (submitted
to special issue October 2008).

Cogent Computing Applied Research Centre—Report COGENT.007

Revised 16-March-2009. Confidential until September 2011.

104

Cogent Computing Applied Research Centre
Coventry University
Priory Street, Coventry CV1 5FB
www.cogentcomputing.org

	BruseyPerformanceAnalysisCS
	Performance+analysis
	Brusey24
	d1

