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Abstract  

An extensive study on the fatigue performance of friction stir welded DH36 steel was carried out. 

The main focus of this experimental testing programme was fatigue testing accompanied by 

tensile tests, geometry measurements, hardness and residual stress measurements, and 

fracture surface examination.  The S-N curve for friction stir butt welded joints was generated 

and compared with the International Institute of Welding recommendations for conventional 

fusion butt welds. Friction stir welds of marine grade steel exceeded the relevant rules for fusion 

welding. This newly developed S-N curve is being proposed for use in the relevant fatigue 

assessment guidelines for friction stir welding of low alloy steel. Fracture surfaces were 

examined to investigate the fatigue failure mechanism, which was found to be affected by the 

processing features generated by the friction stir welding tool. 
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1. Introduction 

Fatigue cracking in welded joints of structural components is a major cause of structural failure 

[1]. Therefore, most welded structures that are expected to experience fatigue loading are 

designed to satisfy fatigue strength requirements [2,3]. The cracks in conventional fusion welds 

are triggered by stress concentration due to changes of geometry, welding defects such as 

undercut, porosity, lack of fusion, cold laps etc., as well as residual stress, mechanical in-

homogeneity and misalignments [3,4]. Satisfactory fatigue performance is achieved, among 

other means, by reduction in stress concentration of welded joints. 

Friction stir welding (FSW) is an innovative welding technique which was patented by The 

Welding Institute and first introduced in 1991 [5]. Since its invention, the technique has mostly 

been used for aluminium alloys. Research has demonstrated the superior fatigue performance of 

FSW joints in aluminium as compared to those produced by fusion welding [6-8] due to 

significantly reduced stress concentration at a joint compared with fusion welding techniques.  

A study [8] examined the influence of welding speed on fatigue strength of Al–Mg–Si alloy 6082. 

It was concluded that using a welding speed within the industrially accepted range has no major 

influence on the mechanical and fatigue properties of the FSW. However the fatigue 

performance of FSW was significantly improved at a very low welding speed, which is attributed 

to the increased thermal energy supplied to the weld per unit length. The results of fatigue 

testing of FSW were also compared with those for conventional arc-welding methods; MIG-pulse 

and TIG (Metal Inert Gas and Tungsten Inert Gas, respectively). The MIG-pulse and TIG welds 

showed lower static and fatigue strength than that of FSW. The effect of the welded surface 

finishing treatment on the fatigue behaviour of AA8090 FSW butt joints was studied by another 

publication [9] where the specimens subjected to surface finishing treatment demonstrated 

better fatigue performance as compared with the as-welded specimens.  

The number of publications on the fatigue performance of FSW in low alloy steel is limited to 

those discussed herein. A study on FSW of DH36 steel was carried out to evaluate the 

mechanical properties (including fatigue strength) of the welds with a view to its possible 

application in the shipbuilding industry [10]. The researchers [10] investigated FSW of 4, 6 and 8 

mm thick DH36 steel as compared with submerged arc welds. The conclusion was drawn on 

superior fatigue performance of FSW. It was also found that two FSW passes, one from either 

side, result in significant improvement in fatigue strength compared with that of single pass FSW 

[10]. Fatigue testing, tensile testing and hardness measurements were performed on double 

sided friction stir welds of S275 structural steel [11], where welding was carried out in air and 

underwater. It was shown that FSW carried out in air and underwater produced similar fatigue 

properties [11].  

FSW of 4 mm thick GL-A36 steel was investigated with the purpose of evaluating the process for 

shipbuilding applications [12].  The fatigue resistance of parent material and FSW produced 

using various welding parameters, pre-welding conditions and tools were compared. The fatigue 

behaviour of FSW was similar to that of the parent material [12]. The fatigue properties of friction 

stir welded AISI 409M grade ferritic stainless steel joints were studied elsewhere [13]. FSW 

demonstrated improved fatigue behaviour compared with the parent material, including crack 

propagation stage. This was attributed to the FSW dual phase, ferritic–martensitic 

microstructure, superior tensile properties and favourable residual stresses [13]. 

The marine and offshore industries face demands for increased service lives of offshore 

structures, so this makes FSW of steel a very promising technique as it allows to reduce local 

stress concentration therefore improve fatigue performance. Still, in order to offer steel FSW to 
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industry as an alternative to fusion welding, the existing knowledge gap on the fatigue behaviour 

of steel FSW must be addressed. The current research advances the scientific understanding of 

steel FSW by developing novel S-N curve parameters with respect to low alloy steel for marine 

applications. For this purpose, an extensive industrial scale testing programme was undertaken, 

including fatigue and tensile testing, hardness and residual stress measurements, and 

examination of fracture surfaces. The latter is performed to relate the fatigue failure to the FSW 

microstructure and investigate the mechanism for crack initiation and propagation. The S-N 

curve for FSW in low alloy steel was constructed and compared to IIW recommendations [3] and 

the effect of longitudinal and transverse residual stresses has been assessed.  

2. Experimental programme 

2.1. Material and welding details 

The test specimens were produced from 6 mm thick marine grade DH36 steel. This particular 

steel grade is widely used in ship structures, especially in stiffened panels. The chemical 

composition of DH36 as provided by the steel manufacturer is given in Table 1. The minimum 

acceptable mechanical properties for DH36 steel of thicknesses ≤ 50 mm according to Lloyd’s 

Register rules [14] are outlined in Table 2. 

Table 1. Chemical composition of 6 mm thick DH36 steel (wt%) 

C Si Mn P S Al Nb N 

0.11 0.37 1.48 0.014 0.004 0.02 0.02 0.002 

Table 2. Minimum acceptable mechanical properties of 6 mm thick DH36 steel [14] 

Grade 

Yield 

Strength 

N/mm2 

Tensile 

Strength 

N/mm2 

Elongation, 

% 

Charpy V-notch Impact tests 

Average Energy at -200C, J 

Longitudinal Transverse 

DH36 355 490-620 21 34 24 

Steel plates of 2000 mm x 200 mm x 6 mm were butt welded using a MegaStir Q70 pcBN-WRe 

tool for steel with scrolled shoulder (dia. 36.8 mm) and stepped spiral probe (5.7 mm length). 

FSW was performed at varying traverse and rotational speeds as indicated in Table 3. Each 

combination of traverse and rotational speed from Table 3 will further be referred to as ‘slow’, 

‘intermediate’ and ‘fast’ welding speed. The welding speed combinations were selected as 

representative of a previous research [15]. 

Table 3. Welding parameter sets 

Welding speed group Slow Intermediate Fast 

Traverse speed (mm/min) 100 250 500 

Rotational speed (rpm) 200 300 700 
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Metallographic examination of the welds produced using slow, intermediate and fast speed has 

been discussed previously [16]. It was demonstrated that slow speed welding delivers a 

homogeneous microstructure with significant grain refinement in comparison to the parent 

material [16]. 

2.2. Specimens 

The specimens for fatigue and tensile tests were transversely machined from welded plates. The 

shape and dimensions of the specimens are shown in Figure 1.  

 

Figure 1. Transverse fatigue and tensile test specimens (dimensions in mm), 6 mm thick 

The specimen sides were polished up to a surface finish of 0.2 μm Ra or better, according to the 

applicable British Standards [17] to avoid fatigue crack initiation from the machining marks. To 

ensure that the required surface roughness was achieved, surface roughness measurements 

were performed using a Mitutoyo system. The top and bottom surfaces of the specimens (where 

the top surface is the tool contact surface) were left in the as-welded condition, and a 

subsequent assessment of the linear and angular misalignment (distortion) showed that these 

were negligible.  

Three specimens per weld speed were subjected to tensile testing in order to identify the yield 

strength (YS) of the weldments. The average YS value for the intermediate weld speed was 382 

MPa; this value was used to calculate the applied loads for fatigue testing. 

2.3. Hardness measurements 

A homogeneous hardness distribution in welds is important from a fatigue point of view as 

abrupt changes in hardness produce a material notch [18]. Average hardness values were 

measured in FSW sections for each of the slow, intermediate and fast welds. The positions for 

measurements representative of the weld zone are given in Figure 2. The measurements were 

taken using a Mitutoyo hardness tester by applying a load of 200 gf. 
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Figure 2. Hardness measurement positions in FSW transverse section 

The hardness measurements for the three weld speeds are presented in Figure 3, where the 

values are supplied as an average of two measurements per position marked in Figure 2. In all 

relevant figures, AD and RT correspond to the advancing and retreating side of the weld 

respectively, whereas HAZ is the heat affected zone and TMAZ is the thermo-mechanically 

affected zone. As seen from Figure 3, the steel that is affected by the welding process is harder 

than the parent material. In addition, the hardness of the weld is increased with increasing 

welding speed. This can be attributed to the increasing cooling rate which causes the 

development of harder phases such as bainite. Microstructural examination [15,16] has 

discussed the rise in bainite content with each speed increment.  

 

Figure 3. Hardness distribution for three welding speeds 

2.4. Residual stress measurements 

The sample for residual stress measurements was transversely machined from a welded plate of 

6 mm thickness. Figure 4 shows the top surface of an examined weld section of approx. 400 mm 

(width) x 230 mm (length). 
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Figure 4. The weld top surface of a sample for residual stress measurements (welding direction is 
top to bottom) 

X-Ray diffraction (XRD) measurements were carried out using a Stresstech XStress3000 X-Ray 

diffractometer; results were extracted using the sin2 technique [19]. A 3-mm-diameter 

collimator was used with X-Ray exposure time of 10 seconds for each  tilt. The angle , 

defining the orientation of the sample surface, is the angle between the normal of the surface 

and the incident and diffracted beam bisector. Residual stress measurements were performed 

across the weld zone. The measured locations are shown in Figure 5. 

 

 
Figure 5. Locations and directions of residual stress measurements (each circle indicates the 

diameter of the collimator, dimensions in mm) 

Figures 6 and 8 show the residual stress profile for the slow speed weld, for top surface side and 

weld root side (top and bottom of weld) respectively. As seen from Figure 6, the maximum 

transverse residual stress is close to YS and is located in the central stir zone of the weld. In the 

HAZ where fatigue cracking is generally expected to initiate [18] due to increased stress 

concentration [20], change in the local microstructure and altered physical properties [21], the 

residual stress is approx. 100-150 MPa. Therefore, the locations of the maximum residual stress 

and of the possible crack initiation site are separated. This is yet another reason for the 

improved fatigue performance of FSW as compared with fusion welds where the maximum 
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transverse residual stress, close to the material’s YS, is observed at the weld toe [20] and leads 

to crack initiation at that location. 

 

Figure 6. Residual stress profile for slow speed weld, top surface side 

In the specimen’s HAZ, a split in data was seen from the negative and positive ψ tilts (Figure 7). 

During XRD measurements, a split in data from both ψ tilts can occur due to the presence of 

shear stress [22]. This displays that the HAZ region has high magnitude of shear stress as 

compared to the TMAZ. Figure 8 reveals that the transverse residual stress on the weld root side 

of the specimen is lower than on the top surface side and compressive in the weld root.  

 

Figure 7. Splitting of d vs sin
2
ψ plot in the HAZ region 
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Residual stress is one of the significant factors that affect the fatigue life of welded structural 

members; it is well known that tensile residual stress decreases fatigue life. Improvements in the 

welding processes have reduced the associated tensile residual stress to some extent. Fatigue 

cracks are typically seen to initiate at locations which exhibit high tensile residual stress, stress 

concentration or weld defects. In the case of fillet [23] and butt [24] joints with fusion welds, 

fatigue cracks were seen to initiate at the weld toe owing to the combined effect of tensile 

residual stress and stress concentration. In the current study, the maximum tensile residual 

stress of the examined sample is located in the central weld zone hence not contributing to the 

fatigue failure. The friction stir weld zone exhibits higher surface roughness than the parent 

metal as a result of the processing features generated by the FSW tool. As outlined in Table 5, 

the predominant crack initiation site for the intermediate speed weld (24 out of 25 samples) is 

the weld edge; thus, the transition region between parent metal and weld zone acts as a notch 

and produces a correspondingly high stress concentration factor initiating failure. 

 

Figure 8. Residual stress profile, weld root 

2.5. Fatigue testing 

Fatigue testing was carried out on an Instron 8802 fatigue testing system. The number of tested 

specimens per welding speed and stress range is outlined in Table 4. The specimens produced 

using the intermediate weld speed were selected for the construction of the S-N curve. The 

intermediate speed is considered to be optimal based on research reported in an earlier work 

[15]. The term “optimal” reflects the balance between commercially competitive production 

speed (compared to fusion welding) and high integrity welds that this welding speed had 
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demonstrated. Although having exhibited the best results in terms of weld quality and 

mechanical properties [15], the slow traverse speed of 100 mm/min is clearly unrealistic in a 

real-world industrial environment. The effect of varying welding speed on the fatigue 

performance was established by testing the slow and fast weld speed specimens at one stress 

range and comparing these results with the basic S-N curve of the intermediate weld. 

Table 4. Number of tested fatigue specimens per welding speed 

Weld speed 
Stress range 

(% of YS) 

Number of tested 

samples 

Intermediate 

90 10 

80 10 

70 5 

Slow 80 8 

Fast 80 8 

 

During the fatigue testing the stress ratio was maintained approx. equal to 0.1 and the stress 

frequency constant at 10 Hz.  

3. Fatigue test results and analysis 

The results of the fatigue tests are summarised in Table 5 together with the crack initiation sites. 

The nominal stress was calculated as applied load divided by net cross sectional area. The 

crack initiation site for 24 out of the 25 specimens of the intermediate weld (250 mm/min) was 

the weld edge on the RT side. The typical failure position can be seen in the photograph of a 

fractured specimen (Figure 9).  The cracks initiated from lap defects observed on the RT side, as 

exhibited in Figure 13, Section 4. Minor embedded flaws detected on the AD side did not cause 

crack initiation.  

Two specimens welded with slow speed (100 mm/min) did not fracture; the tests were 

terminated at 2.5x106 cycles and considered as run-outs. One specimen failed at approximately 

4.2x105 cycles on the AD side of the weld; this was due to the incomplete fusion paths observed 

in this section of the weld. Two fast (500 mm/min) weld specimens had fatigue crack initiation 

from the weld root flaw; the third failed from the lap defect. A discussion on the fatigue failure 

mechanisms is provided in Section 4. 

Table 5. Fatigue test results 

Weld speed Stress range,  MPa 
Number of cycles 

to failure 
Crack initiation sitea 

Intermediate 
speed 

265.83 479,985 Weld edge, RT 

261.78 602,646 Weld edge, RT 

263.81 1,116,339 Weld edge, RT 
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263.94 1,967,444 Weld edge, RT 

262.19 589,711 Weld edge, RT 

264.00 1,114,315 Weld edge, RT 

263.09 317,472 Weld edge, RT 

262.61 941,637 Weld edge, RT 

262.68 1,899,174 Weld edge, RT 

261.71 678,298 Weld edge, RT 

296.96 310,992 Weld edge, RT 

298.81 335,264 Weld edge, RT 

296.83 254,089 Weld edge, RT 

296.29 359,445 Weld edge, RT 

295.01 337,432 Weld edge, RT 

296.96 312,883 Weld edge, RT 

295.41 350,413 Weld edge, RT 

296.29 629,054 Weld edge, RT 

296.42 664,426 Weld edge, RT 

295.48 492,379 Weld edge, RT 

230.67 1,489,360 Weld edge, RT 

228.72 2,600,000 Run out 

229.51 2,020,530 Weld edge, RT 

227.93 1,384,622 Weld edge, RT 

229.32 2,210,534 Weld edge, RT 

Slow speed 

266 422,074 Weld stir zone, AD 

265.64 2,700,000 Run out 

265.21 2,500,000 Run out 

264.55 2,612,700 Run out 

265.14 1,083,669 Weld stir zone, AD 

266.06 2,515,000 Run out 

262.19 2,520,000 Run out 
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265.81 2,571,600 Run out 

Fast 

speed 

265.14 416,112 Weld rootb 

262.13 222,272 Weld stir zone, AD 

264.29 722,691 Weld rootb 

261.84 570,815 Weld rootb 

263.39 129,490 Weld stir zone, AD 

261.59 731,208 Weld rootb 

264.36 136,844 Weld stir zone, AD 

261.36 516,949 Weld rootb 

a In all relevant cases, the crack initiated at the top surface boundary of the tool stir marks. 
b Crack propagated from the weld root flaw. 

The fatigue test results in terms of nominal stress range against number of cycles to failure are 

plotted in Figure 10 in double logarithmic co-ordinates. The nominal S-N data for the 

intermediate weld from Table 5 and Figure 10 were analysed assuming a linear S-N curve on a 

log-log scale and using Equation 1: 

log N = log A – m x log S        (1) 

where S is the applied stress range, N is the fatigue life, and m and A are constants obtained 

experimentally. The run out test was not considered in this analysis. Initially, the inverse slope of 

the S-N curve was assumed as m=3.0. A statistical evaluation of parameter A at 50% and 97.7% 

of probability of survival, and standard deviation was performed according to IIW 

recommendations [3,25]. 
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Figure 9. Typical failure position of intermediate weld specimen 

  

Figure 10. S-N data for the intermediate weld, inverse slope m=3 
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Figure 10 displays the S-N curves for the intermediate speed weld. The solid and dashed lines 

represent the probability of survival at 97.7% (design) and at 50.0% (mean), respectively. This S-

N curve is compared with that recommended by IIW for fusion welds [3]. The detail most 

relevant to this investigation is the transverse single sided butt weld, Catalogue No. 214 [3]. The 

dotted line in Figure 10 indicates the IIW FAT 80 weld detail class at 97.7% probability of 

survival. The results for FSW demonstrate higher fatigue strength for all specimens of the 

intermediate weld in comparison to the FAT 80 class. The fatigue strength of the intermediate 

speed weld is FAT 135; this is 68% higher than the strength stated in the IIW Recommendations, 

FAT 80.  

Further, there is a substantial scatter of the results (TN) for the intermediate weld speed if an 

inverse slope of m=3 is used for S-N curve derivation, calculated according to Hobbacher [3] as: 

TN = 1: (N10 / N90) = 3.7 

where NX is the number of cycles to failure at the x probability level of survival. The same applies 

to the scatter in terms of stress range T, defined as [3]: 

T = 1: (σn10 / σn90) = 1.55 

where σnx is the stress range at the stated probability level of survival. The corresponding IIW 

recommended values are TN=3.0 and T=1.5 [3]. The calculated parameters TN and Tσ indicate 

that the statistical analysis with a fixed slope of m=3 is not the most suitable. Indeed, best fit 

statistical evaluation based on IIW recommendations [3] produces an inverse slope of m=5.96.  

It is therefore proposed to carry out the statistical analysis with assumed inverse slope of m=5 

which is chosen based on IIW draft recommendations for weld improvement techniques [26]. 

The mean and design S-N curves with assumed inverse slope of m=5 and experimental data are 

shown in Figure 11. The scatter of fatigue test results for inverse slope of m=5 is characterised 

by TN=3 and T=1.25. 

Table 6 provides the S-N curve parameters including design fatigue strength at 2x106 cycles and 

standard deviation obtained for intermediate speed FSW using best fit, m=3 and m=5 

assumptions. The design fatigue strength at 2x106 cycles is above the parent material S-N curve 

FAT160 (m=5) [3]. This confirms that the use of the intermediate speed weld is the most 

appropriate for the derivation of the S-N curve. 

Table 6. S-N curve parameters for intermediate speed weld 

m Mean A Design A Standard deviation 
Fatigue strength at 

2x106 cycles, MPa 

3 1.35x1013 4.87x1012 0.22 135 

5 9.86x1017 4.11x1017 0.19 183 

Best fit, 

5.96 
2.17x1020 9.06x1019 0.19 196 

As can be seen from Figures 10 and 11, the results for slow and fast speed welds are consistent 

with the corresponding results obtained for aluminium by a separate study [8]; the slow welding 

speed results in better fatigue performance. This is because the slow speed produces a highly 

refined, homogeneous and defect-free microstructure as reported in a prior study [15]. 
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Figure 11. S-N data for the intermediate weld, inverse slope m=5.  

4. Fracture surface analysis 

The typical fracture surface for the intermediate weld specimens is shown in Figure 12 where a 

recurrent pattern of crack initiation and propagation is observed. Figure 12 displays uniform 

crack initiation from multiple sites corresponding to the FSW tool shoulder’s markings causing 

lap defects on the weld’s top surface (weld edge, RT side). Multiple sites of crack initiation are 

indicated with the arrows. A magnified view of a typical lap defect is shown in Figure 13. The lap 

defect is observed continuously along the weld length but with varying intensity and depth.  

 

Figure 12. Typical fracture surface of intermediate weld specimens 
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Figure 13.  Intermediate weld, RT side top surface [x500, Etched] 

 

Figure 14. Slow weld, AD side top surface [x200, Etched] 
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Another possible crack initiation site was observed in the failed slow speed specimens; cracks 

originated from incomplete fusion paths containing interconnected non-metallic inclusions on the 

AD side (Figure 14). The fracture path is seen to have propagated through the TMAZ and 

subsequently into the parent material in a plane nearly perpendicular to the top surface (Figure 

15); two more incomplete fusion paths from which cracks did not propagate are marked in Figure 

15. 

 

Figure 15. Macrograph of slow weld specimen's fracture path (side view) [Etched] 

 

Figure 16. Fast weld, root flaw at high magnification [x1000, Etched] 
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Five of the fast weld specimens failed from the weld root flaw; intermittent insufficient fusion at 

the weld root occurred during the FSW process, i.e. a weld root flaw (Figure 16). The remaining 

three fast weld specimens failed through uniform crack initiation from the tool shoulder’s 

markings on the weld top surface (laps), in a manner comparable to the intermediate weld 

specimens above; the corresponding fracture path is illustrated in Figure 17. 

 

Figure 17. Macrograph of fast weld specimen's fracture path (side view) [Etched] 

4.1. Effect of surface lap defect  

It has been determined in Sections 3 and 4 that the main reason for crack initiation in friction stir 

welds produced at the optimal intermediate speed is the lap defect introduced by the FSW tool 

shoulder. Microstructural observations and subsequent measurements on the captured 

micrographs (Figure 13) showed that the deepest top surface lap defect found is approx. 0.45 

mm. To assess the effect of the surface lap defect on the FSW fatigue performance, three 

intermediate speed specimens were fatigue tested under a stress range of 90% of YS following 

grinding. The grinding consisted of removal of a 0.5 mm layer from the weld top surface. The 

specimens were polished after grinding. 

For these specimens, the fatigue tests were terminated at or above 3.2x106 cycles; no evidence 

of fatigue cracking was present. In agreement with previous publications in aluminium [9,27] and 

steel [28] FSW, this confirms that the top surface processing features generated by the FSW tool 

are responsible for fatigue cracks in the intermediate speed FSW and indicates a potential way 

to improve the fatigue performance by reducing or eliminating the top surface markings 

produced by the tool.  

5. Conclusions 

An experimental programme of fatigue performance assessment of friction stir butt welds 

produced from 6 mm thick marine grade DH36 steel was undertaken to develop novel S-N curve 

parameters. The main focus of the programme was fatigue testing accompanied by tensile tests, 

geometry measurements, hardness and residual stress measurements, and fracture surface 

examination.  The effect of varying welding parameters was also investigated. 

Analysis of the fatigue testing results showed that the fatigue resistance of FSW butt joints is 

well above the weld detail class of the IIW for single side fusion welded butt joints. The S-N 

curve for the intermediate welding speed was constructed; it has been demonstrated that this S-

N curve has a shallower slope than the one recommended by IIW for fusion welds, thus 

concluding that the slope recommended by IIW is not applicable to FSW. The newly developed 
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S-N curve for friction stir butt welded joints in low alloy steel is an important outcome from this 

study. In addition, the design fatigue strength at 2x106 cycles is above the parent material S-N 

curve FAT160 (m=5) [3], hence confirming that the use of the intermediate weld is the most 

appropriate for the derivation of the S-N curve. Moreover, the slow welding speed was found to 

result in better fatigue performance. This is because the slow speed produces a highly refined, 

homogeneous and defect-free microstructure as reported in a prior study [15].  

Residual stress measurements were recorded using the X-Ray diffraction technique. It was 

established that, although the location of the maximum transverse residual stress was found in 

the central stir zone of the weld, the typical crack initiation site was observed at the retreating 

side of the weld edge resulting from the processing features generated by the friction stir welding 

tool. Since the maximum transverse residual stress and crack initiation sites are unrelated, the 

fatigue performance of FSW is improved compared to fusion welding where the maximum 

transverse residual stress and the edge of the weld toe coincide. 

Examination of fracture surfaces where surface breaking flaws were present highlighted the 

critical importance of the lap defect in relation to fracture initiation. Fatigue testing of specimens 

without top surface defects resulted in a substantial improvement in fatigue life thus exhibiting 

that the markings produced by the FSW tool shoulder are responsible for crack initiation. It is 

important to emphasize that despite the presence of minor surface breaking flaws within the 

TMAZ, the overall fatigue strength is still considerably higher than the weld detail class of FAT 

80. 
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Highlights 

• An evaluation of the fatigue performance of steel friction stir welds is reported. 

• Friction stir welds of marine grade steel exceed the relevant rules for fusion welding. 

• New S-N curve parameters for butt friction stir welds are proposed. 

• Surface generated process features dictate the fatigue failure mechanism. 

 




